aboutsummaryrefslogtreecommitdiff
path: root/x25519/x25519_fpga_curve_microcode.cpp
blob: d57cb6301aa38e23e8d4751d48b040aef2b62fcf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//------------------------------------------------------------------------------
//
// x25519_fpga_curve_microcode.cpp
// -----------------------------------------------
// Elliptic curve arithmetic procedures for X25519
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------


//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "x25519_fpga_model.h"


//------------------------------------------------------------------------------
enum X25519_UOP_OPERAND
//------------------------------------------------------------------------------
{
	CONST_A24 = CURVE25519_UOP_OPERAND_COUNT + 1,

	LADDER_R0_X,
	LADDER_R0_Z,

	LADDER_R1_X,
	LADDER_R1_Z,

	LADDER_T0_X,
	LADDER_T0_Z,

	LADDER_T1_X,
	LADDER_T1_Z,

	LADDER_S0,
	LADDER_S1,

	LADDER_D0,
	LADDER_D1,

	LADDER_QS0,
	LADDER_QD0,

	LADDER_S0D1,
	LADDER_S1D0,

	LADDER_TS,
	LADDER_TD,

	LADDER_QTD,

	LADDER_T0,
	LADDER_TA,
	LADDER_T1,

	LADDER_P_X,

	X25519_UOP_OPERAND_COUNT
};


//------------------------------------------------------------------------------
// Storage Buffers
//------------------------------------------------------------------------------
static FPGA_BUFFER BUF_LO[X25519_UOP_OPERAND_COUNT];
static FPGA_BUFFER BUF_HI[X25519_UOP_OPERAND_COUNT];


//------------------------------------------------------------------------------
//
// Elliptic curve point scalar multiplication routine.
//
// This uses the Montgomery ladder to do the multiplication and then
// converts the result to affine coordinates.
//
// The algorithm is based on Algorithm 3 from "How to (pre-)compute a ladder"
// https://eprint.iacr.org/2017/264.pdf
//
//------------------------------------------------------------------------------
void fpga_curve_x25519_scalar_multiply_microcode(const FPGA_BUFFER *PX, const FPGA_BUFFER *K, FPGA_BUFFER *QX)
//------------------------------------------------------------------------------
{
	bool k_bit, s;				// 1-bit values
	FPGA_WORD k_word;			// current word of multiplier
	int word_count, bit_count;	// counters

		// initialize constant operands
	fpga_multiword_copy(&CURVE25519_ZERO, &BUF_LO[CONST_ZERO]);
	fpga_multiword_copy(&CURVE25519_ZERO, &BUF_HI[CONST_ZERO]);

	fpga_multiword_copy(&CURVE25519_ONE, &BUF_LO[CONST_ONE]);
	fpga_multiword_copy(&CURVE25519_ONE, &BUF_HI[CONST_ONE]);

	fpga_multiword_copy(&X25519_A24, &BUF_LO[CONST_A24]);
	fpga_multiword_copy(&X25519_A24, &BUF_HI[CONST_A24]);

		//
		// BEGIN MICROCODE
		//

		// initialization
	uop_load(PX, BANK_HI, LADDER_P_X, BUF_LO, BUF_HI);
	uop_move(BANK_HI, CONST_ONE,  CONST_ZERO, BANK_LO, LADDER_R0_X, LADDER_R0_Z, BUF_LO, BUF_HI);
	uop_move(BANK_HI, LADDER_P_X, CONST_ONE,  BANK_LO, LADDER_R1_X, LADDER_R1_Z, BUF_LO, BUF_HI);

		// ladder
	s = false;
	for (word_count=FPGA_OPERAND_NUM_WORDS; word_count>0; word_count--)
	{
		for (bit_count=FPGA_WORD_WIDTH; bit_count>0; bit_count--)
		{
			k_word = K->words[word_count - 1] >> (bit_count - 1);	// current word
			k_bit = (k_word & (FPGA_WORD)1) == 1;					// current bit

				// inputs are all in LO: R0_X, R0_Z, R1_X, R1_Z

				// swap if needed
			if (s == k_bit)
			{	uop_move(BANK_LO, LADDER_R0_X, LADDER_R0_Z, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BUF_LO, BUF_HI);	// HI: T0_X, T0_Z = LO: R0_X, R0_Z
				uop_move(BANK_LO, LADDER_R1_X, LADDER_R1_Z, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BUF_LO, BUF_HI);	// HI: T1_X, T1_Z = LO: R1_X, R1_Z
			}
			else
			{	uop_move(BANK_LO, LADDER_R1_X, LADDER_R1_Z, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BUF_LO, BUF_HI);	// HI: T0_X, T0_Z = LO: R1_X, R1_Z
				uop_move(BANK_LO, LADDER_R0_X, LADDER_R0_Z, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BUF_LO, BUF_HI);	// HI: T1_X, T1_Z = LO: R0_X, R0_Z
			}

				// remember whether we actually did the swap
			s = k_bit;

