1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
|
//------------------------------------------------------------------------------
//
// curve25519_fpga_modular.cpp
// ------------------------------------------
// Modular arithmetic routines for Curve25519
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "curve25519_fpga_model.h"
//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER CURVE25519_1P;
FPGA_BUFFER CURVE25519_2P;
//------------------------------------------------------------------------------
void fpga_modular_init()
//------------------------------------------------------------------------------
{
int w_src, w_dst; // word counters
// temporary things
FPGA_WORD TMP_1P[FPGA_OPERAND_NUM_WORDS] = CURVE25519_1P_INIT;
FPGA_WORD TMP_2P[FPGA_OPERAND_NUM_WORDS] = CURVE25519_2P_INIT;
/* fill buffers for large multi-word integers, we need to fill them in
* reverse order because of the way C arrays are initialized
*/
for ( w_src = 0, w_dst = FPGA_OPERAND_NUM_WORDS - 1;
w_src < FPGA_OPERAND_NUM_WORDS;
w_src++, w_dst--)
{
CURVE25519_1P.words[w_dst] = TMP_1P[w_src];
CURVE25519_2P.words[w_dst] = TMP_2P[w_src];
}
}
//------------------------------------------------------------------------------
//
// Modular addition.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// s = (a + b) mod q
//
// The naive approach is like the following:
//
// 1. s = a + b
// 2. if (s >= q) s -= q
//
// The speed-up trick is to simultaneously calculate (a + b) and (a + b - q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_add(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_BUFFER *S, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER AB, AB_N; // intermediate buffers
bool c_in, c_out; // carries
bool b_in, b_out; // borrows
c_in = false; // first word has no carry
b_in = false; // first word has no borrow
// run parallel addition and subtraction
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
fpga_lowlevel_add32(A->words[w], B->words[w], c_in, &AB.words[w], &c_out);
fpga_lowlevel_sub32(AB.words[w], N->words[w], b_in, &AB_N.words[w], &b_out);
c_in = c_out; // propagate carry
b_in = b_out; // propagate borrow
}
// now select the right buffer
/*
* We select the right variant based on borrow and carry flags after
* addition and subtraction of the very last pair of words. Note, that
* we only need to select the first variant (a + b) when (a + b) < q.
* This way if we get negative number after subtraction, we discard it
* and use the output of the adder instead. The subtractor output is
* negative when borrow flag is set *and* carry flag is not set. When
* both borrow and carry are set, the number is non-negative, because
* borrow and carry cancel each other out.
*/
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
S->words[w] = (b_out && !c_out) ? AB.words[w] : AB_N.words[w];
}
//------------------------------------------------------------------------------
//
// Modular subtraction.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// d = (a - b) mod q
//
// The naive approach is like the following:
//
// 1. d = a - b
// 2. if (a < b) d += q
//
// The speed-up trick is to simultaneously calculate (a - b) and (a - b + q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_sub(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_BUFFER *D, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER AB, AB_N; // intermediate buffers
bool c_in, c_out; // carries
bool b_in, b_out; // borrows
c_in = false; // first word has no carry
b_in = false; // first word has no borrow
// run parallel subtraction and addition
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
fpga_lowlevel_sub32(A->words[w], B->words[w], b_in, &AB.words[w], &b_out);
fpga_lowlevel_add32(AB.words[w], N->words[w], c_in, &AB_N.words[w], &c_out);
b_in = b_out; // propagate borrow
c_in = c_out; // propagate carry
}
// now select the right buffer
/*
* We select the right variant based on borrow flag after subtraction
* and addition of the very last pair of words. Note, that we only
* need to select the second variant (a - b + q) when a < b. This way
* if we get negative number after subtraction, we discard it
* and use the output of the adder instead. The Subtractor output is
* negative when borrow flag is set.
*/
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
D->words[w] = b_out ? AB_N.words[w] : AB.words[w];
}
//------------------------------------------------------------------------------
//
// Modular multiplication for Curve25519.
