/** ****************************************************************************** * File Name : main.c * Description : Main program body ****************************************************************************** * * COPYRIGHT(c) 2016 STMicroelectronics * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ //----------------------------------------------------------------------------- // Headers //----------------------------------------------------------------------------- #include "stm32f4xx_hal.h" #include "gpio.h" #include "fmc.h" #include "stm32-sdram.h" //----------------------------------------------------------------------------- // Prototypes //----------------------------------------------------------------------------- void SystemClock_Config(void); int test_sdram_sequential(uint32_t *base_addr); int test_sdram_random(uint32_t *base_addr); int test_sdrams_interleaved(uint32_t *base_addr1, uint32_t *base_addr2); uint32_t lfsr_next_32(uint32_t lfsr); uint32_t lfsr_next_24(uint32_t lfsr); //----------------------------------------------------------------------------- // Locals //----------------------------------------------------------------------------- static uint32_t lfsr1; static uint32_t lfsr2; //----------------------------------------------------------------------------- int main(void) //----------------------------------------------------------------------------- { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_FMC_Init(); // run external memory initialization sequence int ok = sdram_init(&hsdram1, &hsdram2); // turn on green LED in case of success, // and keep it on as long as we're happy if (ok) HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_GREEN_Pin, GPIO_PIN_SET); // set LFSRs to some initial value, LFSRs will produce // pseudo-random 32-bit patterns to test our memories lfsr1 = 0xCCAA5533; lfsr2 = 0xCCAA5533; // continuosly test both chips while (ok) { // turn blue led off (testing chips separately) HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_BLUE_Pin, GPIO_PIN_RESET); // run sequential write-then-read test for the first chip ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP1); if (!ok) break; // run random write-then-read test for the first chip ok = test_sdram_random(SDRAM_BASEADDR_CHIP1); if (!ok) break; // run sequential write-then-read test for the second chip ok = test_sdram_sequential(SDRAM_BASEADDR_CHIP2); if (!ok) break; // run random write-then-read test for the second chip ok = test_sdram_random(SDRAM_BASEADDR_CHIP2); if (!ok) break; // turn blue led on (testing two chips at the same time) HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_BLUE_Pin, GPIO_PIN_SET); // run interleaved write-then-read test for both chips at once ok = test_sdrams_interleaved(SDRAM_BASEADDR_CHIP1, SDRAM_BASEADDR_CHIP2); if (!ok) break; } /* should only get here in case of failure */ // // turn all leds off // HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_BLUE_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_GREEN_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET); HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_RED_Pin, GPIO_PIN_RESET); // // repeatedly flash the red led to indicate failure // for (;;) { HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_RED_Pin, GPIO_PIN_RESET); HAL_Delay(100); HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_RED_Pin, GPIO_PIN_SET); HAL_Delay(100); } } //----------------------------------------------------------------------------- int test_sdram_sequential(uint32_t *base_addr) //----------------------------------------------------------------------------- { // memory offset int offset; // readback value uint32_t sdram_readback; /* This test fills entire memory chip with some pseudo-random pattern starting from the very first cell and going in linear fashion. It then reads entire memory and compares read values with what was written. */ // turn on yellow led to indicate, that we're writing HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_SET); // // Note, that SDRAM_SIZE is in BYTES, and since we write using // 32-bit words, total number of words is SDRAM_SIZE / 4. // // fill entire memory with "random" values for (offset=0; offset<(SDRAM_SIZE >> 2); offset++) { // generate next "random" value to write lfsr1 = lfsr_next_32(lfsr1); // write to memory base_addr[offset] = lfsr1; } // turn off yellow led to indicate, that we're going to read HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET); // read entire memory and compare values for (offset=0; offset<(SDRAM_SIZE >> 2); offset++) { // generate next "random" value (we use the second LFSR to catch up) lfsr2 = lfsr_next_32(lfsr2); // read from memory sdram_readback = base_addr[offset]; // compare and abort test in case of mismatch if (sdram_readback != lfsr2) return 0; } // done return 1; } //----------------------------------------------------------------------------- int test_sdram_random(uint32_t *base_addr) //----------------------------------------------------------------------------- { // cell counter, memory offset int counter, offset; // readback value uint32_t sdram_readback; /* This test fills entire memory chip with some pseudo-random pattern starting from the very first cell, but then jumping around in pseudo- random fashion to make sure, that SDRAM controller in STM32 handles bank, row and column switching correctly. It then reads entire memory and compares read values with what was written. */ // turn on yellow led to indicate, that