1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
//
// modexp_fpga_model.cpp
// -----------------------------------------------
// Model of fast modular exponentiation on an FPGA
//
// Authors: Pavel Shatov
// Copyright (c) 2017, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//----------------------------------------------------------------
// Headers
//----------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "modexp_fpga_model.h"
#include "modexp_fpga_model_montgomery.h"
#include "test/modexp_fpga_model_vectors.h"
//----------------------------------------------------------------
// Defined values
//----------------------------------------------------------------
#define OPERAND_WIDTH_384 384
#define OPERAND_WIDTH_512 512
#define OPERAND_NUM_WORDS_384 (OPERAND_WIDTH_384 / (CHAR_BIT * sizeof(FPGA_WORD)))
#define OPERAND_NUM_WORDS_512 (OPERAND_WIDTH_512 / (CHAR_BIT * sizeof(FPGA_WORD)))
//----------------------------------------------------------------
// Test vectors
//----------------------------------------------------------------
static const FPGA_WORD N_384_ROM[] = N_384; // 384-bit
static const FPGA_WORD M_384_ROM[] = M_384; //
static const FPGA_WORD D_384_ROM[] = D_384; //
static const FPGA_WORD S_384_ROM[] = S_384; //
static const FPGA_WORD P_384_ROM[] = P_384; // 192-bit
static const FPGA_WORD Q_384_ROM[] = Q_384; //
static const FPGA_WORD DP_384_ROM[] = DP_384; //
static const FPGA_WORD DQ_384_ROM[] = DQ_384; //
static const FPGA_WORD MP_384_ROM[] = MP_384; //
static const FPGA_WORD MQ_384_ROM[] = MQ_384; //
static const FPGA_WORD N_512_ROM[] = N_512; // 512-bit
static const FPGA_WORD M_512_ROM[] = M_512; //
static const FPGA_WORD D_512_ROM[] = D_512; //
static const FPGA_WORD S_512_ROM[] = S_512; //
static const FPGA_WORD P_512_ROM[] = P_512; // 256-bit
static const FPGA_WORD Q_512_ROM[] = Q_512; //
static const FPGA_WORD DP_512_ROM[] = DP_512; //
static const FPGA_WORD DQ_512_ROM[] = DQ_512; //
static const FPGA_WORD MP_512_ROM[] = MP_512; //
static const FPGA_WORD MQ_512_ROM[] = MQ_512; //
//----------------------------------------------------------------
// Prototypes
//----------------------------------------------------------------
void print_fpga_buffer (const char *str, const FPGA_WORD *buf, size_t len);
bool compare_fpga_buffers (const FPGA_WORD *src, const FPGA_WORD *dst, size_t len);
void load_value_from_rom (const FPGA_WORD *src, FPGA_WORD *dst, size_t len);
void modexp (const FPGA_WORD *M, const FPGA_WORD *D,
const FPGA_WORD *N, FPGA_WORD *R, size_t len);
void modexp_crt (const FPGA_WORD *M, const FPGA_WORD *D,
const FPGA_WORD *N, FPGA_WORD *R, size_t len);
bool test_modexp (const FPGA_WORD *n_rom, const FPGA_WORD *m_rom,
const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len);
bool test_modexp_crt (const FPGA_WORD *n_rom, const FPGA_WORD *m_rom,
const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len);
//----------------------------------------------------------------
int main()
//----------------------------------------------------------------
{
bool ok;
printf("Trying to sign 384-bit message...\n\n");
ok = test_modexp(N_384_ROM, M_384_ROM, D_384_ROM, S_384_ROM, OPERAND_NUM_WORDS_384);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 384-bit message with 192-bit prime P and exponent dP...\n\n");
ok = test_modexp_crt(P_384_ROM, M_384_ROM, DP_384_ROM, MP_384_ROM, OPERAND_NUM_WORDS_384 >> 1);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 384-bit message with 192-bit prime Q and exponent dQ...\n\n");
ok = test_modexp_crt(Q_384_ROM, M_384_ROM, DQ_384_ROM, MQ_384_ROM, OPERAND_NUM_WORDS_384 >> 1);
if (!ok) return EXIT_FAILURE;
printf("Trying to sign 512-bit message...\n\n");
ok = test_modexp(N_512_ROM, M_512_ROM, D_512_ROM, S_512_ROM, OPERAND_NUM_WORDS_512);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 512-bit message with 256-bit prime P and exponent dP...\n\n");
ok = test_modexp_crt(P_512_ROM, M_512_ROM, DP_512_ROM, MP_512_ROM, OPERAND_NUM_WORDS_512 >> 1);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 512-bit message with 256-bit prime Q and exponent dQ...\n\n");
ok = test_modexp_crt(Q_512_ROM, M_512_ROM, DQ_512_ROM, MQ_512_ROM, OPERAND_NUM_WORDS_512 >> 1);
if (!ok) return EXIT_FAILURE;
return EXIT_SUCCESS;
}
//----------------------------------------------------------------
// Modular exponentiation routine
//----------------------------------------------------------------
void modexp( const FPGA_WORD *M,
const FPGA_WORD *D,
const FPGA_WORD *N,
FPGA_WORD *R,
size_t len)
//----------------------------------------------------------------
//
// R = A ** B mod N
//
//----------------------------------------------------------------
{
// temporary buffers
FPGA_WORD FACTOR [MAX_OPERAND_WORDS];
FPGA_WORD N_COEFF[MAX_OPERAND_WORDS];
FPGA_WORD M_FACTOR[MAX_OPERAND_WORDS];
// pre-calculate modulus-dependant coefficients
montgomery_calc_factor(N, FACTOR, len);
montgomery_calc_n_coeff(N, N_COEFF, len);
// bring M into Montgomery domain
montgomery_multiply(M, FACTOR, N, N_COEFF, M_FACTOR, len, false);
/*
* Montgomery multiplication adds an extra factor of 2 ^ -w to every product.
