/**
******************************************************************************
* @file stm32f4xx_hal_rcc_ex.c
* @author MCD Application Team
* @version V1.3.2
* @date 26-June-2015
* @brief Extension RCC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities RCC extension peripheral:
* + Extended Peripheral Control functions
*
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
/** @defgroup RCCEx RCCEx
* @brief RCCEx HAL module driver
* @{
*/
#ifdef HAL_RCC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup RCCEx_Private_Constants
* @{
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
* @{
*/
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extended Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the RCC Clocks
frequencies.
[..]
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
select the RTC clock source; in this case the Backup domain will be reset in
order to modify the RTC Clock source, as consequence RTC registers (including
the backup registers) and RCC_BDCR register are set to their reset values.
@endverbatim
* @{
*/
#if defined(STM32F446xx)
/**
* @brief Initializes the RCC extended peripherals clocks according to the specified
* parameters in the RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* contains the configuration information for the Extended Peripherals
* clocks(I2S, SAI, LTDC RTC and TIM).
*
* @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
* the RTC clock source; in this case the Backup domain will be reset in
* order to modify the RTC Clock source, as consequence RTC registers (including
* the backup registers) and RCC_BDCR register are set to their reset values.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tickstart = 0;
uint32_t tmpreg1 = 0;
uint32_t plli2sp = 0;
uint32_t plli2sq = 0;
uint32_t plli2sr = 0;
uint32_t pllsaip = 0;
uint32_t pllsaiq = 0;
uint32_t plli2sused = 0;
uint32_t pllsaiused = 0;
/* Check the peripheral clock selection parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
/*----------------------------------- I2S APB1 configuration ----------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB1) == (RCC_PERIPHCLK_I2S_APB1))
{
/* Check the parameters */
assert_param(IS_RCC_I2SAPB1CLKSOURCE(PeriphClkInit->I2sApb1ClockSelection));
/* Configure I2S Clock source */
__HAL_RCC_I2S_APB1_CONFIG(PeriphClkInit->I2sApb1ClockSelection);
/* Enable the PLLI2S when it's used as clock source for I2S */
if(PeriphClkInit->I2sApb1ClockSelection == RCC_I2SAPB1CLKSOURCE_PLLI2S)
{
plli2sused = 1;
}
}
/*----------------------------------- I2S APB2 configuration -----------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB2) == (RCC_PERIPHCLK_I2S_APB2))
{
/* Check the parameters */
assert_param(IS_RCC_I2SAPB2CLKSOURCE(PeriphClkInit->I2sApb2ClockSelection));
/* Configure I2S Clock source */
__HAL_RCC_I2S_APB2_CONFIG(PeriphClkInit->I2sApb2ClockSelection);
/* Enable the PLLI2S when it's used as clock source for I2S */
if(PeriphClkInit->I2sApb2ClockSelection == RCC_I2SAPB2CLKSOURCE_PLLI2S)
{
plli2sused = 1;
}
}
/*------------------------------------ SAI1 configuration --------------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == (RCC_PERIPHCLK_SAI1))
{
/* Check the parameters */
assert_param(IS_RCC_SAI1CLKSOURCE(PeriphClkInit->Sai1ClockSelection));
/* Configure SAI1 Clock source */
__HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection);
/* Enable the PLLI2S when it's used as clock source for SAI */
if(PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLI2S)
{
plli2sused = 1;
}
/* Enable the PLLSAI when it's used as clock source for SAI */
if(PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLSAI)
{
pllsaiused = 1;
}
}
/*------------------------------------ SAI2 configuration --------------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == (RCC_PERIPHCLK_SAI2))
{
/* Check the parameters */
assert_param(IS_RCC_SAI2CLKSOURCE(PeriphClkInit->Sai2ClockSelection));
/* Configure SAI2 Clock source */
__HAL_RCC_SAI2_CONFIG(PeriphClkInit->Sai2ClockSelection);
/* Enable the PLLI2S when it's used as clock source for SAI */
if(PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLI2S)
{
plli2sused = 1;
}
/* Enable the PLLSAI when it's used as clock source for SAI */
if(PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLSAI)
{
pllsaiused = 1;
}
}
