aboutsummaryrefslogtreecommitdiff
path: root/modexp_fpga_model_montgomery.cpp
blob: e5237ff7f4e9db96d518a92358c1093672c59f90 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
//
// modexp_fpga_model_montgomery.cpp
// -------------------------------------------------------------
// Montgomery modular multiplication and exponentiation routines
//
// Authors: Pavel Shatov
// Copyright (c) 2017, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
//   be used to endorse or promote products derived from this software
//   without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//


//----------------------------------------------------------------
// Headers
//----------------------------------------------------------------
#include "modexp_fpga_model.h"
#include "modexp_fpga_model_pe.h"
#include "modexp_fpga_systolic.h"
#include "modexp_fpga_model_montgomery.h"


//----------------------------------------------------------------
// Montgomery modular multiplier
//----------------------------------------------------------------
void montgomery_multiply(const FPGA_WORD *A, const FPGA_WORD *B, const FPGA_WORD *N, const FPGA_WORD *N_COEFF, FPGA_WORD *R, size_t len, bool reduce_only)
//----------------------------------------------------------------
//
// R = A * B * 2^-len mod N
//
// The high-level algorithm is:
//
// 1. AB =  A * B
// 2. Q  = AB * N_COEFF
// 3. QN =  Q * N
// 4. S  = AB + QN
// 5. SN =  S - N
// 6. R  = (SN < 0) ? S : SN
// 7. R  = R >> len
//
//----------------------------------------------------------------
{
	size_t i, j, k;													// counters

	bool select_s;													// flag

	//FPGA_WORD t_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		// accumulators
	FPGA_WORD t_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		//
	FPGA_WORD t_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		//

	//FPGA_WORD s_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		// intermediate products
	FPGA_WORD s_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		//
	FPGA_WORD s_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		//

	//FPGA_WORD c_in_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		// input carries
	FPGA_WORD c_in_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		//
	FPGA_WORD c_in_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];		//
	//FPGA_WORD c_out_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];	// output carries
	FPGA_WORD c_out_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];	//
	FPGA_WORD c_out_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS];	//

	FPGA_WORD c_in_s;												// 1-bit carry and borrow
	FPGA_WORD b_in_sn;												//
	FPGA_WORD c_out_s;												//
	FPGA_WORD b_out_sn;												//

	FPGA_WORD AB[2 * MAX_OPERAND_WORDS];							// final products
	FPGA_WORD Q [2 * MAX_OPERAND_WORDS];							//
	FPGA_WORD QN[2 * MAX_OPERAND_WORDS];							//

	FPGA_WORD S [2 * MAX_OPERAND_WORDS];							// final sum
	FPGA_WORD SN[2 * MAX_OPERAND_WORDS];							// final difference

		// number of full systolic cycles needed to multiply entire B by one word of A
	size_t num_systolic_cycles = len / SYSTOLIC_NUM_WORDS;
	
		// adjust number of cycles
	if ((num_systolic_cycles * SYSTOLIC_NUM_WORDS) < len) num_systolic_cycles++;

		// initialize arrays of accumulators and carries to zeroes
	for (i=0; i<num_systolic_cycles; i++)
		for (j=0; j<SYSTOLIC_NUM_WORDS; j++)
			/*c_in_ab[i][j] = 0,*/ c_in_q [i][j] = 0, c_in_qn[i][j] = 0,
			/*t_ab[i][j]    = 0,*/ t_q [i][j]    = 0, t_qn[i][j]    = 0;

		// initialize 1-bit carry and borrow to zeroes too
	c_in_s = 0, b_in_sn = 0;

	multiply_systolic(A, B, AB, len, 2 * len);

	/*
	///////////////////////
	for (i = 0; i < (2 * len); i++)
	{
		for (k = 0; k < num_systolic_cycles; k++)
		{
				// simulate how a systolic array would work
			for (j = 0; j < SYSTOLIC_NUM_WORDS; j++)
			{
				size_t j_index = k * SYSTOLIC_NUM_WORDS + j;

					// current words of B, N_COEFF, N
				FPGA_WORD Bj       = (j_index < len) ? B      [k * SYSTOLIC_NUM_WORDS + j] : 0;

					// current word of A
				FPGA_WORD Aj_ab = (i < len) ? A[i] : 0;

