//
// modexp_fpga_model.cpp
// -----------------------------------------------
// Model of fast modular exponentiation on an FPGA
//
// Authors: Pavel Shatov
// Copyright (c) 2017, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//----------------------------------------------------------------
// Headers
//----------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "modexp_fpga_model.h"
#include "modexp_fpga_model_montgomery.h"
#include "test/modexp_fpga_model_vectors.h"
//----------------------------------------------------------------
// Defined values
//----------------------------------------------------------------
#define OPERAND_WIDTH_384 384
#define OPERAND_WIDTH_512 512
#define OPERAND_NUM_WORDS_384 (OPERAND_WIDTH_384 / (CHAR_BIT * sizeof(FPGA_WORD)))
#define OPERAND_NUM_WORDS_512 (OPERAND_WIDTH_512 / (CHAR_BIT * sizeof(FPGA_WORD)))
//----------------------------------------------------------------
// Test vectors
//----------------------------------------------------------------
static const FPGA_WORD N_384_ROM[] = N_384; // 384-bit
static const FPGA_WORD M_384_ROM[] = M_384; //
static const FPGA_WORD D_384_ROM[] = D_384; //
static const FPGA_WORD S_384_ROM[] = S_384; //
static const FPGA_WORD P_384_ROM[] = P_384; // 192-bit
static const FPGA_WORD Q_384_ROM[] = Q_384; //
static const FPGA_WORD DP_384_ROM[] = DP_384; //
static const FPGA_WORD DQ_384_ROM[] = DQ_384; //
static const FPGA_WORD MP_384_ROM[] = MP_384; //
static const FPGA_WORD MQ_384_ROM[] = MQ_384; //
static const FPGA_WORD N_512_ROM[] = N_512; // 512-bit
static const FPGA_WORD M_512_ROM[] = M_512; //
static const FPGA_WORD D_512_ROM[] = D_512; //
static const FPGA_WORD S_512_ROM[] = S_512; //
static const FPGA_WORD P_512_ROM[] = P_512; // 256-bit
static const FPGA_WORD Q_512_ROM[] = Q_512; //
static const FPGA_WORD DP_512_ROM[] = DP_512; //
static const FPGA_WORD DQ_512_ROM[] = DQ_512; //
static const FPGA_WORD MP_512_ROM[] = MP_512; //
static const FPGA_WORD MQ_512_ROM[] = MQ_512; //
//----------------------------------------------------------------
// Prototypes
//----------------------------------------------------------------
void print_fpga_buffer (const char *str, const FPGA_WORD *buf, size_t len);
bool compare_fpga_buffers (const FPGA_WORD *src, const FPGA_WORD *dst, size_t len);
void load_value_from_rom (const FPGA_WORD *src, FPGA_WORD *dst, size_t len);
void modexp (const FPGA_WORD *M, const FPGA_WORD *D,
const FPGA_WORD *N, FPGA_WORD *R, size_t len);
void modexp_crt (const FPGA_WORD *M, const FPGA_WORD *D,
const FPGA_WORD *N, FPGA_WORD *R, size_t len);
bool test_modexp (const FPGA_WORD *n_rom, const FPGA_WORD *m_rom,
const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len);
bool test_modexp_crt (const FPGA_WORD *n_rom, const FPGA_WORD *m_rom,
const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len);
//----------------------------------------------------------------
int main()
//----------------------------------------------------------------
{
bool ok;
printf("Trying to sign 384-bit message...\n\n");
ok = test_modexp(N_384_ROM, M_384_ROM, D_384_ROM, S_384_ROM, OPERAND_NUM_WORDS_384);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 384-bit message with 192-bit prime P and exponent dP...\n\n");
ok = test_modexp_crt(P_384_ROM, M_384_ROM, DP_384_ROM, MP_384_ROM, OPERAND_NUM_WORDS_384 >> 1);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 384-bit message with 192-bit prime Q and exponent dQ...\n\n");
ok = test_modexp_crt(Q_384_ROM, M_384_ROM, DQ_384_ROM, MQ_384_ROM, OPERAND_NUM_WORDS_384 >> 1);
if (!ok) return EXIT_FAILURE;
printf("Trying to sign 512-bit message...\n\n");
ok = test_modexp(N_512_ROM, M_512_ROM, D_512_ROM, S_512_ROM, OPERAND_NUM_WORDS_512);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 512-bit message with 256-bit prime P and exponent dP...\n\n");
ok = test_modexp_crt(P_512_ROM, M_512_ROM, DP_512_ROM, MP_512_ROM, OPERAND_NUM_WORDS_512 >> 1);
if (!ok) return EXIT_FAILURE;
printf("Trying to exponentiate 512-bit message with 256-bit prime Q and exponent dQ...\n\n");
ok = test_modexp_crt(Q_512_ROM, M_512_ROM, DQ_512_ROM, MQ_512_ROM, OPERAND_NUM_WORDS_512 >> 1);
if (!ok) return EXIT_FAILURE;
return EXIT_SUCCESS;
}
//----------------------------------------------------------------
// Modular exponentiation routine
//----------------------------------------------------------------
void modexp( const FPGA_WORD *M,
const FPGA_WORD *D,
const FPGA_WORD *N,
FPGA_WORD *R,
size_t len)
//----------------------------------------------------------------
//
// R = A ** B mod N
//
//----------------------------------------------------------------
{
// temporary buffers
FPGA_WORD FACTOR [MAX_OPERAND_WORDS];
FPGA_WORD N_COEFF[MAX_OPERAND_WORDS];
FPGA_WORD M_FACTOR[MAX_OPERAND_WORDS];
// pre-calculate modulus-dependant coefficients
montgomery_calc_factor(N, FACTOR, len);
montgomery_calc_n_coeff(N, N_COEFF, len);
// bring M into Montgomery domain
montgomery_multiply(M, FACTOR, N, N_COEFF, M_FACTOR, len, false);
/*
* Montgomery multiplication adds an extra factor of 2 ^ -w to every product.
