aboutsummaryrefslogtreecommitdiff
path: root/modexp_fpga_model_montgomery.cpp
blob: 7455b2318a0b98129575ebe5e9957a7db622e9d9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//
// modexp_fpga_model_montgomery.cpp
// -------------------------------------------------------------
// Montgomery modular multiplication and exponentiation routines
//
// Authors: Pavel Shatov
// Copyright (c) 2017, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
//   be used to endorse or promote products derived from this software
//   without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//


//----------------------------------------------------------------
// Headers
//----------------------------------------------------------------
#include "modexp_fpga_model.h"
#include "modexp_fpga_model_pe.h"
#include "modexp_fpga_systolic.h"
#include "modexp_fpga_model_montgomery.h"


//----------------------------------------------------------------
// Montgomery modular multiplier
//----------------------------------------------------------------
void montgomery_multiply(const FPGA_WORD *A, const FPGA_WORD *B, const FPGA_WORD *N, const FPGA_WORD *N_COEFF, FPGA_WORD *R, size_t len, bool reduce_only)
//----------------------------------------------------------------
//
// R = A * B * 2^-len mod N
//
// The high-level algorithm is:
//
// 1. AB =  A * B
// 2. Q  = AB * N_COEFF
// 3. QN =  Q * N
// 4. S  = AB + QN
// 5. SN =  S - N
// 6. R  = (SN < 0) ? S : SN
// 7. R  = R >> len
//
//----------------------------------------------------------------
{
	size_t i;												// counters

	FPGA_WORD AB[2 * MAX_OPERAND_WORDS];					// products
	FPGA_WORD Q [    MAX_OPERAND_WORDS];					//
	FPGA_WORD QN[2 * MAX_OPERAND_WORDS];					//

	bool select_s;											// flag

	FPGA_WORD c_in_s;										// 1-bit carry and borrow
	FPGA_WORD b_in_sn;										//
	FPGA_WORD c_out_s;										//
	FPGA_WORD b_out_sn;										//

	FPGA_WORD S [2 * MAX_OPERAND_WORDS];					// final sum
	FPGA_WORD SN[2 * MAX_OPERAND_WORDS];					// final difference

		// copy twice larger A into AB
	if (reduce_only)
		for (i=0; i<(2*len); i++)
			AB[i] = A[i];

	if (!reduce_only)	multiply_systolic(A,       B,  AB, len, 2 * len);		// AB = A  * B
						multiply_systolic(N_COEFF, AB, Q,  len,     len);		// Q  = AB * N_COEFF
						multiply_systolic(Q,       N,  QN, len, 2 * len);		// QN = Q * N

		// initialize 1-bit carry and borrow
	c_in_s = 0, b_in_sn = 0;

		// now it's time to simultaneously add and subtract
	for (i = 0; i < (2 * len); i++)
	{	
			// current operand words
		FPGA_WORD QNi = QN[i];
		FPGA_WORD Ni  = (i < len) ? 0 : N[i-len];

			// add, subtract
		pe_add(AB[i], QNi, c_in_s,  &S[i],  &c_out_s);
		pe_sub(S [i], Ni,  b_in_sn, &SN[i], &b_out_sn);

			// propagate carry and borrow
		c_in_s  = c_out_s;
		b_in_sn = b_out_sn;
	}

		// flag select the right result
	select_s = b_out_sn && !c_out_s;

		// copy product into output buffer
	for (i=0; i<len; i++)
		R[i] = select_s ? S[i+len] : SN[i+len];
}


//----------------------------------------------------------------
// Classic binary exponentiation
//----------------------------------------------------------------
void montgomery_exponentiate(const FPGA_WORD *A, const FPGA_WORD *B, const FPGA_WORD *N, const FPGA_WORD *N_COEFF, FPGA_WORD *R, size_t len)
//----------------------------------------------------------------
//
// R = A ** B mod N
//
//----------------------------------------------------------------
{
	size_t word_cnt,   bit_cnt;			// counters
	size_t word_index, bit_index;		// indices

	bool flag_update_r;					// flag

	FPGA_WORD T0[MAX_OPERAND_WORDS];	//
	FPGA_WORD T1[MAX_OPERAND_WORDS];	//
	FPGA_WORD T2[MAX_OPERAND_WORDS];	//

	FPGA_WORD P1[MAX_OPERAND_WORDS];	//
	FPGA_WORD P2[MAX_OPERAND_WORDS];	//
	FPGA_WORD P3[MAX_OPERAND_WORDS];	//

	FPGA_WORD mask;						//

		// R = 1, P = 1
	for (word_cnt=0; word_cnt<len; word_cnt++)
		T1[word_cnt] = (word_cnt > 0) ? 0 : 1,
		T2[word_cnt] = (word_cnt > 0) ? 0 : 1,
		P1[word_cnt] = A[word_cnt],
		P2[word_cnt] = A[word_cnt],
		P3[word_cnt] = A[word_cnt];

