//
// modexp_fpga_model_montgomery.cpp
// -------------------------------------------------------------
// Montgomery modular multiplication and exponentiation routines
//
// Authors: Pavel Shatov
// Copyright (c) 2017, NORDUnet A/S
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//----------------------------------------------------------------
// Headers
//----------------------------------------------------------------
#include "modexp_fpga_model.h"
#include "modexp_fpga_model_pe.h"
#include "modexp_fpga_model_montgomery.h"
//----------------------------------------------------------------
// Montgomery modular multiplier
//----------------------------------------------------------------
void montgomery_multiply(const FPGA_WORD *A, const FPGA_WORD *B, const FPGA_WORD *N, const FPGA_WORD *N_COEFF, FPGA_WORD *R, size_t len)
//----------------------------------------------------------------
//
// R = A * B * 2^-len mod N
//
// The high-level algorithm is:
//
// 1. AB = A * B
// 2. Q = AB * N_COEFF
// 3. QN = Q * N
// 4. S = AB + QN
// 5. SN = S - N
// 6. R = (SN < 0) ? S : SN
// 7. R = R >> len
//
//----------------------------------------------------------------
{
size_t i, j, k; // counters
bool select_s; // flag
FPGA_WORD t_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; // accumulators
FPGA_WORD t_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD t_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD s_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; // intermediate products
FPGA_WORD s_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD s_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD c_in_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; // input carries
FPGA_WORD c_in_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD c_in_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD c_out_ab[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; // output carries
FPGA_WORD c_out_q [MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD c_out_qn[MAX_SYSTOLIC_CYCLES][SYSTOLIC_NUM_WORDS]; //
FPGA_WORD c_in_s; // 1-bit carry and borrow
FPGA_WORD b_in_sn; //
FPGA_WORD c_out_s; //
FPGA_WORD b_out_sn; //
FPGA_WORD AB[2 * MAX_OPERAND_WORDS]; // final products
FPGA_WORD Q [2 * MAX_OPERAND_WORDS]; //
FPGA_WORD QN[2 * MAX_OPERAND_WORDS]; //
FPGA_WORD S [2 * MAX_OPERAND_WORDS]; // final sum
FPGA_WORD SN[2 * MAX_OPERAND_WORDS]; // final difference
// number of systolic cycles needed to multiply entire B by one word of A
size_t num_systolic_cycles = len / SYSTOLIC_NUM_WORDS;
// initialize arrays of accumulators and carries to zeroes
for (i=0; i<num_systolic_cycles; i++)
for (j=0; j<SYSTOLIC_NUM_WORDS; j++)
c_in_ab[i][j] = 0, c_in_q [i][j] = 0, c_in_qn[i][j] = 0,
t_ab[i][j] = 0, t_q [i][j] = 0, t_qn[i][j] = 0;
// initialize 1-bit carry and borrow to zeroes too
c_in_s = 0, b_in_sn = 0;
// simultaneously calculate AB, Q, QN, S, SN
for (i = 0; i < (2 * len); i++)
{
// multiply entire B by current word of A to get AB
// multiply entire N_COEFF by current word of AB to get Q
// multiply entire N by current word of Q to get QN
for (k = 0; k < num_systolic_cycles; k++)
{
// simulate how a systolic array would work
for (j = 0; j < SYSTOLIC_NUM_WORDS; j++)
{
// current words of B, N_COEFF, N
FPGA_WORD Bj = B [k * SYSTOLIC_NUM_WORDS + j];
FPGA_WORD N_COEFFj = N_COEFF[k * SYSTOLIC_NUM_WORDS + j];
FPGA_WORD Nj = N [k * SYSTOLIC_NUM_WORDS + j];
// current word of A
FPGA_WORD Aj_ab = (i < len) ? A[i] : 0;
// AB = A * B
pe_mul(Aj_ab, Bj, t_ab[k][j], c_in_ab[k][j], &s_ab[k][j], &c_out_ab[k][j]);