* We pre-calculate a special factor of 2 ^ 2w and multiply the message
* by this factor using our Montgomery multiplier. This way we get the message
* with the an extra factor of just 2 ^ w:
* (m) * (2 ^ 2w) * (2 ^ -w) = m * 2 ^ w
*
* Now we feed this message with that extra factor to the binary exponentiation
* routine. The current power of m will always keep that additional factor:
* (p * 2 ^ w) * (p * 2 ^ w) * (2 ^ -w) = p ^ 2 * 2 ^ w
*
* The result starts at 1, i.e. without any extra factors. If at any particular
* iteration it gets multiplied with the current power of m, the product will
* not carry any extra factors, because the power's factor gets eliminated
* by the extra factor of Montgomery multiplication:
* (r) * (p * 2 ^ w) * (2 ^ -w) = r * p
*
* This way we don't need any extra post-processing to convert the final result
* from Montgomery domain.
*
*/
// exponentiate
montgomery_exponentiate(M_FACTOR, D, N, N_COEFF, R, len);
}
//----------------------------------------------------------------
// Modular exponentiation routine with CRT support
//----------------------------------------------------------------
void modexp_crt( const FPGA_WORD *M,
const FPGA_WORD *D,
const FPGA_WORD *N,
FPGA_WORD *R,
size_t len)
//----------------------------------------------------------------
//
// R = (A mod N) ** B mod N
//
//----------------------------------------------------------------
{
// temporary buffers
FPGA_WORD M0 [MAX_OPERAND_WORDS];
FPGA_WORD M1 [MAX_OPERAND_WORDS];
FPGA_WORD FACTOR [MAX_OPERAND_WORDS];
FPGA_WORD N_COEFF[MAX_OPERAND_WORDS];
FPGA_WORD M_FACTOR[MAX_OPERAND_WORDS];
// pre-calculate modulus-dependant coefficients
montgomery_calc_factor(N, FACTOR, len);
montgomery_calc_n_coeff(N, N_COEFF, len);
// reduce M to make it smaller than N
montgomery_multiply(M, NULL, N, N_COEFF, M0, len, true);
// bring M into Montgomery domain
montgomery_multiply(M0, FACTOR, N, N_COEFF, M1, len, false);
montgomery_multiply(M1, FACTOR, N, N_COEFF, M_FACTOR, len, false);
/*
* Montgomery multiplication adds an extra factor of 2 ^ -w to every product,
* Montgomery reduction adds that factor too. The message must be reduced before
* exponentiation, because in CRT mode it is twice larger, than the modulus
* and the exponent. After reduction the message carries an extra factor of
* 2 ^ -w. We pre-calculate a special factor of 2 ^ 2w and multiply the message
* by this factor *twice* using our Montgomery multiplier. This way we get the
* message with an extra factor of just 2 ^ w:
* 1. (m * 2 ^ -w) * (2 ^ 2w) * (2 ^ -w) = m
* 2. (m) * (2 ^ 2w) * (2 ^ -w) = m * 2 ^ w
*
* Now we feed this message with that extra factor to the binary exponentiation
* routine. The current power of m will always keep that additional factor:
* (p * 2 ^ w) * (p * 2 ^ w) * (2 ^ -w) = p ^ 2 * 2 ^ w
*
* The result starts at 1, i.e. without any extra factors. If at any particular
* iteration it gets multiplied with the current power of m, the product will
* not carry any extra factors, because the power's factor gets eliminated
* by the extra factor of Montgomery multiplication:
* (r) * (p * 2 ^ w) * (2 ^ -w) = r * p
*
* This way we don't need any extra post-processing to convert the final result
* from Montgomery domain.