we're writing HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_SET); // // Note, that SDRAM_SIZE is in BYTES, and since we write using // 32-bit words, total number of words is SDRAM_SIZE / 4. // // start with the first cell for (counter=0, offset=0; counter<(SDRAM_SIZE >> 2); counter++) { // generate next "random" value to write lfsr1 = lfsr_next_32(lfsr1); // write to memory base_addr[offset] = lfsr1; // generate next "random" address // // Note, that for 64 MB memory with 32-bit data bus we need 24 bits // of address, so we use 24-bit LFSR here. Since LFSR has only 2^^24-1 // states, i.e. all possible 24-bit values excluding 0, we have to // manually kick it into some arbitrary state during the first iteration. // offset = offset ? lfsr_next_24(offset) : 0x00DEC0DE; } // turn off yellow led to indicate, that we're going to read HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET); // read entire memory and compare values for (counter=0, offset=0; counter<(SDRAM_SIZE >> 2); counter++) { // generate next "random" value (we use the second LFSR to catch up) lfsr2 = lfsr_next_32(lfsr2); // read from memory sdram_readback = base_addr[offset]; // compare and abort test in case of mismatch if (sdram_readback != lfsr2) return 0; // generate next "random" address offset = offset ? lfsr_next_24(offset) : 0x00DEC0DE; } // // we should have walked exactly 2**24 iterations and returned // back to the arbitrary starting address... // if (offset != 0x00DEC0DE) return 0; // done return 1; } //----------------------------------------------------------------------------- int test_sdrams_interleaved(uint32_t *base_addr1, uint32_t *base_addr2) //----------------------------------------------------------------------------- { // cell counter, memory offsets int counter, offset1, offset2; // readback value uint32_t sdram_readback; /* Basically this is the same as test_sdram_random() except that it tests both memory chips at the same time. */ // turn on yellow led to indicate, that we're writing HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_SET); // // Note, that SDRAM_SIZE is in BYTES, and since we write using // 32-bit words, total number of words is SDRAM_SIZE / 4. // // start with the first cell for (counter=0, offset1=0, offset2=0; counter<(SDRAM_SIZE >> 2); counter++) { // generate next "random" value to write lfsr1 = lfsr_next_32(lfsr1); // write to memory base_addr1[offset1] = lfsr1; base_addr2[offset2] = lfsr1; // generate next "random" addresses (use different starting states!) offset1 = offset1 ? lfsr_next_24(offset1) : 0x00ABCDEF; offset2 = offset2 ? lfsr_next_24(offset2) : 0x00FEDCBA; } // turn off yellow led to indicate, that we're going to read HAL_GPIO_WritePin(ARM_LED_GPIO_Port, ARM_LED_YELLOW_Pin, GPIO_PIN_RESET); // read entire memory and compare values for (counter=0, offset1=0, offset2=0; counter<(SDRAM_SIZE >> 2); counter++) { // generate next "random" value (we use the second LFSR to catch up) lfsr2 = lfsr_next_32(lfsr2); // read from the first memory and compare sdram_readback = base_addr1[offset1]; if (sdram_readback != lfsr2) return 0; // read from the second memory and compare sdram_readback = base_addr2[offset2]; if (sdram_readback != lfsr2) return 0; // generate next "random" addresses offset1 = offset1 ? lfsr_next_24(offset1) : 0x00ABCDEF; offset2 = offset2 ? lfsr_next_24(offset2) : 0x00FEDCBA; } // // we should have walked exactly 2**24 iterations and returned // back to the arbitrary starting address... // if (offset1 != 0x00ABCDEF) return 0; if (offset2 != 0x00FEDCBA) return 0; // done return 1; } //----------------------------------------------------------------------------- void SystemClock_Config(void) //----------------------------------------------------------------------------- { RCC_OscInitTypeDef RCC_OscInitStruct; RCC_ClkInitTypeDef RCC_ClkInitStruct; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = 16; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 360; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; HAL_RCC_OscConfig(&RCC_OscInitStruct); HAL_PWREx_EnableOverDrive(); RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5); HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK); HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0); } //----------------------------------------------------------------------------- uint32_t lfsr_next_32(uint32_t lfsr) //----------------------------------------------------------------------------- { uint32_t tap = 0; tap ^= (lfsr >> 31); tap ^= (lfsr >> 30); tap ^= (lfsr >> 29); tap ^= (lfsr >> 9); return (lfsr << 1) | (tap & 1); } //----------------------------------------------------------------------------- uint32_t lfsr_next_24(uint32_t lfsr) //----------------------------------------------------------------------------- { unsigned int tap = 0; tap ^= (lfsr >> 23); tap ^= (lfsr >> 22); tap ^= (lfsr >> 21); tap ^= (lfsr >> 16); return ((lfsr << 1) | (tap & 1)) & 0x00FFFFFF; } //----------------------------------------------------------------------------- #ifdef USE_FULL_ASSERT //----------------------------------------------------------------------------- void assert_failed(uint8_t* file, uint32_t line) //----------------------------------------------------------------------------- { } //----------------------------------------------------------------------------- #endif //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // End-of-File //-----------------------------------------------------------------------------