/*------------------------------------ RTC configuration --------------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
{
/* Enable Power Clock*/
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable write access to Backup domain */
PWR->CR |= PWR_CR_DBP;
/* Get tick */
tickstart = HAL_GetTick();
while((PWR->CR & PWR_CR_DBP) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset the Backup domain only if the RTC Clock source selction is modified */
if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))
{
/* Store the content of BDCR register before the reset of Backup Domain */
tmpreg1 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = tmpreg1;
/* Wait for LSERDY if LSE was enabled */
if(HAL_IS_BIT_SET(tmpreg1, RCC_BDCR_LSERDY))
{
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
}
}
/*------------------------------------ TIM configuration --------------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_TIM) == (RCC_PERIPHCLK_TIM))
{
/* Configure Timer Prescaler */
__HAL_RCC_TIMCLKPRESCALER(PeriphClkInit->TIMPresSelection);
}
/*------------------------------------- FMPI2C1 Configuration ----------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_FMPI2C1) == RCC_PERIPHCLK_FMPI2C1)
{
/* Check the parameters */
assert_param(IS_RCC_FMPI2C1CLKSOURCE(PeriphClkInit->Fmpi2c1ClockSelection));
/* Configure the FMPI2C1 clock source */
__HAL_RCC_FMPI2C1_CONFIG(PeriphClkInit->Fmpi2c1ClockSelection);
}
/*--------------------------------------- CEC Configuration -----------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC)
{
/* Check the parameters */
assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection));
/* Configure the CEC clock source */
__HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection);
}
/*-------------------------------------- CK48 Configuration -----------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CK48) == RCC_PERIPHCLK_CK48)
{
/* Check the parameters */
assert_param(IS_RCC_CK48CLKSOURCE(PeriphClkInit->Clk48ClockSelection));
/* Configure the SDIO clock source */
__HAL_RCC_CLK48_CONFIG(PeriphClkInit->Clk48ClockSelection);
/* Enable the PLLSAI when it's used as clock source for CK48 */
if(PeriphClkInit->Clk48ClockSelection == RCC_CK48CLKSOURCE_PLLSAIP)
{
pllsaiused = 1;
}
}
/*------------------------------------- SDIO Configuration ------------------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SDIO) == RCC_PERIPHCLK_SDIO)
{
/* Check the parameters */
assert_param(IS_RCC_SDIOCLKSOURCE(PeriphClkInit->SdioClockSelection));
/* Configure the SDIO clock source */
__HAL_RCC_SDIO_CONFIG(PeriphClkInit->SdioClockSelection);
}
/*------------------------------------- SPDIFRX Configuration --------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX)
{
/* Check the parameters */
assert_param(IS_RCC_SPDIFRXCLKSOURCE(PeriphClkInit->SpdifClockSelection));
/* Configure the SPDIFRX clock source */
__HAL_RCC_SPDIFRX_CONFIG(PeriphClkInit->SpdifClockSelection);
/* Enable the PLLI2S when it's used as clock source for SPDIFRX */
if(PeriphClkInit->SpdifClockSelection == RCC_SPDIFRXCLKSOURCE_PLLI2SP)
{
plli2sused = 1;
}
}
/*-------------------------------------- PLLI2S Configuration --------------*/
/* PLLI2S is configured when a peripheral will use it as source clock : SAI1, SAI2, I2S on APB1,
I2S on APB2 or SPDIFRX */
if((plli2sused == 1) || (PeriphClkInit->PeriphClockSelection == RCC_PERIPHCLK_PLLI2S))
{
/* Disable the PLLI2S */
__HAL_RCC_PLLI2S_DISABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLI2S is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
/* check for common PLLI2S Parameters */
assert_param(IS_RCC_PLLI2SM_VALUE(PeriphClkInit->PLLI2S.PLLI2SM));
assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN));
/*----------------- In Case of PLLI2S is selected as source clock for I2S -------------------*/
if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB1) == RCC_PERIPHCLK_I2S_APB1) && (PeriphClkInit->I2sApb1ClockSelection == RCC_I2SAPB1CLKSOURCE_PLLI2S)) ||
((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB2) == RCC_PERIPHCLK_I2S_APB2) && (PeriphClkInit->I2sApb2ClockSelection == RCC_I2SAPB2CLKSOURCE_PLLI2S)))
{
/* check for Parameters */
assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR));
/* Read PLLI2SP/PLLI2SQ value from PLLI2SCFGR register (this value is not needed for I2S configuration) */