//
// p = (a * b) mod q
//
// The complex algorithm is split into three parts:
//
// 1. Calculation of partial words
// 2. Acccumulation of partial words into full-size product
// 3. Modular reduction of the full-size product
//
// See comments for corresponding helper routines for more information.
//
//------------------------------------------------------------------------------
void fpga_modular_mul(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_BUFFER *P, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
FPGA_WORD_EXTENDED SI[4*FPGA_OPERAND_NUM_WORDS-1]; // parts of intermediate product
FPGA_WORD C[2*FPGA_OPERAND_NUM_WORDS]; // full-size intermediate product
/* multiply to get partial words */
fpga_modular_mul_helper_multiply(A, B, SI);
/* accumulate partial words into full-size product */
fpga_modular_mul_helper_accumulate(SI, C);
/* reduce full-size product using special routine */
fpga_modular_mul_helper_reduce(C, P, N);
}
//------------------------------------------------------------------------------
//
// Modular reduction for Curve25519.
//
// Note, that this routine reduces 512-bit product modulo 2*P, i.e.
// 2 * (2^255 -19) = 2^256 - 38. It is computationally more effective to not
// fully reduce the result until the very end of X25519 calculation.
//
// See the "Special Reduction" section of "High-Performance Modular
// Multiplication on the Cell Processor" by Joppe W. Bos for more information
// about the math behind reduction: http://joppebos.com/files/waifi09.pdf
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_reduce(const FPGA_WORD *C, FPGA_BUFFER *P, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
int w; // word counter
// handy vars
FPGA_WORD y;
FPGA_WORD x1_msb, x1_lsb;
FPGA_WORD x2_msb, x2_lsb;
FPGA_WORD x5_msb, x5_lsb;
FPGA_WORD n_word;
// S1 is 262-bit result after the first reduction attempt
// S2 is 257-bit result after the second reduction attempt
FPGA_WORD S1[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD S2[FPGA_OPERAND_NUM_WORDS + 1];
// carries during the first and the second stages
FPGA_WORD_REDUCED t_carry1;
FPGA_WORD_EXTENDED t_carry2;
// borrows for the final stage
bool b_in, b_out;
// temporary result of the final stage
FPGA_WORD S2_N[FPGA_OPERAND_NUM_WORDS + 1];
// outputs of adders
FPGA_WORD_EXTENDED T1[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD_EXTENDED T2[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD_EXTENDED T3[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD_EXTENDED T4[FPGA_OPERAND_NUM_WORDS + 1];
// parts of full input product
FPGA_BUFFER P_LO, P_HI;
// split 512-bit input C into two 256-bit parts
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
P_LO.words[w] = C[w];
P_HI.words[w] = C[FPGA_OPERAND_NUM_WORDS + w];
}
/* We need to calculate S1 = P_HI * 38 + P_LO, this is done using
* additions instead of multiplications, because our low-level
* multiplier can only process 16 bits at a time, while an adder
* can do 47. This is done by replacing 38 with 32 + 4 + 2 =
* 2^5 + 2^2 + 2^1, this way:
* S1 = P_LO + (P_HI << 5) + (P_HI << 2) + (P_HI << 1)
*/
/* For every word we need to calculate a sum of five values: three
* shifted copies of P_HI[w], P_LO[w] and carry from the previous word.
* This is done using four adders in a pipelined fashion.