* We pre-calculate a special factor of 2 ^ 2w and multiply the message
* by this factor using our Montgomery multiplier. This way we get the message
* with the an extra factor of just 2 ^ w:
* (m) * (2 ^ 2w) * (2 ^ -w) = m * 2 ^ w
*
* Now we feed this message with that extra factor to the binary exponentiation
* routine. The current power of m will always keep that additional factor:
* (p * 2 ^ w) * (p * 2 ^ w) * (2 ^ -w) = p ^ 2 * 2 ^ w
*
* The result starts at 1, i.e. without any extra factors. If at any particular
* iteration it gets multiplied with the current power of m, the product will
* not carry any extra factors, because the power's factor gets eliminated
* by the extra factor of Montgomery multiplication:
* (r) * (p * 2 ^ w) * (2 ^ -w) = r * p
*
* This way we don't need any extra post-processing to convert the final result
* from Montgomery domain.
*
*/
// exponentiate
montgomery_exponentiate(M_FACTOR, D, N, N_COEFF, R, len);
}
//----------------------------------------------------------------
// Modular exponentiation routine with CRT support
//----------------------------------------------------------------
void modexp_crt( const FPGA_WORD *M,
const FPGA_WORD *D,
const FPGA_WORD *N,
FPGA_WORD *R,
size_t len)
//----------------------------------------------------------------
//
// R = (A mod N) ** B mod N
//
//----------------------------------------------------------------
{
// temporary buffers
FPGA_WORD M0 [MAX_OPERAND_WORDS];
FPGA_WORD M1 [MAX_OPERAND_WORDS];
FPGA_WORD FACTOR [MAX_OPERAND_WORDS];
FPGA_WORD N_COEFF[MAX_OPERAND_WORDS];
FPGA_WORD M_FACTOR[MAX_OPERAND_WORDS];
// pre-calculate modulus-dependant coefficients
montgomery_calc_factor(N, FACTOR, len);
montgomery_calc_n_coeff(N, N_COEFF, len);
// reduce M to make it smaller than N
montgomery_multiply(M, NULL, N, N_COEFF, M0, len, true);
// bring M into Montgomery domain
montgomery_multiply(M0, FACTOR, N, N_COEFF, M1, len, false);
montgomery_multiply(M1, FACTOR, N, N_COEFF, M_FACTOR, len, false);
/*
* Montgomery multiplication adds an extra factor of 2 ^ -w to every product,
* Montgomery reduction adds that factor too. The message must be reduced before
* exponentiation, because in CRT mode it is twice larger, than the modulus
* and the exponent. After reduction the message carries an extra factor of
* 2 ^ -w. We pre-calculate a special factor of 2 ^ 2w and multiply the message
* by this factor *twice* using our Montgomery multiplier. This way we get the
* message with an extra factor of just 2 ^ w:
* 1. (m * 2 ^ -w) * (2 ^ 2w) * (2 ^ -w) = m
* 2. (m) * (2 ^ 2w) * (2 ^ -w) = m * 2 ^ w
*
* Now we feed this message with that extra factor to the binary exponentiation
* routine. The current power of m will always keep that additional factor:
* (p * 2 ^ w) * (p * 2 ^ w) * (2 ^ -w) = p ^ 2 * 2 ^ w
*
* The result starts at 1, i.e. without any extra factors. If at any particular
* iteration it gets multiplied with the current power of m, the product will
* not carry any extra factors, because the power's factor gets eliminated
* by the extra factor of Montgomery multiplication:
* (r) * (p * 2 ^ w) * (2 ^ -w) = r * p
*
* This way we don't need any extra post-processing to convert the final result
* from Montgomery domain.