plli2sp = ((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1);
plli2sq = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ));
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) � (PLLI2SN/PLLI2SM) */
/* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */
__HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , plli2sp, plli2sq, PeriphClkInit->PLLI2S.PLLI2SR);
}
/*----------------- In Case of PLLI2S is selected as source clock for SAI -------------------*/
if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) && (PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLI2S)) ||
((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) && (PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLI2S)))
{
/* Check for PLLI2S Parameters */
assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ));
/* Check for PLLI2S/DIVQ parameters */
assert_param(IS_RCC_PLLI2S_DIVQ_VALUE(PeriphClkInit->PLLI2SDivQ));
/* Read PLLI2SP/PLLI2SR value from PLLI2SCFGR register (this value is not needed for SAI configuration) */
plli2sp = ((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1);
plli2sr = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR));
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO Input = PLL_SOURCE/PLLI2SM */
/* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
/* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */
__HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , plli2sp, PeriphClkInit->PLLI2S.PLLI2SQ, plli2sr);
/* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */
__HAL_RCC_PLLI2S_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLI2SDivQ);
}
/*----------------- In Case of PLLI2S is selected as source clock for SPDIFRX -------------------*/
if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) && (PeriphClkInit->SpdifClockSelection == RCC_SPDIFRXCLKSOURCE_PLLI2SP))
{
/* check for Parameters */
assert_param(IS_RCC_PLLI2SP_VALUE(PeriphClkInit->PLLI2S.PLLI2SP));
/* Read PLLI2SR value from PLLI2SCFGR register (this value is not need for SAI configuration) */
plli2sq = ((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1);
plli2sr = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR));
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) � (PLLI2SN/PLLI2SM) */
/* SPDIFRXCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SP */
__HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SP, plli2sq, plli2sr);
}
/*----------------- In Case of PLLI2S is just selected -----------------*/
if((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_PLLI2S) == RCC_PERIPHCLK_PLLI2S)
{
/* Check for Parameters */
assert_param(IS_RCC_PLLI2SP_VALUE(PeriphClkInit->PLLI2S.PLLI2SP));
assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR));
assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ));
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) � (PLLI2SN/PLLI2SM) */
__HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SP, PeriphClkInit->PLLI2S.PLLI2SQ, PeriphClkInit->PLLI2S.PLLI2SR);
}
/* Enable the PLLI2S */
__HAL_RCC_PLLI2S_ENABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLI2S is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
}
/*-------------------------------------- PLLSAI Configuration ---------------------------------*/
/* PLLSAI is configured when a peripheral will use it as source clock : SAI1, SAI2, CK48 or SDIO */
if(pllsaiused == 1)
{
/* Disable PLLSAI Clock */
__HAL_RCC_PLLSAI_DISABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLSAI is disabled */
while(__HAL_RCC_PLLSAI_GET_FLAG() != RESET)
{
if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
/* Check the PLLSAI division factors */
assert_param(IS_RCC_PLLSAIM_VALUE(PeriphClkInit->PLLSAI.PLLSAIM));
assert_param(IS_RCC_PLLSAIN_VALUE(PeriphClkInit->PLLSAI.PLLSAIN));
/*----------------- In Case of PLLSAI is selected as source clock for SAI -------------------*/
if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) && (PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLSAI)) ||
((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) && (PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLSAI)))
{
/* check for PLLSAIQ Parameter */
assert_param(IS_RCC_PLLSAIQ_VALUE(PeriphClkInit->PLLSAI.PLLSAIQ));
/* check for PLLSAI/DIVQ Parameter */