*/
t_carry1 = 0; // no carry in the very first word
for (w=0; w<(FPGA_OPERAND_NUM_WORDS+1); w++)
{
// upper parts of shifted copies of P_HI[w-i] (from the previous cycle)
x1_msb = (w > 0) ? (FPGA_WORD)(P_HI.words[w-1] >> (32 - 1)) : 0;
x2_msb = (w > 0) ? (FPGA_WORD)(P_HI.words[w-1] >> (32 - 2)) : 0;
x5_msb = (w > 0) ? (FPGA_WORD)(P_HI.words[w-1] >> (32 - 5)) : 0;
// lower parts of shifted copies of P_HI[w]
x1_lsb = (w < FPGA_OPERAND_NUM_WORDS) ? (FPGA_WORD)(P_HI.words[w] << 1) : 0;
x2_lsb = (w < FPGA_OPERAND_NUM_WORDS) ? (FPGA_WORD)(P_HI.words[w] << 2) : 0;
x5_lsb = (w < FPGA_OPERAND_NUM_WORDS) ? (FPGA_WORD)(P_HI.words[w] << 5) : 0;
// take care of uppers parts from the previous cycle
x1_lsb |= x1_msb;
x2_lsb |= x2_msb;
x5_lsb |= x5_msb;
// current word of P_LO
y = (w < FPGA_OPERAND_NUM_WORDS) ? P_LO.words[w] : 0;
// run addition
fpga_lowlevel_add47(x1_lsb, x2_lsb, &T1[w]); // T1 obtained after clock cycle w
fpga_lowlevel_add47(x5_lsb, y, &T2[w]); // T2 obtained after clock cycle w
fpga_lowlevel_add47(T1[w], T2[w], &T3[w]); // T3 obtained after clock cycle w+1 (when T1 and T2 are available)
fpga_lowlevel_add47(T3[w], t_carry1, &T4[w]); // T4 obtained after clock cycle w+2 (when T3 is available)
// store carry
t_carry1 = (FPGA_WORD_REDUCED)(T4[w] >> FPGA_WORD_WIDTH);
// store word of sum
S1[w] = (FPGA_WORD)T4[w];
}
/* now repeat what we've just done once again with S1, but this time S1_HI
* is 6-bit wide at most, so we can calculate S1_HI * 38 beforehand,
* add it to the lowest word of S1_LO and then propagate the carry
*/
t_carry2 = 0;
t_carry2 += (FPGA_WORD_EXTENDED)S1[FPGA_OPERAND_NUM_WORDS] << 1;
t_carry2 += (FPGA_WORD_EXTENDED)S1[FPGA_OPERAND_NUM_WORDS] << 2;
t_carry2 += (FPGA_WORD_EXTENDED)S1[FPGA_OPERAND_NUM_WORDS] << 5;
for (w=0; w<(FPGA_OPERAND_NUM_WORDS+1); w++)
{
// current word of S1_LO
y = (w < FPGA_OPERAND_NUM_WORDS) ? S1[w] : 0;
// do addition
fpga_lowlevel_add47(t_carry2, y, &T1[w]);
// store carry
t_carry2 = (FPGA_WORD_REDUCED)(T1[w] >> FPGA_WORD_WIDTH);
// store word of sum
S2[w] = (FPGA_WORD)T1[w];
}
/* So we've ended up with 257-bit result in S2. Note that there can only be
* two situations, given our modulus N is 2^256 - 38:
*
* a) 0 <= S < N
* b) N <= S < 2*N
*
* This is because we've obtained S2 by adding 256-bit quantity S1_LO and
* 12-bit quantity 38 * S_HI. S1_LO is at most 2^256 - 1 or N + 37, while
* the 12-bit quantity is at most 4095, so the largest possible value of
* S2 is N + 4132, which is obviously less than 2*N.
*
* What we now do is we try subtracting N from S2 to obtain S2_N, if we end up
* with a negative number, we return S2 (reduction was not necessary), otherwise
* we return S2_N.
*/
b_in = false; // first word has no borrow
// run parallel subtraction
for (w=0; w<=FPGA_OPERAND_NUM_WORDS; w++)
{
// current word of N
n_word = (w < FPGA_OPERAND_NUM_WORDS) ? N->words[w] : 0;
// do subtraction
fpga_lowlevel_sub32(S2[w], n_word, b_in, &S2_N[w], &b_out);
// propagate borrow
b_in = b_out;
}
// copy result to output buffer
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
// if subtraction of the highest words produced borrow, we ended up
// with a negative number and S2 must be returned, not S2_N
P->words[w] = b_out ? S2[w] : S2_N[w];
}
}
//------------------------------------------------------------------------------
//
// Parallelized multiplication.