*
*/
// exponentiate
montgomery_exponentiate(M_FACTOR, D, N, N_COEFF, R, len);
}
//----------------------------------------------------------------
// Copies words from src into dst reversing their order
//----------------------------------------------------------------
void load_value_from_rom(const FPGA_WORD *src, FPGA_WORD *dst, size_t len)
//----------------------------------------------------------------
//
// This routine copies src into dst word-by-word reversing their order
// in the process. This reversal is necessary because of the way C
// arrays are initialized. This model requires the least significant
// word of operand to be stored at array offset 0, while C places
// the most significant word there instead.
//
// Suppose that the operand is 0xFEDCBA9876543210, now the following line
// uint32_t X[2] = {0xFEDCBA98, 0x76543210}
// will place the most significant word 0xFEDCBA98 at index [0].
//
//----------------------------------------------------------------
{
size_t w;
for (w=0; w<len; w++)
dst[w] = src[len - (w + 1)];
}
//----------------------------------------------------------------
// Compare two operands
//----------------------------------------------------------------
bool compare_fpga_buffers(const FPGA_WORD *src, const FPGA_WORD *dst, size_t len)
//----------------------------------------------------------------
//
// This routine compares two multi-word intergers, it is used to compare
// the calculated value against the reference one.
//
//----------------------------------------------------------------
{
size_t w; // word counter
// print all the values
print_fpga_buffer(" Expected: M = ", src, len);
print_fpga_buffer(" Calculated: R = ", dst, len);
// compare values
for (w=0; w<len; w++)
{
// compare
if (src[w] != dst[w]) return false;
}
// values are the same
return true;
}
//----------------------------------------------------------------
// Prints large multi-word integer
//----------------------------------------------------------------
void print_fpga_buffer(const char *str, const FPGA_WORD *buf, size_t len)
//----------------------------------------------------------------
{
size_t w, s; // word counter
// print header
printf("%s", str);
// print all bytes
for (w=len; w>0; w--)
{
printf("%08x", buf[w-1]);
// insert space after every group of 4 bytes or print new line
if (w > 1)
{
if (((len - w) % 4) == 3)
{ printf("\n");
s = strlen(str);
while (s)
{ printf(" ");
s--;
}
}
else printf(" ");
}
}
// print footer
printf("\n\n");
}
//----------------------------------------------------------------
// Test the modular exponentiation model
//----------------------------------------------------------------
bool test_modexp(const FPGA_WORD *n_rom, const FPGA_WORD *m_rom, const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len)
//----------------------------------------------------------------
//
// This routine uses the Montgomery exponentiation model to
// calculate r = m ** d mod n, and then compares it to the
// reference value s.
//
//----------------------------------------------------------------
{
bool ok; // flag
// buffers
FPGA_WORD N[MAX_OPERAND_WORDS];
FPGA_WORD M[MAX_OPERAND_WORDS];
FPGA_WORD D[MAX_OPERAND_WORDS];
FPGA_WORD S[MAX_OPERAND_WORDS];
FPGA_WORD R[MAX_OPERAND_WORDS];
// fill buffers with test vector
load_value_from_rom(n_rom, N, len);
load_value_from_rom(m_rom, M, len);
load_value_from_rom(d_rom, D, len);
load_value_from_rom(s_rom, S, len);
// calculate power
modexp(M, D, N, R, len);
// check result
ok = compare_fpga_buffers(S, R, len);
if (!ok)
{ printf(" ERROR\n\n\n");
return false;
}
// everything went just fine
printf(" OK\n\n\n");
return true;
}
//----------------------------------------------------------------
// Test the modular exponentiation model with CRT enabled
//----------------------------------------------------------------
bool test_modexp_crt(const FPGA_WORD *n_rom, const FPGA_WORD *m_rom, const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len)
//----------------------------------------------------------------
//
// This routine uses the Montgomery exponentiation model to
// calculate r = (m mod n) ** d mod n, and then compares it to the
// reference value s. The difference from test_modexp() is that
// m_rom is twice larger than n_rom and d_rom.
//
//----------------------------------------------------------------
{
bool ok; // flag
// buffers
FPGA_WORD N[MAX_OPERAND_WORDS];
FPGA_WORD M[MAX_OPERAND_WORDS];
FPGA_WORD D[MAX_OPERAND_WORDS];
FPGA_WORD S[MAX_OPERAND_WORDS];
FPGA_WORD R[MAX_OPERAND_WORDS];
// fill buffers with test vector (message is twice as large!)
load_value_from_rom(n_rom, N, len);
load_value_from_rom(m_rom, M, len << 1);
load_value_from_rom(d_rom, D, len);
load_value_from_rom(s_rom, S, len);
// calculate power
modexp_crt(M, D, N, R, len);
// check result
ok = compare_fpga_buffers(S, R, len);
if (!ok)
{ printf(" ERROR\n\n\n");
return false;
}
// everything went just fine
printf(" OK\n\n\n");
return true;
}
//----------------------------------------------------------------
// End of file
//----------------------------------------------------------------
|