	FPGA_WORD PP[MAX_OPERAND_WORDS];	// intermediate buffer for next power
	FPGA_WORD TP[MAX_OPERAND_WORDS];	// intermediate buffer for next result

		// scan all bits of the exponent
	for (bit_cnt=0; bit_cnt<(len * CHAR_BIT * sizeof(FPGA_WORD)); bit_cnt++)
	{
		for (word_cnt=0; word_cnt<len; word_cnt++)
			T0[word_cnt] = T1[word_cnt] ^ POWER_MASK;

		montgomery_multiply(P1, P2, N, N_COEFF, PP, len, false);	// PP = P1 * P2
		montgomery_multiply(T2, P3, N, N_COEFF, TP, len, false);	// TP =  T * P3
		
		word_index = bit_cnt / (CHAR_BIT * sizeof(FPGA_WORD));
		bit_index = bit_cnt & ((CHAR_BIT * sizeof(FPGA_WORD)) - 1);

		mask = 1 << bit_index;	// current bit of exponent

			// whether we need to update R (non-zero exponent bit)
		flag_update_r = (B[word_index] & mask) == mask;

			// always update P
		for (word_cnt=0; word_cnt<len; word_cnt++)
			P1[word_cnt] = PP[word_cnt],
			P2[word_cnt] = PP[word_cnt],
			P3[word_cnt] = PP[word_cnt];

			// update T
		for (word_cnt=0; word_cnt<len; word_cnt++)
			T1[word_cnt] = flag_update_r ? TP[word_cnt] : T0[word_cnt] ^ POWER_MASK,
			T2[word_cnt] = flag_update_r ? TP[word_cnt] : T0[word_cnt] ^ POWER_MASK;
	}

		// store result
	for (word_cnt=0; word_cnt<len; word_cnt++)
		R[word_cnt] = T1[word_cnt];
}


//----------------------------------------------------------------
// Montgomery factor calculation
//----------------------------------------------------------------
void montgomery_calc_factor(const FPGA_WORD *N, FPGA_WORD *FACTOR, size_t len)
//----------------------------------------------------------------
//
// FACTOR = 2 ** (2*len) mod N
//
// This routine calculates the factor that is necessary to bring
// numbers into Montgomery domain. The high-level algorithm is:
//
// 1. f = 1
// 2. for i=0 to 2*len-1
// 3.   f1 = f << 1
// 4.   f2 = f1 - n
// 5.   f = (f2 < 0) ? f1 : f2
//
//----------------------------------------------------------------
{
	size_t i, j;		// counters

	bool flag_keep_f;	// flag
	
		// temporary buffer
	FPGA_WORD FACTOR_N[MAX_OPERAND_WORDS];

		// carry and borrow
	FPGA_WORD carry_in, carry_out;
	FPGA_WORD borrow_in, borrow_out;

		// FACTOR = 1
	for (i=0; i<len; i++)
		FACTOR[i] = (i > 0) ? 0 : 1;
		
		// do the math
	for (i=0; i<(2 * len * CHAR_BIT * sizeof(FPGA_WORD)); i++)
	{
			// clear carry and borrow
		carry_in = 0, borrow_in = 0;
		
			// calculate f1 = f << 1, f2 = f1 - n
		for (j=0; j<len; j++)
		{
			carry_out = FACTOR[j] >> (sizeof(FPGA_WORD) * CHAR_BIT - 1);		// | M <<= 1
			FACTOR[j] <<= 1, FACTOR[j] |= carry_in;								// |

			pe_sub(FACTOR[j], N[j], borrow_in, &FACTOR_N[j], &borrow_out);		// MN = M - N
	
			carry_in = carry_out, borrow_in = borrow_out;						// propagate carry & borrow
		}

			// obtain flag
		flag_keep_f = (borrow_out && !carry_out);

			// now select the right value
		for (j=0; j<len; j++)
			FACTOR[j] = flag_keep_f ? FACTOR[j] : FACTOR_N[j];
	}