//
// This routine implements the algorithm in Fig. 3. from "Ultra High
// Performance ECC over NIST Primes on Commercial FPGAs".
//
// Inputs A and B are split into 2*OPERAND_NUM_WORDS words of FPGA_WORD_WIDTH/2
// bits each, because FPGA multipliers can't handle full FPGA_WORD_WIDTH-wide
// inputs. These smaller words are multiplied by an array of 2*OPERAND_NUM_WORDS
// multiplers and accumulated into an array of 4*OPERAND_NUM_WORDS-1 partial
// output words SI[].
//
// The order of loading A and B into the multipliers is a bit complicated,
// during the first 2*OPERAND_NUM_WORDS-1 cycles one SI word per cycle is
// obtained, during the very last 2*OPERAND_NUM_WORDS'th cycle all the
// remaining 2*OPERAND_NUM_WORDS partial words are obtained simultaneously.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_multiply(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_WORD_EXTENDED *SI)
//------------------------------------------------------------------------------
{
int w; // counter
int t, x; // more counters
int j, i; // word indices
FPGA_WORD p; // product
// buffers for smaller words that multipliers can handle
FPGA_WORD_REDUCED AI[2*FPGA_OPERAND_NUM_WORDS];
FPGA_WORD_REDUCED BJ[2*FPGA_OPERAND_NUM_WORDS];
// split a and b into smaller words
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
AI[2*w] = (FPGA_WORD_REDUCED)A->words[w], AI[2*w + 1] = (FPGA_WORD_REDUCED)(A->words[w] >> (FPGA_WORD_WIDTH / 2)),
BJ[2*w] = (FPGA_WORD_REDUCED)B->words[w], BJ[2*w + 1] = (FPGA_WORD_REDUCED)(B->words[w] >> (FPGA_WORD_WIDTH / 2));
// accumulators
FPGA_WORD_EXTENDED mac[2*FPGA_OPERAND_NUM_WORDS];
// clear accumulators
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++) mac[w] = 0;
// run the crazy algorithm :)
for (t=0; t<(2*FPGA_OPERAND_NUM_WORDS); t++)
{
// save upper half of si[] (one word per cycle)
if (t > 0)
{ SI[4*FPGA_OPERAND_NUM_WORDS - (t+1)] = mac[t];
mac[t] = 0;
}
// update index
j = 2*FPGA_OPERAND_NUM_WORDS - (t+1);
// parallel multiplication
for (x=0; x<(2*FPGA_OPERAND_NUM_WORDS); x++)
{
// update index
i = t - x;
if (i < 0) i += 2*FPGA_OPERAND_NUM_WORDS;
// multiply...
fpga_lowlevel_mul16(AI[i], BJ[j], &p);
// ...accumulate
mac[x] += p;
}
}
// now finally save lower half of SI[] (2*OPERAND_NUM_WORDS words at once)
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
SI[w] = mac[2*FPGA_OPERAND_NUM_WORDS - (w+1)];
}
//------------------------------------------------------------------------------
//
// Accumulation of partial words into full-size product.
//
// This routine implements the Algorithm 4. from "Ultra High Performance ECC
// over NIST Primes on Commercial FPGAs".
//
// Input words SI[] are accumulated into full-size product C[].
//
// The algorithm is a bit tricky, there are 4*OPERAND_NUM_WORDS-1 words in
// SI[]. Complete operation takes 2*OPERAND_NUM_WORDS cycles, even words are
// summed in full, odd words are split into two parts. During every cycle the
// upper part of the previous word and the lower part of the following word are
// summed too.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_accumulate(const FPGA_WORD_EXTENDED *SI, FPGA_WORD *C)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_WORD_EXTENDED cw0, cw1; // intermediate sums
FPGA_WORD_REDUCED cw_carry; // wide carry
// clear carry
cw_carry = 0;
// execute the algorithm
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
{
// handy flags
bool w_is_first = (w == 0);
bool w_is_last = (w == (2*FPGA_OPERAND_NUM_WORDS-1));
// accumulate full current even word...