assert_param(IS_RCC_PLLSAI_DIVQ_VALUE(PeriphClkInit->PLLSAIDivQ));
/* Read PLLSAIP value from PLLSAICFGR register (this value is not needed for SAI configuration) */
pllsaip = ((((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIP) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)) + 1) << 1);
/* PLLSAI_VCO Input = PLL_SOURCE/PLLM */
/* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */
/* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */
__HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIM, PeriphClkInit->PLLSAI.PLLSAIN , pllsaip, PeriphClkInit->PLLSAI.PLLSAIQ, 0);
/* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */
__HAL_RCC_PLLSAI_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLSAIDivQ);
}
/*----------------- In Case of PLLSAI is selected as source clock for CK48 -------------------*/
/* In Case of PLLI2S is selected as source clock for CK48 */
if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CK48) == RCC_PERIPHCLK_CK48) && (PeriphClkInit->Clk48ClockSelection == RCC_CK48CLKSOURCE_PLLSAIP))
{
/* check for Parameters */
assert_param(IS_RCC_PLLSAIP_VALUE(PeriphClkInit->PLLSAI.PLLSAIP));
/* Read PLLSAIQ value from PLLI2SCFGR register (this value is not need for SAI configuration) */
pllsaiq = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ));
/* Configure the PLLSAI division factors */
/* PLLSAI_VCO = f(VCO clock) = f(PLLSAI clock input) � (PLLI2SN/PLLSAIM) */
/* 48CLK = f(PLLSAI clock output) = f(VCO clock) / PLLSAIP */
__HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIM, PeriphClkInit->PLLSAI.PLLSAIN , PeriphClkInit->PLLSAI.PLLSAIP, pllsaiq, 0);
}
/* Enable PLLSAI Clock */
__HAL_RCC_PLLSAI_ENABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLSAI is ready */
while(__HAL_RCC_PLLSAI_GET_FLAG() == RESET)
{
if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief Get the RCC_PeriphCLKInitTypeDef according to the internal
* RCC configuration registers.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* will be configured.
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tempreg;
/* Set all possible values for the extended clock type parameter------------*/
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S_APB1 | RCC_PERIPHCLK_I2S_APB2 |\
RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 |\
RCC_PERIPHCLK_TIM | RCC_PERIPHCLK_RTC |\
RCC_PERIPHCLK_CEC | RCC_PERIPHCLK_FMPI2C1 |\
RCC_PERIPHCLK_CK48 | RCC_PERIPHCLK_SDIO |\
RCC_PERIPHCLK_SPDIFRX;
/* Get the PLLI2S Clock configuration -----------------------------------------------*/
PeriphClkInit->PLLI2S.PLLI2SM = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SM));
PeriphClkInit->PLLI2S.PLLI2SN = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN));
PeriphClkInit->PLLI2S.PLLI2SP = (uint32_t)((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1);
PeriphClkInit->PLLI2S.PLLI2SQ = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ));
PeriphClkInit->PLLI2S.PLLI2SR = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR));
/* Get the PLLSAI Clock configuration -----------------------------------------------*/
PeriphClkInit->PLLSAI.PLLSAIM = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIM) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIM));
PeriphClkInit->PLLSAI.PLLSAIN = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIN));
PeriphClkInit->PLLSAI.PLLSAIP = (uint32_t)((((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIP) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)) + 1) << 1);
PeriphClkInit->PLLSAI.PLLSAIQ = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ));
/* Get the PLLSAI/PLLI2S division factors -------------------------------------------*/
PeriphClkInit->PLLI2SDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLI2SDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLI2SDIVQ));
PeriphClkInit->PLLSAIDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLSAIDIVQ));
/* Get the SAI1 clock configuration ----------------------------------------------*/
PeriphClkInit->Sai1ClockSelection = __HAL_RCC_GET_SAI1_SOURCE();
/* Get the SAI2 clock configuration ----------------------------------------------*/
PeriphClkInit->Sai2ClockSelection = __HAL_RCC_GET_SAI2_SOURCE();
/* Get the I2S APB1 clock configuration ------------------------------------------*/
PeriphClkInit->I2sApb1ClockSelection = __HAL_RCC_GET_I2S_APB1_SOURCE();