// store current word of AB
if ((k == 0) && (j == 0)) AB[i] = s_ab[0][0];
// current word of AB
FPGA_WORD Aj_q = (i < len) ? AB[i] : 0;
// Q = AB * N
pe_mul(Aj_q, N_COEFFj, t_q[k][j], c_in_q[k][j], &s_q[k][j], &c_out_q[k][j]);
// store current word of Q
if ((k == 0) && (j == 0)) Q[i] = s_q[0][0];
// current word of Q
FPGA_WORD Aj_qn = (i < len) ? Q[i] : 0;
// QN = Q * N
pe_mul(Aj_qn, Nj, t_qn[k][j], c_in_qn[k][j], &s_qn[k][j], &c_out_qn[k][j]);
// store next word of QN
if ((k == 0) && (j == 0)) QN[i] = s_qn[0][0];
}
// propagate carries
for (j=0; j<SYSTOLIC_NUM_WORDS; j++)
c_in_ab[k][j] = c_out_ab[k][j],
c_in_q [k][j] = c_out_q [k][j],
c_in_qn[k][j] = c_out_qn[k][j];
// update accumulators
for (j=1; j<SYSTOLIC_NUM_WORDS; j++)
{
t_ab[k][j-1] = s_ab[k][j];
t_q [k][j-1] = s_q [k][j];
t_qn[k][j-1] = s_qn[k][j];
}
// update accumulators
if (k > 0)
t_ab[k-1][SYSTOLIC_NUM_WORDS-1] = s_ab[k][0],
t_q [k-1][SYSTOLIC_NUM_WORDS-1] = s_q [k][0],
t_qn[k-1][SYSTOLIC_NUM_WORDS-1] = s_qn[k][0];
}
// now it's time to simultaneously add and subtract
// current operand words
FPGA_WORD QNi = QN[i];
FPGA_WORD Ni = (i < len) ? 0 : N[i-len];
// add, subtract
pe_add(AB[i], QNi, c_in_s, &S[i], &c_out_s);
pe_sub(S [i], Ni, b_in_sn, &SN[i], &b_out_sn);
// propagate carry and borrow
c_in_s = c_out_s;
b_in_sn = b_out_sn;
}
// flag select the right result
select_s = b_out_sn && !c_out_s;
// copy product into output buffer
for (i=0; i<len; i++)
R[i] = select_s ? S[i+len] : SN[i+len];
}
//----------------------------------------------------------------
// Classic binary exponentiation
//----------------------------------------------------------------
void montgomery_exponentiate(const FPGA_WORD *A, const FPGA_WORD *B, const FPGA_WORD *N, const FPGA_WORD *N_COEFF, FPGA_WORD *R, size_t len)
//----------------------------------------------------------------
//
// R = A ** B mod N
//
//----------------------------------------------------------------
{
size_t word_cnt, bit_cnt; // counters
size_t word_index, bit_index; // indices
bool flag_update_r; // flag
FPGA_WORD P[MAX_OPERAND_WORDS]; // power of A
FPGA_WORD mask; // mask
// R = 1, P = 1
for (word_cnt=0; word_cnt<len; word_cnt++)
R[word_cnt] = (word_cnt > 0) ? 0 : 1,
P[word_cnt] = A[word_cnt];
FPGA_WORD M_PP[MAX_OPERAND_WORDS]; // intermediate buffer for next power
FPGA_WORD M_RP[MAX_OPERAND_WORDS]; // intermediate buffer for next result
// scan all bits of the exponent
for (bit_cnt=0; bit_cnt<(len * CHAR_BIT * sizeof(FPGA_WORD)); bit_cnt++)
{
montgomery_multiply(P, P, N, N_COEFF, M_PP, len); // M_PP = P * P
montgomery_multiply(R, P, N, N_COEFF, M_RP, len); // M_RP = R * P
word_index = bit_cnt / (CHAR_BIT * sizeof(FPGA_WORD));
bit_index = bit_cnt & ((CHAR_BIT * sizeof(FPGA_WORD)) - 1);
mask = 1 << bit_index; // current bit of exponent
// whether we need to update R (non-zero exponent bit)
flag_update_r = (B[word_index] & mask) == mask;
// always update P
for (word_cnt=0; word_cnt<len; word_cnt++)
P[word_cnt] = M_PP[word_cnt];
// only update R when necessary
if (flag_update_r)
{
for (word_cnt=0; word_cnt<len; word_cnt++)
R[word_cnt] = M_RP[word_cnt];
}
}
}
//----------------------------------------------------------------
// Montgomery factor calculation
//----------------------------------------------------------------
void montgomery_calc_factor(const FPGA_WORD *N, FPGA_WORD *FACTOR, size_t len)
//----------------------------------------------------------------
//
// FACTOR = 2 ** (2*len) mod N
//
// This routine calculates the factor that is necessary to bring
// numbers into Montgomery domain. The high-level algorithm is:
