//------------------------------------------------------------------------------
//
// curve25519_fpga_modular.cpp
// ------------------------------------------
// Modular arithmetic routines for Curve25519
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "curve25519_fpga_model.h"
//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER CURVE25519_1P;
FPGA_BUFFER CURVE25519_2P;
//------------------------------------------------------------------------------
void fpga_modular_init()
//------------------------------------------------------------------------------
{
int w_src, w_dst; // word counters
// temporary things
FPGA_WORD TMP_1P[FPGA_OPERAND_NUM_WORDS] = CURVE25519_1P_INIT;
FPGA_WORD TMP_2P[FPGA_OPERAND_NUM_WORDS] = CURVE25519_2P_INIT;
/* fill buffers for large multi-word integers, we need to fill them in
* reverse order because of the way C arrays are initialized
*/
for ( w_src = 0, w_dst = FPGA_OPERAND_NUM_WORDS - 1;
w_src < FPGA_OPERAND_NUM_WORDS;
w_src++, w_dst--)
{
CURVE25519_1P.words[w_dst] = TMP_1P[w_src];
CURVE25519_2P.words[w_dst] = TMP_2P[w_src];
}
}
//------------------------------------------------------------------------------
//
// Modular addition.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// s = (a + b) mod q
//
// The naive approach is like the following:
//
// 1. s = a + b
// 2. if (s >= q) s -= q
//
// The speed-up trick is to simultaneously calculate (a + b) and (a + b - q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_add(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_BUFFER *S, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER AB, AB_N; // intermediate buffers
bool c_in, c_out; // carries
bool b_in, b_out; // borrows
c_in = false; // first word has no carry
b_in = false; // first word has no borrow
// run parallel addition and subtraction
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
fpga_lowlevel_add32(A->words[w], B->words[w], c_in, &AB.words[w], &c_out);
fpga_lowlevel_sub32(AB.words[w], N->words[w], b_in, &AB_N.words[w], &b_out);
c_in = c_out; // propagate carry
b_in = b_out; // propagate borrow
}
// now select the right buffer
/*
* We select the right variant based on borrow and carry flags after
* addition and subtraction of the very last pair of words. Note, that
* we only need to select the first variant (a + b) when (a + b) < q.
* This way if we get negative number after subtraction, we discard it
* and use the output of the adder instead. The subtractor output is
* negative when borrow flag is set *and* carry flag is not set. When
* both borrow and carry are set, the number is non-negative, because
* borrow and carry cancel each other out.
*/
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
S->words[w] = (b_out && !c_out) ? AB.words[w] : AB_N.words[w];
}
//------------------------------------------------------------------------------
//
// Modular subtraction.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// d = (a - b) mod q
//
// The naive approach is like the following:
//
// 1. d = a - b
// 2. if (a < b) d += q
//
// The speed-up trick is to simultaneously calculate (a - b) and (a - b + q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_sub(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_BUFFER *D, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER AB, AB_N; // intermediate buffers
bool c_in, c_out; // carries
bool b_in, b_out; // borrows
c_in = false; // first word has no carry
b_in = false; // first word has no borrow
// run parallel subtraction and addition
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
fpga_lowlevel_sub32(A->words[w], B->words[w], b_in, &AB.words[w], &b_out);
fpga_lowlevel_add32(AB.words[w], N->words[w], c_in, &AB_N.words[w], &c_out);
b_in = b_out; // propagate borrow
c_in = c_out; // propagate carry
}
// now select the right buffer
/*
* We select the right variant based on borrow flag after subtraction
* and addition of the very last pair of words. Note, that we only
* need to select the second variant (a - b + q) when a < b. This way
* if we get negative number after subtraction, we discard it
* and use the output of the adder instead. The Subtractor output is
* negative when borrow flag is set.
*/
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
D->words[w] = b_out ? AB_N.words[w] : AB.words[w];
}
//------------------------------------------------------------------------------
//
// Modular multiplication for Curve25519.
