summaryrefslogtreecommitdiff
path: root/main.c
blob: b925dbc6a28bd525c39262e17a77bded98792a44 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/**
  ******************************************************************************
  * File Name          : main.c
  * Description        : Main program body
  ******************************************************************************
  *
  * COPYRIGHT(c) 2016 STMicroelectronics
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */


//-----------------------------------------------------------------------------
// Headers
//-----------------------------------------------------------------------------
#include "stm32f4xx_hal.h"
#include "gpio.h"
#include "fmc.h"
#include "stm32-sdram.h"


//-----------------------------------------------------------------------------
// Prototypes
//-----------------------------------------------------------------------------
void SystemClock_Config(void);

int	test_sdram_sequential(uint32_t *base_addr);
int test_sdram_random(uint32_t *base_addr);
int test_sdrams_interleaved(uint32_t *base_addr1, uint32_t *base_addr2);

uint32_t lfsr_next_32(uint32_t lfsr);
uint32_t lfsr_next_24(uint32_t lfsr);


//-----------------------------------------------------------------------------
// Locals
//-----------------------------------------------------------------------------
static uint32_t lfsr1;
static uint32_t lfsr2;


//-----------------------------------------------------------------------------
int main(void)
//-----------------------------------------------------------------------------
{
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_FMC_Init();

		// run external memory initialization sequence
	int ok = sdram_init(&hsdram1, &hsdram2);

		// turn on green LED in case of success,
		// and keep it on as long as we're happy
	if (ok) HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_GREEN_Pin, GPIO_PIN_SET);
	
		// set LFSRs to some initial value, LFSRs will produce
		// pseudo-random 32-bit patterns to test our memories
	lfsr1 = 0xCCAA5533;
	lfsr2 = 0xCCAA5533;
	
		// continuosly test both chips
	while (ok)
	{
			// turn blue led off (testing chips separately)
		HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_BLUE_Pin, GPIO_PIN_RESET);
		
			// run sequential write-then-read test for the first chip
		ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP1);
		if (!ok) break;
	
			// run random write-then-read test for the first chip
		ok = test_sdram_random(SDRAM_BASEADDR_CHIP1);
		if (!ok) break;
		
			// run sequential write-then-read test for the second chip
		ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP2);
		if (!ok) break;
	
			// run random write-then-read test for the second chip
		ok = test_sdram_random(SDRAM_BASEADDR_CHIP2);
		if (!ok) break;
		
			// turn blue led on (testing two chips at the same time)
		HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_BLUE_Pin, GPIO_PIN_SET);
		
			// run interleaved write-then-read test for both chips at once
		ok = test_sdrams_interleaved(SDRAM_BASEADDR_CHIP1, SDRAM_BASEADDR_CHIP2);
		if (!ok) break;

	}
	
		/* should only get here in case of failure */

		//
		// turn all leds off
		//
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_BLUE_Pin,   GPIO_PIN_RESET);
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_GREEN_Pin,  GPIO_PIN_RESET);
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_RED_Pin,    GPIO_PIN_RESET);
		
		//
		// repeatedly flash the red led to indicate failure
		//
	for (;;)
	{
		HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_RED_Pin, GPIO_PIN_RESET);
		HAL_Delay(100);
		
		HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_RED_Pin, GPIO_PIN_SET);		
		HAL_Delay(100);
	}

}


//-----------------------------------------------------------------------------
int	test_sdram_sequential(uint32_t *base_addr)
//-----------------------------------------------------------------------------
{
		// memory offset
	int offset;

		// readback value
	uint32_t sdram_readback;
	
	
		/* This test fills entire memory chip with some pseudo-random pattern
	     starting from the very first cell and going in linear fashion. It then
	     reads entire memory and compares read values with what was written. */
	
	
		// turn on yellow led to indicate, that we're writing
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_SET);
	
	
		//
		// Note, that SDRAM_SIZE is in BYTES, and since we write using
		// 32-bit words, total number of words is SDRAM_SIZE / 4.
		//
	
		// fill entire memory with "random" values
	for (offset=0; offset<(SDRAM_SIZE >> 2); offset++)
	{
			// generate next "random" value to write
		lfsr1 = lfsr_next_32(lfsr1);
		
			// write to memory
		base_addr[offset] = lfsr1;
	}
	
	
		// turn off yellow led to indicate, that we're going to read
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET);
		
	
		// read entire memory and compare values
	for (offset=0; offset<(SDRAM_SIZE >> 2); offset++)
	{
			// generate next "random" value (we use the second LFSR to catch up)
		lfsr2 = lfsr_next_32(lfsr2);
		
			// read from memory
		sdram_readback = base_addr[offset];
		
			// compare and abort test in case of mismatch
		if (sdram_readback != lfsr2) return 0;
	}
		
		// done
	return 1;
}


//-----------------------------------------------------------------------------
int	test_sdram_random(uint32_t *base_addr)
//-----------------------------------------------------------------------------
{
		// cell counter, memory offset
	int counter, offset;

		// readback value
	uint32_t sdram_readback;
	
	
	/* This test fills entire memory chip with some pseudo-random pattern
		 starting from the very first cell, but then jumping around in pseudo-
	   random fashion to make sure, that SDRAM controller in STM32 handles
	   bank, row and column switching correctly. It then reads entire memory
	   and compares read values with what was written. */
	
	
		// turn on yellow led to indicate, that we're writing
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_SET);
	
	
		//
		// Note, that SDRAM_SIZE is in BYTES, and since we write using
		// 32-bit words, total number of words is SDRAM_SIZE / 4.
		//
	