*
*/
// exponentiate
montgomery_exponentiate(M_FACTOR, D, N, N_COEFF, R, len);
}
//----------------------------------------------------------------
// Copies words from src into dst reversing their order
//----------------------------------------------------------------
void load_value_from_rom(const FPGA_WORD *src, FPGA_WORD *dst, size_t len)
//----------------------------------------------------------------
//
// This routine copies src into dst word-by-word reversing their order
// in the process. This reversal is necessary because of the way C
// arrays are initialized. This model requires the least significant
// word of operand to be stored at array offset 0, while C places
// the most significant word there instead.
//
// Suppose that the operand is 0xFEDCBA9876543210, now the following line
// uint32_t X[2] = {0xFEDCBA98, 0x76543210}
// will place the most significant word 0xFEDCBA98 at index [0].
//
//----------------------------------------------------------------
{
size_t w;
for (w=0; w<len; w++)
dst[w] = src[len - (w + 1)];
}
//----------------------------------------------------------------
// Compare two operands
//----------------------------------------------------------------
bool compare_fpga_buffers(const FPGA_WORD *src, const FPGA_WORD *dst, size_t len)
//----------------------------------------------------------------
//
// This routine compares two multi-word intergers, it is used to compare
// the calculated value against the reference one.
//
//----------------------------------------------------------------
{
size_t w; // word counter
// print all the values
print_fpga_buffer(" Expected: M = ", src, len);
print_fpga_buffer(" Calculated: R = ", dst, len);
// compare values
for (w=0; w<len; w++)
{
// compare
if (src[w] != dst[w]) return false;
}
// values are the same
return true;
}
//----------------------------------------------------------------
// Prints large multi-word integer
//----------------------------------------------------------------
void print_fpga_buffer(const char *str, const FPGA_WORD *buf, size_t len)
//----------------------------------------------------------------
{
size_t w, s; // word counter
// print header
printf("%s", str);
// print all bytes
for (w=len; w>0; w--)
{
printf("%08x", buf[w-1]);
// insert space after every group of 4 bytes or print new line
if (w > 1)
{
if (((len - w) % 4) == 3)
{ printf("\n");
s = strlen(str);
while (s)
{ printf(" ");
s--;
}
}
else printf(" ");
}
}
// print footer
printf("\n\n");
}
//----------------------------------------------------------------
// Test the modular exponentiation model
//----------------------------------------------------------------
bool test_modexp(const FPGA_WORD *n_rom, const FPGA_WORD *m_rom, const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len)
//----------------------------------------------------------------
//
// This routine uses the Montgomery exponentiation model to
// calculate r = m ** d mod n, and then compares it to the
// reference value s.
//
//----------------------------------------------------------------
{
bool ok; // flag
// buffers
FPGA_WORD N[MAX_OPERAND_WORDS];
FPGA_WORD M[MAX_OPERAND_WORDS];
FPGA_WORD D[MAX_OPERAND_WORDS];
FPGA_WORD S[MAX_OPERAND_WORDS];
FPGA_WORD R[MAX_OPERAND_WORDS];
// fill buffers with test vector
load_value_from_rom(n_rom, N, len);
load_value_from_rom(m_rom, M, len);
load_value_from_rom(d_rom, D, len);
load_value_from_rom(s_rom, S, len);
// calculate power
modexp(M, D, N, R, len);
// check result
ok = compare_fpga_buffers(S, R, len);
if (!ok)
{ printf(" ERROR\n\n\n");
return false;
}
// everything went just fine
printf(" OK\n\n\n");
return true;
}
//----------------------------------------------------------------
// Test the modular exponentiation model with CRT enabled
//----------------------------------------------------------------
bool test_modexp_crt(const FPGA_WORD *n_rom, const FPGA_WORD *m_rom, const FPGA_WORD *d_rom, const FPGA_WORD *s_rom, size_t len)
//----------------------------------------------------------------
//
// This routine uses the Montgomery exponentiation model to
// calculate r = (m mod n) ** d mod n, and then compares it to the
// reference value s. The difference from test_modexp() is that
// m_rom is twice larger than n_rom and d_rom.
//
//----------------------------------------------------------------
{
bool ok; // flag
// buffers
FPGA_WORD N[MAX_OPERAND_WORDS];
FPGA_WORD M[MAX_OPERAND_WORDS];
FPGA_WORD D[MAX_OPERAND_WORDS];
FPGA_WORD S[MAX_OPERAND_WORDS];
FPGA_WORD R[MAX_OPERAND_WORDS];
// fill buffers with test vector (message is twice as large!)
load_value_from_rom(n_rom, N, len);
load_value_from_rom(m_rom, M, len << 1);
load_value_from_rom(d_rom, D, len);
load_value_from_rom(s_rom, S, len);
// calculate power
modexp_crt(M, D, N, R, len);
// check result
ok = compare_fpga_buffers(S, R, len);
if (!ok)
{ printf(" ERROR\n\n\n");
return false;
}
// everything went just fine
printf(" OK\n\n\n");
return true;
}
//----------------------------------------------------------------
// End of file
//----------------------------------------------------------------