//
// p = (a * b) mod q
//
// The complex algorithm is split into three parts:
//
// 1. Calculation of partial words
// 2. Acccumulation of partial words into full-size product
// 3. Modular reduction of the full-size product
//
// See comments for corresponding helper routines for more information.
//
//------------------------------------------------------------------------------
void fpga_modular_mul(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_BUFFER *P, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
FPGA_WORD_EXTENDED SI[4*FPGA_OPERAND_NUM_WORDS-1]; // parts of intermediate product
FPGA_WORD C[2*FPGA_OPERAND_NUM_WORDS]; // full-size intermediate product
/* multiply to get partial words */
fpga_modular_mul_helper_multiply(A, B, SI);
/* accumulate partial words into full-size product */
fpga_modular_mul_helper_accumulate(SI, C);
/* reduce full-size product using special routine */
fpga_modular_mul_helper_reduce(C, P, N);
}
//------------------------------------------------------------------------------
//
// Modular reduction for Curve25519.
//
// Note, that this routine reduces 512-bit product modulo 2*P, i.e.
// 2 * (2^255 -19) = 2^256 - 38. It is computationally more effective to not
// fully reduce the result until the very end of X25519 calculation.
//
// See the "Special Reduction" section of "High-Performance Modular
// Multiplication on the Cell Processor" by Joppe W. Bos for more information
// about the math behind reduction: http://joppebos.com/files/waifi09.pdf
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_reduce(const FPGA_WORD *C, FPGA_BUFFER *P, const FPGA_BUFFER *N)
//------------------------------------------------------------------------------
{
int w; // word counter
// handy vars
FPGA_WORD y;
FPGA_WORD x1_msb, x1_lsb;
FPGA_WORD x2_msb, x2_lsb;
FPGA_WORD x5_msb, x5_lsb;
FPGA_WORD n_word;
// S1 is 262-bit result after the first reduction attempt
// S2 is 257-bit result after the second reduction attempt
FPGA_WORD S1[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD S2[FPGA_OPERAND_NUM_WORDS + 1];
// carries during the first and the second stages
FPGA_WORD_REDUCED t_carry1;
FPGA_WORD_EXTENDED t_carry2;
// borrows for the final stage
bool b_in, b_out;
// temporary result of the final stage
FPGA_WORD S2_N[FPGA_OPERAND_NUM_WORDS + 1];
// outputs of adders
FPGA_WORD_EXTENDED T1[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD_EXTENDED T2[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD_EXTENDED T3[FPGA_OPERAND_NUM_WORDS + 1];
FPGA_WORD_EXTENDED T4[FPGA_OPERAND_NUM_WORDS + 1];
// parts of full input product
FPGA_BUFFER P_LO, P_HI;
// split 512-bit input C into two 256-bit parts
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
P_LO.words[w] = C[w];
P_HI.words[w] = C[FPGA_OPERAND_NUM_WORDS + w];
}
/* We need to calculate S1 = P_HI * 38 + P_LO, this is done using
* additions instead of multiplications, because our low-level
* multiplier can only process 16 bits at a time, while an adder
* can do 47. This is done by replacing 38 with 32 + 4 + 2 =
* 2^5 + 2^2 + 2^1, this way:
* S1 = P_LO + (P_HI << 5) + (P_HI << 2) + (P_HI << 1)
*/
/* For every word we need to calculate a sum of five values: three
* shifted copies of P_HI[w], P_LO[w] and carry from the previous word.
* This is done using four adders in a pipelined fashion.
