//------------------------------------------------------------------------------ // // x25519_fpga_curve_microcode.cpp // ----------------------------------------------- // Elliptic curve arithmetic procedures for X25519 // // Authors: Pavel Shatov // // Copyright (c) 2015-2016, 2018 NORDUnet A/S // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // - Neither the name of the NORDUnet nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ // Headers //------------------------------------------------------------------------------ #include "x25519_fpga_model.h" //------------------------------------------------------------------------------ enum X25519_UOP_OPERAND //------------------------------------------------------------------------------ { CONST_A24 = CURVE25519_UOP_OPERAND_COUNT + 1, LADDER_R0_X, LADDER_R0_Z, LADDER_R1_X, LADDER_R1_Z, LADDER_T0_X, LADDER_T0_Z, LADDER_T1_X, LADDER_T1_Z, LADDER_S0, LADDER_S1, LADDER_D0, LADDER_D1, LADDER_QS0, LADDER_QD0, LADDER_S0D1, LADDER_S1D0, LADDER_TS, LADDER_TD, LADDER_QTD, LADDER_T0, LADDER_TA, LADDER_T1, LADDER_P_X, X25519_UOP_OPERAND_COUNT }; //------------------------------------------------------------------------------ // Storage Buffers //------------------------------------------------------------------------------ static FPGA_BUFFER BUF_LO[X25519_UOP_OPERAND_COUNT]; static FPGA_BUFFER BUF_HI[X25519_UOP_OPERAND_COUNT]; //------------------------------------------------------------------------------ // // Elliptic curve point scalar multiplication routine. // // This uses the Montgomery ladder to do the multiplication and then // converts the result to affine coordinates. // // The algorithm is based on Algorithm 3 from "How to (pre-)compute a ladder" // https://eprint.iacr.org/2017/264.pdf // //------------------------------------------------------------------------------ void fpga_curve_x25519_scalar_multiply_microcode(const FPGA_BUFFER *PX, const FPGA_BUFFER *K, FPGA_BUFFER *QX) //------------------------------------------------------------------------------ { bool k_bit, s; // 1-bit values FPGA_WORD k_word; // current word of multiplier int word_count, bit_count; // counters // initialize constant operands fpga_multiword_copy(&CURVE25519_ZERO, &BUF_LO[CONST_ZERO]); fpga_multiword_copy(&CURVE25519_ZERO, &BUF_HI[CONST_ZERO]); fpga_multiword_copy(&CURVE25519_ONE, &BUF_LO[CONST_ONE]); fpga_multiword_copy(&CURVE25519_ONE, &BUF_HI[CONST_ONE]); fpga_multiword_copy(&X25519_A24, &BUF_LO[CONST_A24]); fpga_multiword_copy(&X25519_A24, &BUF_HI[CONST_A24]); // // BEGIN MICROCODE // // initialization uop_load(PX, BANK_HI, LADDER_P_X, BUF_LO, BUF_HI); uop_move(BANK_HI, CONST_ONE, CONST_ZERO, BANK_LO, LADDER_R0_X, LADDER_R0_Z, BUF_LO, BUF_HI); uop_move(BANK_HI, LADDER_P_X, CONST_ONE, BANK_LO, LADDER_R1_X, LADDER_R1_Z, BUF_LO, BUF_HI); // ladder s = false; for (word_count=FPGA_OPERAND_NUM_WORDS; word_count>0; word_count--) { for (bit_count=FPGA_WORD_WIDTH; bit_count>0; bit_count--) { k_word = K->words[word_count - 1] >> (bit_count - 1); // current word k_bit = (k_word & (FPGA_WORD)1) == 1; // current bit // inputs are all in LO: R0_X, R0_Z, R1_X, R1_Z // swap if needed if (s == k_bit) { uop_move(BANK_LO, LADDER_R0_X, LADDER_R0_Z, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BUF_LO, BUF_HI); // HI: T0_X, T0_Z = LO: R0_X, R0_Z uop_move(BANK_LO, LADDER_R1_X, LADDER_R1_Z, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BUF_LO, BUF_HI); // HI: T1_X, T1_Z = LO: R1_X, R1_Z } else { uop_move(BANK_LO, LADDER_R1_X, LADDER_R1_Z, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BUF_LO, BUF_HI); // HI: T0_X, T0_Z = LO: R1_X, R1_Z uop_move(BANK_LO, LADDER_R0_X, LADDER_R0_Z, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BUF_LO, BUF_HI); // HI: T1_X, T1_Z = LO: R0_X, R0_Z } // remember whether we actually did the swap s = k_bit; // run step uop_calc(ADD, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BANK_LO, LADDER_S0, BUF_LO, BUF_HI, MOD_2P); // LO: S0 = HI: T0_X + T0_Z uop_calc(ADD, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BANK_LO, LADDER_S1, BUF_LO, BUF_HI, MOD_2P); // LO: S1 = HI: T1_X + T1_Z uop_calc(SUB, BANK_HI, LADDER_T0_X, LADDER_T0_Z, BANK_LO, LADDER_D0, BUF_LO, BUF_HI, MOD_2P); // LO: D0 = HI: T0_X - T0_Z uop_calc(SUB, BANK_HI, LADDER_T1_X, LADDER_T1_Z, BANK_LO, LADDER_D1, BUF_LO, BUF_HI, MOD_2P); // LO: D1 = HI: T1_X - T1_Z uop_calc(MUL, BANK_LO, LADDER_S0, LADDER_S0, BANK_HI, LADDER_QS0, BUF_LO, BUF_HI, MOD_2P); // HI: QS0 = LO: S0 * S0 uop_calc(MUL, BANK_LO, LADDER_D0, LADDER_D0, BANK_HI, LADDER_QD0, BUF_LO, BUF_HI, MOD_2P); // HI: QD0 = LO: D0 * D0 uop_calc(MUL, BANK_LO, LADDER_S0, LADDER_D1, BANK_HI, LADDER_S0D1, BUF_LO, BUF_HI, MOD_2P); // HI: S0D1 = LO: S0 * D1 uop_calc(MUL, BANK_LO, LADDER_S1, LADDER_D0, BANK_HI, LADDER_S1D0, BUF_LO, BUF_HI, MOD_2P); // HI: S1D0 = LO: S1 * D0 uop_calc(ADD, BANK_HI, LADDER_S1D0, LADDER_S0D1, BANK_LO, LADDER_TS, BUF_LO, BUF_HI, MOD_2P); // LO: TS = HI: S1D0 + S0D1 uop_calc(SUB, BANK_HI, LADDER_S1D0, LADDER_S0D1, BANK_LO, LADDER_TD, BUF_LO, BUF_HI, MOD_2P); // LO: TD = HI: S1D0 - S0D1 uop_calc(MUL, BANK_LO, LADDER_TD, LADDER_TD, BANK_HI, LADDER_QTD, BUF_LO, BUF_HI, MOD_2P); // HI: QTD = LO: TD * TD uop_calc(SUB, BANK_HI, LADDER_QS0, LADDER_QD0, BANK_LO, LADDER_T0, BUF_LO, BUF_HI, MOD_2P); // LO: T0 = HI: QS0 - QD0 uop_calc(MUL, BANK_LO, LADDER_T0, CONST_A24, BANK_HI, LADDER_TA, BUF_LO, BUF_HI, MOD_2P); // HI: TA = LO: T0 * A24 uop_calc(ADD, BANK_HI, LADDER_TA, LADDER_QD0, BANK_LO, LADDER_T1, BUF_LO, BUF_HI, MOD_2P); // LO: T1 = HI: TA * QD0 uop_calc(MUL, BANK_HI, LADDER_QS0, LADDER_QD0, BANK_LO, LADDER_R0_X, BUF_LO, BUF_HI, MOD_2P); // LO: R0_X = HI: QS0 * QD0 uop_calc(MUL, BANK_LO, LADDER_T0, LADDER_T1, BANK_HI, LADDER_R0_Z, BUF_LO, BUF_HI, MOD_2P); // HI: R0_Z = LO: T0 * T1 uop_calc(MUL, BANK_LO, LADDER_TS, LADDER_TS, BANK_HI, LADDER_R1_X, BUF_LO, BUF_HI, MOD_2P); // HI: R1_X = LO: TS * TS uop_calc(MUL, BANK_HI, LADDER_P_X, LADDER_QTD, BANK_LO, LADDER_R1_Z, BUF_LO, BUF_HI, MOD_2P); // LO: R1_Z = HI: PX * QTD uop_move(BANK_HI, LADDER_R0_Z, LADDER_R1_X, BANK_LO, LADDER_R0_Z, LADDER_R1_X, BUF_LO, BUF_HI); // LO: R0_Z, R1_X = HI: R0_Z, R1_X } } // inversion expects result to be in LO: T1 uop_move(BANK_HI, LADDER_R0_Z, LADDER_R0_Z, BANK_LO, INVERT_T_1, INVERT_T_1, BUF_LO, BUF_HI); // just call piece of microcode fpga_modular_inv_microcode(BUF_LO, BUF_HI); // inversion places result in HI: R1 uop_move(BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R1, INVERT_R1, BUF_LO, BUF_HI); uop_calc(MUL, BANK_LO, INVERT_R1, LADDER_R0_X, BANK_HI, INVERT_R2, BUF_LO, BUF_HI, MOD_2P); // finally reduce to just 1*P uop_calc(ADD, BANK_HI, INVERT_R2, CONST_ZERO, BANK_LO, INVERT_R1, BUF_LO, BUF_HI, MOD_1P); // !!! // store result uop_stor(BUF_LO, BUF_HI, BANK_LO, INVERT_R1, QX); } //------------------------------------------------------------------------------ // End-of-File //------------------------------------------------------------------------------