//======================================================================
//
// chacha.v
// --------
// Top level wrapper for the ChaCha stream, cipher core providing
// a simple memory like interface with 32 bit data access.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2011, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module chacha(
input wire clk,
input wire reset_n,
input wire cs,
input wire we,
input wire [7 : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data,
output wire error
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam ADDR_NAME0 = 8'h00;
localparam ADDR_NAME1 = 8'h01;
localparam ADDR_VERSION = 8'h02;
localparam ADDR_CTRL = 8'h08;
localparam CTRL_INIT_BIT = 0;
localparam CTRL_NEXT_BIT = 1;
localparam ADDR_STATUS = 8'h09;
localparam STATUS_READY_BIT = 0;
localparam ADDR_KEYLEN = 8'h0a;
localparam KEYLEN_BIT = 0;
localparam ADDR_ROUNDS = 8'h0b;
localparam ROUNDS_HIGH_BIT = 4;
localparam ROUNDS_LOW_BIT = 0;
localparam ADDR_KEY0 = 8'h10;
localparam ADDR_KEY7 = 8'h17;
localparam ADDR_IV0 = 8'h20;
localparam ADDR_IV1 = 8'h21;
localparam ADDR_DATA_IN0 = 8'h40;
localparam ADDR_DATA_IN15 = 8'h4f;
localparam ADDR_DATA_OUT0 = 8'h80;
localparam ADDR_DATA_OUT15 = 8'h8f;
localparam CORE_NAME0 = 32'h63686163; // "chac"
localparam CORE_NAME1 = 32'h68612020; // "ha "
localparam CORE_VERSION = 32'h302e3831; // "0.81"
localparam DEFAULT_CTR_INIT = 64'h0;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg init_reg;
reg init_new;
reg next_reg;
reg next_new;
reg keylen_reg;
reg keylen_we;
reg [4 : 0] rounds_reg;
reg rounds_we;
reg [31 : 0] key_reg [0 : 7];
reg key_we;
reg [31 : 0] iv_reg[0 : 1];
reg iv_we;
reg [31 : 0] data_in_reg [0 : 15];
reg data_in_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
wire [255 : 0] core_key;
wire [63 : 0] core_iv;
wire core_ready;
wire [511 : 0] core_data_in;
wire [511 : 0] core_data_out;
wire core_data_out_valid;
reg [31 : 0] tmp_read_data;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign core_key = {key_reg[0], key_reg[1], key_reg[2], key_reg[3],
key_reg[4], key_reg[5], key_reg[6], key_reg[7]};
assign core_iv = {iv_reg[0], iv_reg[1]};
assign core_data_in = {data_in_reg[00], data_in_reg[01], data_in_reg[02], data_in_reg[03],
data_in_reg[04], data_in_reg[05], data_in_reg[06], data_in_reg[07],
data_in_reg[08], data_in_reg[09], data_in_reg[10], data_in_reg[11],
data_in_reg[12], data_in_reg[13], data_in_reg[14], data_in_reg[15]};
assign read_data = tmp_read_data;
assign error = 1'b0;
//----------------------------------------------------------------
// core instantiation.
//----------------------------------------------------------------
chacha_core core (
.clk(clk),
.reset_n(reset_n),
.init(init_reg),
.next(next_reg),
.key(core_key),
.keylen(keylen_reg),
.iv(core_iv),
.ctr(DEFAULT_CTR_INIT),
.rounds(rounds_reg),
.data_in(core_data_in),
.ready(core_ready),
.data_out(core_data_out),
.data_out_valid(core_data_out_valid)
);
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin : reg_update
integer i;
if (!reset_n)
begin
init_reg <= 1'h0;
next_reg <= 1'h0;
keylen_reg <= 1'h0;
rounds_reg <= 5'h0;
iv_reg[0] <= 32'h0;
iv_reg[1] <= 32'h0;
for (i = 0 ; i < 8 ; i = i + 1)
key_reg[i] <= 32'h0;
for (i = 0 ; i < 16 ; i = i + 1)
data_in_reg[i] <= 32'h0;
end
else
begin
init_reg <= init_new;
next_reg <= next_new;
if (keylen_we)
keylen_reg <= write_data[KEYLEN_BIT];
if (rounds_we)
rounds_reg <= write_data[ROUNDS_HIGH_BIT : ROUNDS_LOW_BIT];
if (key_we)
key_reg[address[2 : 0]] <= write_data;
if (iv_we)
iv_reg[address[0]] <= write_data;
if (data_in_we)
data_in_reg[address[3 : 0]] <= write_data;
end
end // reg_update
//----------------------------------------------------------------
// Address decoder logic.
//----------------------------------------------------------------
always @*
begin : addr_decoder
init_new = 1'h0;
next_new = 1'h0;
keylen_we = 1'h0;
rounds_we = 1'h0;
key_we = 1'h0;
iv_we = 1'h0;
data_in_we = 1'h0;
tmp_read_data = 32'h0;
if (cs)
begin
if (we)
begin
if (core_ready)
begin
if (address == ADDR_CTRL)
begin
init_new = write_data[CTRL_INIT_BIT];
next_new = write_data[CTRL_NEXT_BIT];
end
if (address == ADDR_KEYLEN)
keylen_we = 1;
if (address == ADDR_ROUNDS)
rounds_we = 1;
if ((address >= ADDR_KEY0) && (address <= ADDR_KEY7))
key_we = 1;
if ((address >= ADDR_IV0) && (address <= ADDR_IV1))
iv_we = 1;
if ((address >= ADDR_DATA_IN0) && (address <= ADDR_DATA_IN15))
data_in_we = 1;
end
end // if (we)
else
begin
if ((address >= ADDR_KEY0) && (address <= ADDR_KEY7))
tmp_read_data = key_reg[address[2 : 0]];
if ((address >= ADDR_DATA_OUT0) && (address <= ADDR_DATA_OUT15))
if (core_ready)
tmp_read_data = core_data_out[(15 - (address - ADDR_DATA_OUT0)) * 32 +: 32];
case (address)
ADDR_NAME0: tmp_read_data = CORE_NAME0;
ADDR_NAME1: tmp_read_data = CORE_NAME1;
ADDR_VERSION: tmp_read_data = CORE_VERSION;
ADDR_CTRL: tmp_read_data = {30'h0, next_reg, init_reg};
ADDR_STATUS: tmp_read_data = {30'h0, core_data_out_valid, core_ready};
ADDR_KEYLEN: tmp_read_data = {31'h0, keylen_reg};
ADDR_ROUNDS: tmp_read_data = {27'h0, rounds_reg};
ADDR_IV0: tmp_read_data = iv_reg[0];
ADDR_IV1: tmp_read_data = iv_reg[1];
default:
begin
end
endcase // case (address)
end
end
end // addr_decoder
endmodule // chacha
//======================================================================
// EOF chacha.v
//======================================================================