}


//----------------------------------------------------------------
// Montgomery modulus-dependent coefficient calculation
//----------------------------------------------------------------
void montgomery_calc_n_coeff(const FPGA_WORD *N, FPGA_WORD *N_COEFF, size_t len)
//----------------------------------------------------------------
//
// N_COEFF = -N ** -1 mod 2 ** len
//
// This routine calculates the coefficient that is used during the reduction
// phase of Montgomery multiplication to zero out the lower half of product.
//
// The high-level algorithm is:
//
// 1. R = 1
// 2. B = 1
// 3. NN = ~N + 1
// 4. for i=1 to len-1
// 5.   B = B << 1
// 6.   T = R * NN mod 2 ** len
// 7.   if T[i] then
// 8.     R = R + B
//
//----------------------------------------------------------------
{
	size_t i, j, k;							// counters

	FPGA_WORD NN[MAX_OPERAND_WORDS];		// NN = ~N + 1
	FPGA_WORD T [MAX_OPERAND_WORDS];		// T = R * NN
	FPGA_WORD R [MAX_OPERAND_WORDS];		// R
	FPGA_WORD B [MAX_OPERAND_WORDS];		// B
	FPGA_WORD RR[MAX_OPERAND_WORDS];		// RR = R
	FPGA_WORD RB[MAX_OPERAND_WORDS];		// RB = R + B

	bool flag_update_r;						// flag

	FPGA_WORD nw;							//
	FPGA_WORD sum_c_in, sum_c_out;			//
	FPGA_WORD shift_c_in, shift_c_out;		//
	FPGA_WORD mul_s, mul_c_in, mul_c_out;	//

		// NN = -N mod 2 ** len = ~N + 1 mod 2 ** len
	sum_c_in = 0;
	for (i=0; i<len; i++)
	{	nw = (i > 0) ? 0 : 1;								// NW = 1
		pe_add(~N[i], nw, sum_c_in, &NN[i], &sum_c_out);	// NN = ~N + nw
		sum_c_in = sum_c_out;								// propagate carry
	}

		// R = 1
		// B = 1
	for (i=0; i<len; i++)
		R[i] = (i > 0) ? 0 : 1,
		B[i] = (i > 0) ? 0 : 1;

		// calculate T = R * NN
		// calculate B = B << 1
		// calculate RB = R + B
	for (k=1; k<(len * sizeof(FPGA_WORD) * CHAR_BIT); k++)
	{
			// T = 0
		for (i=0; i<len; i++) T[i] = 0;

			// T = NN * R
		for (i=0; i<len; i++)
		{
				// reset adder and shifter carries
			if (i == 0)
			{	shift_c_in = 0;
				sum_c_in = 0;
			}
				
				// reset multiplier carry
			mul_c_in = 0;

				// get word and index indices
			size_t word_index = k / (CHAR_BIT * sizeof(FPGA_WORD));
			size_t bit_index = k & ((CHAR_BIT * sizeof(FPGA_WORD)) - 1);

				// update bit mask
			FPGA_WORD bit_mask = (1 << bit_index);

				// main calculation loop
			for (j=0; j<(len-i); j++)
			{
					// B = B << 1
					// RB = R + B
				if (i == 0)
				{	shift_c_out = B[j] >> (sizeof(FPGA_WORD) * CHAR_BIT - 1);
					B[j] <<= 1, B[j] |= shift_c_in;
					pe_add(R[j], B[j], sum_c_in,  &RB[j], &sum_c_out);
				}

					// RR = R
				if (i == 0)
					RR[j] = R[j];
				
					// T = R * NN
				pe_mul(R[j], NN[i], T[i+j], mul_c_in, &mul_s, &mul_c_out);				
				T[i+j] = mul_s;
				
					// update flag
				if ((i + j) == word_index)
					flag_update_r = (T[i+j] & (1 << bit_index)) == (1 << bit_index);

					// propagate adder and shifter carries
				if (i == 0)
				{	shift_c_in = shift_c_out;
					sum_c_in = sum_c_out;
				}

					// propagate multiplier carry
				mul_c_in = mul_c_out;
			}
		}

			// update r
		for (i=0; i<len; i++)
			R[i] = flag_update_r ? RB[i] : RR[i];
	}

		// store output
	for (i=0; i<len; i++)
		N_COEFF[i] = R[i];
}


//----------------------------------------------------------------
// End of file
//----------------------------------------------------------------