*/
t_carry1 = 0; // no carry in the very first word
for (w=0; w<(FPGA_OPERAND_NUM_WORDS+1); w++)
{
// upper parts of shifted copies of P_HI[w-i] (from the previous cycle)
x1_msb = (w > 0) ? (FPGA_WORD)(P_HI.words[w-1] >> (32 - 1)) : 0;
x2_msb = (w > 0) ? (FPGA_WORD)(P_HI.words[w-1] >> (32 - 2)) : 0;
x5_msb = (w > 0) ? (FPGA_WORD)(P_HI.words[w-1] >> (32 - 5)) : 0;
// lower parts of shifted copies of P_HI[w]
x1_lsb = (w < FPGA_OPERAND_NUM_WORDS) ? (FPGA_WORD)(P_HI.words[w] << 1) : 0;
x2_lsb = (w < FPGA_OPERAND_NUM_WORDS) ? (FPGA_WORD)(P_HI.words[w] << 2) : 0;
x5_lsb = (w < FPGA_OPERAND_NUM_WORDS) ? (FPGA_WORD)(P_HI.words[w] << 5) : 0;
// take care of uppers parts from the previous cycle
x1_lsb |= x1_msb;
x2_lsb |= x2_msb;
x5_lsb |= x5_msb;
// current word of P_LO
y = (w < FPGA_OPERAND_NUM_WORDS) ? P_LO.words[w] : 0;
// run addition
fpga_lowlevel_add47(x1_lsb, x2_lsb, &T1[w]); // T1 obtained after clock cycle w
fpga_lowlevel_add47(x5_lsb, y, &T2[w]); // T2 obtained after clock cycle w
fpga_lowlevel_add47(T1[w], T2[w], &T3[w]); // T3 obtained after clock cycle w+1 (when T1 and T2 are available)
fpga_lowlevel_add47(T3[w], t_carry1, &T4[w]); // T4 obtained after clock cycle w+2 (when T3 is available)
// store carry
t_carry1 = (FPGA_WORD_REDUCED)(T4[w] >> FPGA_WORD_WIDTH);
// store word of sum
S1[w] = (FPGA_WORD)T4[w];
}
/* now repeat what we've just done once again with S1, but this time S1_HI
* is 6-bit wide at most, so we can calculate S1_HI * 38 beforehand,
* add it to the lowest word of S1_LO and then propagate the carry
*/
t_carry2 = 0;
t_carry2 += (FPGA_WORD_EXTENDED)S1[FPGA_OPERAND_NUM_WORDS] << 1;
t_carry2 += (FPGA_WORD_EXTENDED)S1[FPGA_OPERAND_NUM_WORDS] << 2;
t_carry2 += (FPGA_WORD_EXTENDED)S1[FPGA_OPERAND_NUM_WORDS] << 5;
for (w=0; w<(FPGA_OPERAND_NUM_WORDS+1); w++)
{
// current word of S1_LO
y = (w < FPGA_OPERAND_NUM_WORDS) ? S1[w] : 0;
// do addition
fpga_lowlevel_add47(t_carry2, y, &T1[w]);
// store carry
t_carry2 = (FPGA_WORD_REDUCED)(T1[w] >> FPGA_WORD_WIDTH);
// store word of sum
S2[w] = (FPGA_WORD)T1[w];
}
/* So we've ended up with 257-bit result in S2. Note that there can only be
* two situations, given our modulus N is 2^256 - 38:
*
* a) 0 <= S < N
* b) N <= S < 2*N
*
* This is because we've obtained S2 by adding 256-bit quantity S1_LO and
* 12-bit quantity 38 * S_HI. S1_LO is at most 2^256 - 1 or N + 37, while
* the 12-bit quantity is at most 4095, so the largest possible value of
* S2 is N + 4132, which is obviously less than 2*N.
*
* What we now do is we try subtracting N from S2 to obtain S2_N, if we end up
* with a negative number, we return S2 (reduction was not necessary), otherwise
* we return S2_N.
*/
b_in = false; // first word has no borrow
// run parallel subtraction
for (w=0; w<=FPGA_OPERAND_NUM_WORDS; w++)
{
// current word of N
n_word = (w < FPGA_OPERAND_NUM_WORDS) ? N->words[w] : 0;
// do subtraction
fpga_lowlevel_sub32(S2[w], n_word, b_in, &S2_N[w], &b_out);
// propagate borrow
b_in = b_out;
}
// copy result to output buffer
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
// if subtraction of the highest words produced borrow, we ended up
// with a negative number and S2 must be returned, not S2_N
P->words[w] = b_out ? S2[w] : S2_N[w];
}
}
//------------------------------------------------------------------------------
//
// Parallelized multiplication.