					// AB = A * B		
				pe_mul(Aj_ab, Bj, t_ab[k][j], c_in_ab[k][j], &s_ab[k][j], &c_out_ab[k][j]);

					// store current word of AB
				if ((k == 0) && (j == 0)) AB[i] = reduce_only ? A[i] : s_ab[0][0];
			}

				// propagate carries
			for (j=0; j<SYSTOLIC_NUM_WORDS; j++)
				c_in_ab[k][j] = c_out_ab[k][j];

				// update accumulators
			for (j=1; j<SYSTOLIC_NUM_WORDS; j++)
				t_ab[k][j-1] = s_ab[k][j];
			
				// update accumulators
			if (k > 0)
				t_ab[k-1][SYSTOLIC_NUM_WORDS-1] = s_ab[k][0];

		}
	}
	*/

	///////////////////////




		// simultaneously calculate AB, Q, QN, S, SN
	for (i = 0; i < (2 * len); i++)
	{
			// multiply entire B by current word of A to get AB
			// multiply entire N_COEFF by current word of AB to get Q
			// multiply entire N by current word of Q to get QN
		for (k = 0; k < num_systolic_cycles; k++)
		{
				// simulate how a systolic array would work
			for (j = 0; j < SYSTOLIC_NUM_WORDS; j++)
			{
				size_t j_index = k * SYSTOLIC_NUM_WORDS + j;

					// current words of B, N_COEFF, N
				FPGA_WORD N_COEFFj = (j_index < len) ? N_COEFF[k * SYSTOLIC_NUM_WORDS + j] : 0;
				FPGA_WORD Nj       = (j_index < len) ? N      [k * SYSTOLIC_NUM_WORDS + j] : 0;

					// current word of AB
				FPGA_WORD Aj_q = (i < len) ? AB[i] : 0;

					// Q = AB * N		
				pe_mul(Aj_q, N_COEFFj, t_q[k][j], c_in_q[k][j], &s_q[k][j], &c_out_q[k][j]);

					// store current word of Q
				if ((k == 0) && (j == 0)) Q[i] = s_q[0][0];

					// current word of Q
				FPGA_WORD Aj_qn = (i < len) ? Q[i] : 0;

					// QN = Q * N
				pe_mul(Aj_qn, Nj, t_qn[k][j], c_in_qn[k][j], &s_qn[k][j], &c_out_qn[k][j]);

					// store next word of QN
				if ((k == 0) && (j == 0)) QN[i] = s_qn[0][0];
			}

				// propagate carries
			for (j=0; j<SYSTOLIC_NUM_WORDS; j++)
				c_in_q [k][j] = c_out_q [k][j],
				c_in_qn[k][j] = c_out_qn[k][j];

				// update accumulators
			for (j=1; j<SYSTOLIC_NUM_WORDS; j++)
			{
				t_q [k][j-1] = s_q [k][j];
				t_qn[k][j-1] = s_qn[k][j];
			}
			
				// update accumulators
			if (k > 0)
				t_q [k-1][SYSTOLIC_NUM_WORDS-1] = s_q [k][0],
				t_qn[k-1][SYSTOLIC_NUM_WORDS-1] = s_qn[k][0];

		}
	
			// now it's time to simultaneously add and subtract

			// current operand words
		FPGA_WORD QNi = QN[i];
		FPGA_WORD Ni  = (i < len) ? 0 : N[i-len];

			// add, subtract
		pe_add(AB[i], QNi, c_in_s,  &S[i],  &c_out_s);
		pe_sub(S [i], Ni,  b_in_sn, &SN[i], &b_out_sn);

			// propagate carry and borrow
		c_in_s  = c_out_s;
		b_in_sn = b_out_sn;
	}

		// flag select the right result
	select_s = b_out_sn && !c_out_s;

		// copy product into output buffer
	for (i=0; i<len; i++)
		R[i] = select_s ? S[i+len] : SN[i+len];
}