				// run step
			uop_calc(ADD, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BANK_LO, LADDER_S0,   BUF_LO, BUF_HI, MOD_2P);	// LO: S0 = HI: T0_X + T0_Z
			uop_calc(ADD, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BANK_LO, LADDER_S1,   BUF_LO, BUF_HI, MOD_2P);	// LO: S1 = HI: T1_X + T1_Z
			uop_calc(SUB, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BANK_LO, LADDER_D0,   BUF_LO, BUF_HI, MOD_2P);	// LO: D0 = HI: T0_X - T0_Z
			uop_calc(SUB, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BANK_LO, LADDER_D1,   BUF_LO, BUF_HI, MOD_2P);	// LO: D1 = HI: T1_X - T1_Z

			uop_calc(MUL, BANK_LO, LADDER_S0,   LADDER_S0,   BANK_HI, LADDER_QS0,  BUF_LO, BUF_HI, MOD_2P);	// HI: QS0  = LO: S0 * S0
			uop_calc(MUL, BANK_LO, LADDER_D0,   LADDER_D0,   BANK_HI, LADDER_QD0,  BUF_LO, BUF_HI, MOD_2P);	// HI: QD0  = LO: D0 * D0
			uop_calc(MUL, BANK_LO, LADDER_S0,   LADDER_D1,   BANK_HI, LADDER_S0D1, BUF_LO, BUF_HI, MOD_2P);	// HI: S0D1 = LO: S0 * D1
			uop_calc(MUL, BANK_LO, LADDER_S1,   LADDER_D0,   BANK_HI, LADDER_S1D0, BUF_LO, BUF_HI, MOD_2P);	// HI: S1D0 = LO: S1 * D0

			uop_calc(ADD, BANK_HI, LADDER_S1D0, LADDER_S0D1, BANK_LO, LADDER_TS,   BUF_LO, BUF_HI, MOD_2P);	// LO: TS = HI: S1D0 + S0D1
			uop_calc(SUB, BANK_HI, LADDER_S1D0, LADDER_S0D1, BANK_LO, LADDER_TD,   BUF_LO, BUF_HI, MOD_2P);	// LO: TD = HI: S1D0 - S0D1

			uop_calc(MUL, BANK_LO, LADDER_TD,   LADDER_TD,   BANK_HI, LADDER_QTD,  BUF_LO, BUF_HI, MOD_2P);	// HI: QTD = LO: TD * TD

			uop_calc(SUB, BANK_HI, LADDER_QS0,  LADDER_QD0,  BANK_LO, LADDER_T0,   BUF_LO, BUF_HI, MOD_2P);	// LO: T0 = HI: QS0 - QD0
			uop_calc(MUL, BANK_LO, LADDER_T0,   CONST_A24,   BANK_HI, LADDER_TA,   BUF_LO, BUF_HI, MOD_2P);	// HI: TA = LO: T0 * A24
			uop_calc(ADD, BANK_HI, LADDER_TA,   LADDER_QD0,  BANK_LO, LADDER_T1,   BUF_LO, BUF_HI, MOD_2P);	// LO: T1 = HI: TA * QD0
			
			uop_calc(MUL, BANK_HI, LADDER_QS0,  LADDER_QD0,  BANK_LO, LADDER_R0_X, BUF_LO, BUF_HI, MOD_2P);	// LO: R0_X = HI: QS0 * QD0
			uop_calc(MUL, BANK_LO, LADDER_T0,   LADDER_T1,   BANK_HI, LADDER_R0_Z, BUF_LO, BUF_HI, MOD_2P);	// HI: R0_Z = LO: T0 * T1
			uop_calc(MUL, BANK_LO, LADDER_TS,   LADDER_TS,   BANK_HI, LADDER_R1_X, BUF_LO, BUF_HI, MOD_2P);	// HI: R1_X = LO: TS * TS
			uop_calc(MUL, BANK_HI, LADDER_P_X,  LADDER_QTD,  BANK_LO, LADDER_R1_Z, BUF_LO, BUF_HI, MOD_2P);	// LO: R1_Z = HI: PX * QTD

			uop_move(BANK_HI, LADDER_R0_Z, LADDER_R1_X, BANK_LO, LADDER_R0_Z, LADDER_R1_X, BUF_LO, BUF_HI);	// LO: R0_Z, R1_X = HI: R0_Z, R1_X
		}
	}

		// inversion expects result to be in LO: T1
	uop_move(BANK_HI, LADDER_R0_Z, LADDER_R0_Z, BANK_LO, INVERT_T_1, INVERT_T_1, BUF_LO, BUF_HI);	

		// just call piece of microcode
	fpga_modular_inv_microcode(BUF_LO, BUF_HI);
	
		// inversion places result in HI: R1
	uop_move(BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R1, INVERT_R1, BUF_LO, BUF_HI);
	uop_calc(MUL, BANK_LO, INVERT_R1, LADDER_R0_X, BANK_HI, INVERT_R2, BUF_LO, BUF_HI, MOD_2P);

		// finally reduce to just 1*P
	uop_calc(ADD, BANK_HI, INVERT_R2, CONST_ZERO, BANK_LO, INVERT_R1, BUF_LO, BUF_HI, MOD_1P);	// !!!

		// store result
	uop_stor(BUF_LO, BUF_HI, BANK_LO, INVERT_R1, QX);
}


//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------