//
// This routine implements the algorithm in Fig. 3. from "Ultra High
// Performance ECC over NIST Primes on Commercial FPGAs".
//
// Inputs A and B are split into 2*OPERAND_NUM_WORDS words of FPGA_WORD_WIDTH/2
// bits each, because FPGA multipliers can't handle full FPGA_WORD_WIDTH-wide
// inputs. These smaller words are multiplied by an array of 2*OPERAND_NUM_WORDS
// multiplers and accumulated into an array of 4*OPERAND_NUM_WORDS-1 partial
// output words SI[].
//
// The order of loading A and B into the multipliers is a bit complicated,
// during the first 2*OPERAND_NUM_WORDS-1 cycles one SI word per cycle is
// obtained, during the very last 2*OPERAND_NUM_WORDS'th cycle all the
// remaining 2*OPERAND_NUM_WORDS partial words are obtained simultaneously.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_multiply(const FPGA_BUFFER *A, const FPGA_BUFFER *B, FPGA_WORD_EXTENDED *SI)
//------------------------------------------------------------------------------
{
int w; // counter
int t, x; // more counters
int j, i; // word indices
FPGA_WORD p; // product
// buffers for smaller words that multipliers can handle
FPGA_WORD_REDUCED AI[2*FPGA_OPERAND_NUM_WORDS];
FPGA_WORD_REDUCED BJ[2*FPGA_OPERAND_NUM_WORDS];
// split a and b into smaller words
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
AI[2*w] = (FPGA_WORD_REDUCED)A->words[w], AI[2*w + 1] = (FPGA_WORD_REDUCED)(A->words[w] >> (FPGA_WORD_WIDTH / 2)),
BJ[2*w] = (FPGA_WORD_REDUCED)B->words[w], BJ[2*w + 1] = (FPGA_WORD_REDUCED)(B->words[w] >> (FPGA_WORD_WIDTH / 2));
// accumulators
FPGA_WORD_EXTENDED mac[2*FPGA_OPERAND_NUM_WORDS];
// clear accumulators
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++) mac[w] = 0;
// run the crazy algorithm :)
for (t=0; t<(2*FPGA_OPERAND_NUM_WORDS); t++)
{
// save upper half of si[] (one word per cycle)
if (t > 0)
{ SI[4*FPGA_OPERAND_NUM_WORDS - (t+1)] = mac[t];
mac[t] = 0;
}
// update index
j = 2*FPGA_OPERAND_NUM_WORDS - (t+1);
// parallel multiplication
for (x=0; x<(2*FPGA_OPERAND_NUM_WORDS); x++)
{
// update index
i = t - x;
if (i < 0) i += 2*FPGA_OPERAND_NUM_WORDS;
// multiply...
fpga_lowlevel_mul16(AI[i], BJ[j], &p);
// ...accumulate
mac[x] += p;
}
}
// now finally save lower half of SI[] (2*OPERAND_NUM_WORDS words at once)
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
SI[w] = mac[2*FPGA_OPERAND_NUM_WORDS - (w+1)];
}
//------------------------------------------------------------------------------
//
// Accumulation of partial words into full-size product.
//
// This routine implements the Algorithm 4. from "Ultra High Performance ECC
// over NIST Primes on Commercial FPGAs".
//
// Input words SI[] are accumulated into full-size product C[].
//
// The algorithm is a bit tricky, there are 4*OPERAND_NUM_WORDS-1 words in
// SI[]. Complete operation takes 2*OPERAND_NUM_WORDS cycles, even words are
// summed in full, odd words are split into two parts. During every cycle the
// upper part of the previous word and the lower part of the following word are
// summed too.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_accumulate(const FPGA_WORD_EXTENDED *SI, FPGA_WORD *C)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_WORD_EXTENDED cw0, cw1; // intermediate sums
FPGA_WORD_REDUCED cw_carry; // wide carry
// clear carry
cw_carry = 0;
// execute the algorithm
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
{
// handy flags
bool w_is_first = (w == 0);
bool w_is_last = (w == (2*FPGA_OPERAND_NUM_WORDS-1));
// accumulate full current even word...