//----------------------------------------------------------------
// Classic binary exponentiation
//----------------------------------------------------------------
void montgomery_exponentiate(const FPGA_WORD *A, const FPGA_WORD *B, const FPGA_WORD *N, const FPGA_WORD *N_COEFF, FPGA_WORD *R, size_t len)
//----------------------------------------------------------------
//
// R = A ** B mod N
//
//----------------------------------------------------------------
{
	size_t word_cnt,   bit_cnt;			// counters
	size_t word_index, bit_index;		// indices

	bool flag_update_r;					// flag

	FPGA_WORD P[MAX_OPERAND_WORDS];		// power of A
	FPGA_WORD mask;						// mask		

		// R = 1, P = 1
	for (word_cnt=0; word_cnt<len; word_cnt++)
		R[word_cnt] = (word_cnt > 0) ? 0 : 1,
		P[word_cnt] = A[word_cnt];

	FPGA_WORD M_PP[MAX_OPERAND_WORDS];	// intermediate buffer for next power
	FPGA_WORD M_RP[MAX_OPERAND_WORDS];	// intermediate buffer for next result

		// scan all bits of the exponent
	for (bit_cnt=0; bit_cnt<(len * CHAR_BIT * sizeof(FPGA_WORD)); bit_cnt++)
	{
		montgomery_multiply(P, P, N, N_COEFF, M_PP, len, false);	// M_PP = P * P
		montgomery_multiply(R, P, N, N_COEFF, M_RP, len, false);	// M_RP = R * P
		
		word_index = bit_cnt / (CHAR_BIT * sizeof(FPGA_WORD));
		bit_index = bit_cnt & ((CHAR_BIT * sizeof(FPGA_WORD)) - 1);

		mask = 1 << bit_index;	// current bit of exponent

			// whether we need to update R (non-zero exponent bit)
		flag_update_r = (B[word_index] & mask) == mask;

			// always update P
		for (word_cnt=0; word_cnt<len; word_cnt++)
			P[word_cnt] = M_PP[word_cnt];

			// only update R when necessary
		if (flag_update_r)
		{
			for (word_cnt=0; word_cnt<len; word_cnt++)
				R[word_cnt] = M_RP[word_cnt];
		}
	}
}


//----------------------------------------------------------------
// Montgomery factor calculation
//----------------------------------------------------------------
void montgomery_calc_factor(const FPGA_WORD *N, FPGA_WORD *FACTOR, size_t len)
//----------------------------------------------------------------
//
// FACTOR = 2 ** (2*len) mod N
//
// This routine calculates the factor that is necessary to bring
// numbers into Montgomery domain. The high-level algorithm is:
//
// 1. f = 1
// 2. for i=0 to 2*len-1
// 3.   f1 = f << 1
// 4.   f2 = f1 - n
// 5.   f = (f2 < 0) ? f1 : f2
//
//----------------------------------------------------------------
{
	size_t i, j;		// counters

	bool flag_keep_f;	// flag
	
		// temporary buffer
	FPGA_WORD FACTOR_N[MAX_OPERAND_WORDS];

		// carry and borrow
	FPGA_WORD carry_in, carry_out;
	FPGA_WORD borrow_in, borrow_out;

		// FACTOR = 1
	for (i=0; i<len; i++)
		FACTOR[i] = (i > 0) ? 0 : 1;
		
		// do the math
	for (i=0; i<(2 * len * CHAR_BIT * sizeof(FPGA_WORD)); i++)
	{
			// clear carry and borrow
		carry_in = 0, borrow_in = 0;
		
			// calculate f1 = f << 1, f2 = f1 - n
		for (j=0; j<len; j++)
		{
			carry_out = FACTOR[j] >> (sizeof(FPGA_WORD) * CHAR_BIT - 1);		// | M <<= 1
			FACTOR[j] <<= 1, FACTOR[j] |= carry_in;								// |

			pe_sub(FACTOR[j], N[j], borrow_in, &FACTOR_N[j], &borrow_out);		// MN = M - N
	
			carry_in = carry_out, borrow_in = borrow_out;						// propagate carry & borrow
		}

			// obtain flag
		flag_keep_f = (borrow_out && !carry_out);

			// now select the right value
		for (j=0; j<len; j++)
			FACTOR[j] = flag_keep_f ? FACTOR[j] : FACTOR_N[j];
	}