		// start with the first cell
	for (counter=0, offset=0; counter<(SDRAM_SIZE >> 2); counter++)
	{
			// generate next "random" value to write
		lfsr1 = lfsr_next_32(lfsr1);

			// write to memory
		base_addr[offset] = lfsr1;
		
			// generate next "random" address
		
			//
			// Note, that for 64 MB memory with 32-bit data bus we need 24 bits
			// of address, so we use 24-bit LFSR here. Since LFSR has only 2^^24-1
			// states, i.e. all possible 24-bit values excluding 0, we have to
			// manually kick it into some arbitrary state during the first iteration.
			//
		
		offset = offset ? lfsr_next_24(offset) : 0x00DEC0DE;
	}
		
	
		// turn off yellow led to indicate, that we're going to read
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET);
	
	
		// read entire memory and compare values
	for (counter=0, offset=0; counter<(SDRAM_SIZE >> 2); counter++)
	{
			// generate next "random" value (we use the second LFSR to catch up)
		lfsr2 = lfsr_next_32(lfsr2);
		
			// read from memory
		sdram_readback = base_addr[offset];
		
			// compare and abort test in case of mismatch
		if (sdram_readback != lfsr2) return 0;
		
			// generate next "random" address
		offset = offset ? lfsr_next_24(offset) : 0x00DEC0DE;
	}
	
		//
		// we should have walked exactly 2**24 iterations and returned
		// back to the arbitrary starting address...
		//
		
	if (offset != 0x00DEC0DE) return 0;
	
		
			// done
		return 1;
}


//-----------------------------------------------------------------------------
int test_sdrams_interleaved(uint32_t *base_addr1, uint32_t *base_addr2)
//-----------------------------------------------------------------------------
{
	// cell counter, memory offsets
	int counter, offset1, offset2;

		// readback value
	uint32_t sdram_readback;
	
	
	/* Basically this is the same as test_sdram_random() except that it
		 tests both memory chips at the same time. */
	
	
		// turn on yellow led to indicate, that we're writing
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_SET);
	
	
		//
		// Note, that SDRAM_SIZE is in BYTES, and since we write using
		// 32-bit words, total number of words is SDRAM_SIZE / 4.
		//
	
		// start with the first cell
	for (counter=0, offset1=0, offset2=0; counter<(SDRAM_SIZE >> 2); counter++)
	{
			// generate next "random" value to write
		lfsr1 = lfsr_next_32(lfsr1);

			// write to memory
		base_addr1[offset1] = lfsr1;
		base_addr2[offset2] = lfsr1;
		
			// generate next "random" addresses (use different starting states!)
		
		offset1 = offset1 ? lfsr_next_24(offset1) : 0x00ABCDEF;
		offset2 = offset2 ? lfsr_next_24(offset2) : 0x00FEDCBA;
	}
		
	
		// turn off yellow led to indicate, that we're going to read
	HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET);
	
	
		// read entire memory and compare values
	for (counter=0, offset1=0, offset2=0; counter<(SDRAM_SIZE >> 2); counter++)
	{
			// generate next "random" value (we use the second LFSR to catch up)
		lfsr2 = lfsr_next_32(lfsr2);
		
			// read from the first memory and compare
		sdram_readback = base_addr1[offset1];
		if (sdram_readback != lfsr2) return 0;
		
			// read from the second memory and compare
		sdram_readback = base_addr2[offset2];
		if (sdram_readback != lfsr2) return 0;
		
			// generate next "random" addresses
		offset1 = offset1 ? lfsr_next_24(offset1) : 0x00ABCDEF;
		offset2 = offset2 ? lfsr_next_24(offset2) : 0x00FEDCBA;
	}
	
		//
		// we should have walked exactly 2**24 iterations and returned
		// back to the arbitrary starting address...
		//
		
	if (offset1 != 0x00ABCDEF) return 0;
	if (offset2 != 0x00FEDCBA) return 0;
	
		
			// done
		return 1;
}


//-----------------------------------------------------------------------------
void SystemClock_Config(void)
//-----------------------------------------------------------------------------
{

  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_ClkInitTypeDef RCC_ClkInitStruct;

  __HAL_RCC_PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 16;
  RCC_OscInitStruct.PLL.PLLN = 360;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);

  HAL_PWREx_EnableOverDrive();

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);

  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}



//-----------------------------------------------------------------------------
uint32_t lfsr_next_32(uint32_t lfsr)
//-----------------------------------------------------------------------------
{
	uint32_t tap = 0;

	tap ^= (lfsr >> 31);
	tap ^= (lfsr >> 30);
	tap ^= (lfsr >> 29);
	tap ^= (lfsr >> 9);

	return (lfsr << 1) | (tap & 1);
}


//-----------------------------------------------------------------------------
uint32_t lfsr_next_24(uint32_t lfsr)
//-----------------------------------------------------------------------------
{
	unsigned int tap = 0;

	tap ^= (lfsr >> 23);
	tap ^= (lfsr >> 22);
	tap ^= (lfsr >> 21);
	tap ^= (lfsr >> 16);

	return ((lfsr << 1) | (tap & 1)) & 0x00FFFFFF;
}


//-----------------------------------------------------------------------------
#ifdef USE_FULL_ASSERT
//-----------------------------------------------------------------------------
void assert_failed(uint8_t* file, uint32_t line)
//-----------------------------------------------------------------------------
{
}
//-----------------------------------------------------------------------------
#endif
//-----------------------------------------------------------------------------


//-----------------------------------------------------------------------------
// End-of-File
//-----------------------------------------------------------------------------