// ...and also the upper part of the previous odd word (if not the first word)
fpga_lowlevel_add47(SI[2*w], w_is_first ? 0 : SI[2*w-1] >> (FPGA_WORD_WIDTH / 2), &cw0);
// generate another word from "carry" part of the previous even word...
// ...and also the lower part of the following odd word (if not the last word)
cw1 = w_is_last ? 0 : (FPGA_WORD)(SI[2*w+1] << (FPGA_WORD_WIDTH / 2));
cw1 |= (FPGA_WORD_EXTENDED)cw_carry;
// accumulate once again
fpga_lowlevel_add47(cw0, cw1, &cw1);
// store current word...
C[w] = (FPGA_WORD)cw1;
// ...and carry
cw_carry = (FPGA_WORD_REDUCED) (cw1 >> FPGA_WORD_WIDTH);
}
}
//------------------------------------------------------------------------------
//
// Custom modular inversion.
//
// This uses Fermat's little theorem to calculate A1 = A ^ -1.
//
// The corresponding addition chain which Bernstein calls "straightforward
// sequence of 254 squarings and 11 multiplications" in his original paper was
// taken from here:
// https://briansmith.org/ecc-inversion-addition-chains-01
//
//------------------------------------------------------------------------------
void fpga_modular_inv_abstract(const FPGA_BUFFER *A, FPGA_BUFFER *A1, const FPGA_BUFFER *N)
{
int cyc_count; // counter
// temporary variables
FPGA_BUFFER R1, R2;
FPGA_BUFFER T_1;
FPGA_BUFFER T_10;
FPGA_BUFFER T_1001;
FPGA_BUFFER T_1011;
FPGA_BUFFER T_X5;
FPGA_BUFFER T_X10;
FPGA_BUFFER T_X20;
FPGA_BUFFER T_X40;
FPGA_BUFFER T_X50;
FPGA_BUFFER T_X100;
// let's go
fpga_multiword_copy(A, &T_1);
//
fpga_modular_mul(&T_1, &T_1, &T_10, &CURVE25519_2P);
//
fpga_modular_mul(&T_10, &T_10, &R1, &CURVE25519_2P);
fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
fpga_modular_mul(&R2, &T_1, &T_1001, &CURVE25519_2P);
//
fpga_modular_mul(&T_1001, &T_10, &T_1011, &CURVE25519_2P);
//
fpga_modular_mul(&T_1011, &T_1011, &R1, &CURVE25519_2P);
fpga_modular_mul(&R1, &T_1001, &T_X5, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X5, &R1);
for (cyc_count=0; cyc_count<5; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R2, &T_X5, &T_X10, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X10, &R1);
for (cyc_count=0; cyc_count<10; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X10, &T_X20, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X20, &R1);
for (cyc_count=0; cyc_count<20; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X20, &T_X40, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X40, &R1);
for (cyc_count=0; cyc_count<10; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X10, &T_X50, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X50, &R1);
for (cyc_count=0; cyc_count<50; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
fpga_modular_mul(&R1, &T_X50, &T_X100, &CURVE25519_2P);
//
fpga_multiword_copy(&T_X100, &R1);
for (cyc_count=0; cyc_count<100; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
//
fpga_modular_mul(&R1, &T_X100, &R2, &CURVE25519_2P);
//
for (cyc_count=0; cyc_count<50; cyc_count++)
{ if ((cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P); // inverse order here!
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
//
fpga_modular_mul(&R2, &T_X50, &R1, &CURVE25519_2P);
//
for (cyc_count=0; cyc_count<5; cyc_count++)
{ if (!(cyc_count % 2)) fpga_modular_mul(&R1, &R1, &R2, &CURVE25519_2P);
else fpga_modular_mul(&R2, &R2, &R1, &CURVE25519_2P);
}
//
fpga_modular_mul(&R2, &T_1011, A1, &CURVE25519_2P);
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------