}


//----------------------------------------------------------------
// Montgomery modulus-dependent coefficient calculation
//----------------------------------------------------------------
void montgomery_calc_n_coeff(const FPGA_WORD *N, FPGA_WORD *N_COEFF, size_t len)
//----------------------------------------------------------------
//
// N_COEFF = -N ** -1 mod 2 ** len
//
// This routine calculates the coefficient that is used during the reduction
// phase of Montgomery multiplication to zero out the lower half of product.
//
// The high-level algorithm is:
//
// 1. R = 1
// 2. B = 1
// 3. NN = ~N + 1
// 4. for i=1 to len-1
// 5.   B = B << 1
// 6.   T = R * NN mod 2 ** len
// 7.   if T[i] then
// 8.     R = R + B
//
//----------------------------------------------------------------
{
	size_t i, j, k;							// counters

	FPGA_WORD NN[MAX_OPERAND_WORDS];		// NN = ~N + 1
	FPGA_WORD T [MAX_OPERAND_WORDS];		// T = R * NN
	FPGA_WORD R [MAX_OPERAND_WORDS];		// R
	FPGA_WORD B [MAX_OPERAND_WORDS];		// B
	FPGA_WORD RR[MAX_OPERAND_WORDS];		// RR = R
	FPGA_WORD RB[MAX_OPERAND_WORDS];		// RB = R + B

	bool flag_update_r;						// flag

	FPGA_WORD nw;							//
	FPGA_WORD sum_c_in, sum_c_out;			//
	FPGA_WORD shift_c_in, shift_c_out;		//
	FPGA_WORD mul_s, mul_c_in, mul_c_out;	//

		// NN = -N mod 2 ** len = ~N + 1 mod 2 ** len
	sum_c_in = 0;
	for (i=0; i<len; i++)
	{	nw = (i > 0) ? 0 : 1;								// NW = 1
		pe_add(~N[i], nw, sum_c_in, &NN[i], &sum_c_out);	// NN = ~N + nw
		sum_c_in = sum_c_out;								// propagate carry
	}

		// R = 1
		// B = 1
	for (i=0; i<len; i++)
		R[i] = (i > 0) ? 0 : 1,
		B[i] = (i > 0) ? 0 : 1;

		// calculate T = R * NN
		// calculate B = B << 1
		// calculate RB = R + B
	for (k=1; k<(len * sizeof(FPGA_WORD) * CHAR_BIT); k++)
	{
			// T = 0
		for (i=0; i<len; i++) T[i] = 0;

			// T = NN * R
		for (i=0; i<len; i++)
		{
				// reset adder and shifter carries
			if (i == 0)
			{	shift_c_in = 0;
				sum_c_in = 0;
			}
				
				// reset multiplier carry
			mul_c_in = 0;

				// get word and index indices
			size_t word_index = k / (CHAR_BIT * sizeof(FPGA_WORD));
			size_t bit_index = k & ((CHAR_BIT * sizeof(FPGA_WORD)) - 1);

				// update bit mask
			FPGA_WORD bit_mask = (1 << bit_index);

				// main calculation loop
			for (j=0; j<(len-i); j++)
			{
					// B = B << 1
					// RB = R + B
				if (i == 0)
				{	shift_c_out = B[j] >> (sizeof(FPGA_WORD) * CHAR_BIT - 1);
					B[j] <<= 1, B[j] |= shift_c_in;
					pe_add(R[j], B[j], sum_c_in,  &RB[j], &sum_c_out);
				}

					// RR = R
				if (i == 0)
					RR[j] = R[j];
				
					// T = R * NN
				pe_mul(R[j], NN[i], T[i+j], mul_c_in, &mul_s, &mul_c_out);				
				T[i+j] = mul_s;
				
					// update flag
				if ((i + j) == word_index)
					flag_update_r = (T[i+j] & (1 << bit_index)) == (1 << bit_index);

					// propagate adder and shifter carries
				if (i == 0)
				{	shift_c_in = shift_c_out;
					sum_c_in = sum_c_out;
				}

					// propagate multiplier carry
				mul_c_in = mul_c_out;
			}
		}

			// update r
		for (i=0; i<len; i++)
			R[i] = flag_update_r ? RB[i] : RR[i];
	}

		// store output
	for (i=0; i<len; i++)
		N_COEFF[i] = R[i];
}


//----------------------------------------------------------------
// End of file
//----------------------------------------------------------------