// ...and also the upper part of the previous odd word (if not the first word)
fpga_lowlevel_add47(SI[2*w], w_is_first ? 0 : SI[2*w-1] >> (FPGA_WORD_WIDTH / 2), &cw0);
// generate another word from "carry" part of the previous even word...
// ...and also the lower part of the following odd word (if not the last word)
cw1 = w_is_last ? 0 : (FPGA_WORD)(SI[2*w+1] << (FPGA_WORD_WIDTH / 2));
cw1 |= (FPGA_WORD_EXTENDED)cw_carry;
// accumulate once again
fpga_lowlevel_add47(cw0, cw1, &cw1);
// store current word...
C[w] = (FPGA_WORD)cw1;
// ...and carry
cw_carry = (FPGA_WORD_REDUCED) (cw1 >> FPGA_WORD_WIDTH);
}
}
//------------------------------------------------------------------------------
//
// Custom modular inversion.
//
// This uses Fermat's little theorem to calculate A1 = A ^ -1.
//
// The corresponding addition chain which Bernstein calls "straightforward
// sequence of 254 squarings and 11 multiplications" in his original paper was
// taken from here:
// https://briansmith.org/ecc-inversion-addition-chains-01
//
//------------------------------------------------------------------------------
void fpga_modular_inv_abstract(const FPGA_BUFFER *A, FPGA_BUFFER *A1, const FPGA_BUFFER *N)
{
int cyc_count; // counter
// temporary variables
FPGA_BUFFER R1, R2;
FPGA_BUFFER T_1;
FPGA_BUFFER T_10;
FPGA_BUFFER T_1001;
FPGA_BUFFER T_1011;
FPGA_BUFFER T_X5;
FPGA_BUFFER T_X10;
FPGA_BUFFER T_X20;
FPGA_BUFFER T_X40;
FPGA_BUFFER T_X50;
FPGA_BUFFER T_X100;
// let's go
fpga_multiword_copy(A, &T_1);
//
fpga_modular_mul(&T_1, &T_1, &T_10, &CURVE25519_2P);
//
fpga_modular_mul(&T_10, &T_10, &R1, &CURVE25519_2P);
fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
fpga_modular_mul(&R2, &T_1, &T_1001, &CURVE25519_2P);
//
fpga_modular_mul(&T_1001, &T_10, &T_1011, &CURVE25519_2P);
//
fpga_modular_mul(&T_1011, &T_1011, &R1, &CURVE25519_2P);
fpga_modular_mul(&R1, &T_1001, &T_X5, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X5, &R1);
for (cyc_count=0; cyc_count<5; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R2, &T_X5, &T_X10, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X10, &R1);
for (cyc_count=0; cyc_count<10; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X10, &T_X20, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X20, &R1);
for (cyc_count=0; cyc_count<20; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X20, &T_X40, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X40, &R1);
for (cyc_count=0; cyc_count<10; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X10, &T_X50, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X50, &R1);
for (cyc_count=0; cyc_count<50; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X50, &T_X100, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X100, &R1);
for (cyc_count=0; cyc_count<100; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
//
fpga_modular_mul(&R1, &T_X100, &R2, &CURVE25519_2P);
//
for (cyc_count=0; cyc_count<50; cyc_count++)
{ if ((cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P); // inverse order here!
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
//
fpga_modular_mul(&R2, &T_X50, &R1, &CURVE25519_2P);
//
for (cyc_count=0; cyc_count<5; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
//
fpga_modular_mul(&R2, &T_1011, A1, &CURVE25519_2P);
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------
|