//
// 1. f = 1
// 2. for i=0 to 2*len-1
// 3. f1 = f << 1
// 4. f2 = f1 - n
// 5. f = (f2 < 0) ? f1 : f2
//
//----------------------------------------------------------------
{
size_t i, j; // counters
bool flag_keep_f; // flag
// temporary buffer
FPGA_WORD FACTOR_N[MAX_OPERAND_WORDS];
// carry and borrow
FPGA_WORD carry_in, carry_out;
FPGA_WORD borrow_in, borrow_out;
// FACTOR = 1
for (i=0; i<len; i++)
FACTOR[i] = (i > 0) ? 0 : 1;
// do the math
for (i=0; i<(2 * len * CHAR_BIT * sizeof(FPGA_WORD)); i++)
{
// clear carry and borrow
carry_in = 0, borrow_in = 0;
// calculate f1 = f << 1, f2 = f1 - n
for (j=0; j<len; j++)
{
carry_out = FACTOR[j] >> (sizeof(FPGA_WORD) * CHAR_BIT - 1); // | M <<= 1
FACTOR[j] <<= 1, FACTOR[j] |= carry_in; // |
pe_sub(FACTOR[j], N[j], borrow_in, &FACTOR_N[j], &borrow_out); // MN = M - N
carry_in = carry_out, borrow_in = borrow_out; // propagate carry & borrow
}
// obtain flag
flag_keep_f = (borrow_out && !carry_out);
// now select the right value
for (j=0; j<len; j++)
FACTOR[j] = flag_keep_f ? FACTOR[j] : FACTOR_N[j];
}
}
//----------------------------------------------------------------
// Montgomery modulus-dependent coefficient calculation
//----------------------------------------------------------------
void montgomery_calc_n_coeff(const FPGA_WORD *N, FPGA_WORD *N_COEFF, size_t len)
//----------------------------------------------------------------
//
// N_COEFF = -N ** -1 mod 2 ** len
//
// This routine calculates the coefficient that is used during the reduction
// phase of Montgomery multiplication to zero out the lower half of product.
//
// The high-level algorithm is:
//
// 1. R = 1
// 2. NN = ~N + 1
// 3. for i=1 to len-1
// 4. T = R * NN mod 2 ** len
// 5. if T[i] then
// 6. R = R + (1 << i)
//
//----------------------------------------------------------------
{
size_t i, j, k; // counters
FPGA_WORD NN[MAX_OPERAND_WORDS]; // temporary buffers
FPGA_WORD T [MAX_OPERAND_WORDS]; //
FPGA_WORD R [MAX_OPERAND_WORDS]; //
FPGA_WORD R1[MAX_OPERAND_WORDS]; //
bool flag_update_r; // flag
FPGA_WORD nw, pwr; //
FPGA_WORD sum_c_in, sum_c_out; //
FPGA_WORD carry_in, carry_out; //
FPGA_WORD mul_s, mul_c_in, mul_c_out; //
// NN = -N mod 2 ** len = ~N + 1 mod 2 ** len
carry_in = 0;
for (i=0; i<len; i++)
{ nw = (i > 0) ? 0 : 1; // nw = 1
pe_add(~N[i], nw, carry_in, &NN[i], &carry_out); // NN = ~N + nw
carry_in = carry_out; // propagate carry
}
// R = 1
for (i=0; i<len; i++)
R[i] = (i > 0) ? 0 : 1;
// calculate T = R * NN
for (k=1; k<(len * sizeof(FPGA_WORD) * CHAR_BIT); k++)
{
// T = 0
for (i=0; i<len; i++) T[i] = 0;
// T = NN * R
for (i=0; i<len; i++)
{
mul_c_in = 0;
for (j=0; j<(len-i); j++)
{
pe_mul(R[j], NN[i], T[i+j], mul_c_in, &mul_s, &mul_c_out);
T[i+j] = mul_s;
mul_c_in = mul_c_out;
}
}
// get word and index indices
size_t word_index = k / (CHAR_BIT * sizeof(FPGA_WORD));
size_t bit_index = k & ((CHAR_BIT * sizeof(FPGA_WORD)) - 1);
// update bit mask
FPGA_WORD bit_mask = (1 << bit_index);
sum_c_in = 0; // clear carry
flag_update_r = false; // reset flag
// calculate R1 = R + 1 << (2 * len)
for (i=0; i<len; i++)
{
if (i == word_index) flag_update_r = (T[i] & bit_mask) == bit_mask;
pwr = (i == word_index) ? bit_mask : 0;
pe_add(R[i], pwr, sum_c_in, &R1[i], &sum_c_out);
carry_in = carry_out;
}
// update r
for (i=0; i<len; i++)
R[i] = flag_update_r ? R1[i] : R[i];
}
// store output
for (i=0; i<len; i++)
N_COEFF[i] = R[i];
}
//----------------------------------------------------------------
// End of file
//----------------------------------------------------------------