/* Get the I2S APB2 clock configuration ------------------------------------------*/
PeriphClkInit->I2sApb2ClockSelection = __HAL_RCC_GET_I2S_APB2_SOURCE();
/* Get the RTC Clock configuration -----------------------------------------------*/
tempreg = (RCC->CFGR & RCC_CFGR_RTCPRE);
PeriphClkInit->RTCClockSelection = (uint32_t)((tempreg) | (RCC->BDCR & RCC_BDCR_RTCSEL));
/* Get the CEC clock configuration -----------------------------------------------*/
PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE();
/* Get the FMPI2C1 clock configuration -----------------------------------------------*/
PeriphClkInit->Fmpi2c1ClockSelection = __HAL_RCC_GET_FMPI2C1_SOURCE();
/* Get the CK48 clock configuration -----------------------------------------------*/
PeriphClkInit->Clk48ClockSelection = __HAL_RCC_GET_CLK48_SOURCE();
/* Get the SDIO clock configuration -----------------------------------------------*/
PeriphClkInit->SdioClockSelection = __HAL_RCC_GET_SDIO_SOURCE();
/* Get the SPDIFRX clock configuration ----------------------------------------------*/
PeriphClkInit->SpdifClockSelection = __HAL_RCC_GET_SPDIFRX_SOURCE();
/* Get the TIM Prescaler configuration --------------------------------------------*/
if ((RCC->DCKCFGR & RCC_DCKCFGR_TIMPRE) == RESET)
{
PeriphClkInit->TIMPresSelection = RCC_TIMPRES_DESACTIVATED;
}
else
{
PeriphClkInit->TIMPresSelection = RCC_TIMPRES_ACTIVATED;
}
}
/**
* @brief Return the peripheral clock frequency for a given peripheral(SAI..)
* @note Return 0 if peripheral clock identifier not managed by this API
* @param PeriphClk: Peripheral clock identifier
* This parameter can be one of the following values:
* @arg RCC_PERIPHCLK_SAI1: SAI1 peripheral clock
* @arg RCC_PERIPHCLK_SAI2: SAI2 peripheral clock
* @retval Frequency in KHz
*/
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
{
uint32_t tmpreg1 = 0;
/* This variable used to store the SAI clock frequency (value in Hz) */
uint32_t frequency = 0;
/* This variable used to store the VCO Input (value in Hz) */
uint32_t vcoinput = 0;
/* This variable used to store the SAI clock source */
uint32_t saiclocksource = 0;
if ((PeriphClk == RCC_PERIPHCLK_SAI1) || (PeriphClk == RCC_PERIPHCLK_SAI2))
{
saiclocksource = RCC->DCKCFGR;
saiclocksource &= (RCC_DCKCFGR_SAI1SRC | RCC_DCKCFGR_SAI2SRC);
switch (saiclocksource)
{
case 0: /* PLLSAI is the clock source for SAI*/
{
/* Configure the PLLSAI division factor */
/* PLLSAI_VCO Input = PLL_SOURCE/PLLSAIM */
if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI)
{
/* In Case the PLL Source is HSI (Internal Clock) */
vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIM));
}
else
{
/* In Case the PLL Source is HSE (External Clock) */
vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIM)));
}
/* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */
/* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */
tmpreg1 = (RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> 24;
frequency = (vcoinput * ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> 6))/(tmpreg1);
/* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */
tmpreg1 = (((RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVQ) >> 8) + 1);
frequency = frequency/(tmpreg1);
break;
}
case RCC_DCKCFGR_SAI1SRC_0: /* PLLI2S is the clock source for SAI*/
case RCC_DCKCFGR_SAI2SRC_0: /* PLLI2S is the clock source for SAI*/
{
/* Configure the PLLI2S division factor */
/* PLLI2S_VCO Input = PLL_SOURCE/PLLI2SM */
if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI)
{
/* In Case the PLL Source is HSI (Internal Clock) */
vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM));
}
else
{
/* In Case the PLL Source is HSE (External Clock) */
vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM)));
}
/* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
/* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */
tmpreg1 = (RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> 24;
frequency = (vcoinput * ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6))/(tmpreg1);
/* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */
tmpreg1 = ((RCC->DCKCFGR & RCC_DCKCFGR_PLLI2SDIVQ) + 1);
frequency = frequency/(tmpreg1);
break;
}
case RCC_DCKCFGR_SAI1SRC_1: /* PLLR is the clock source for SAI*/
case RCC_DCKCFGR_SAI2SRC_1: /* PLLR is the clock source for SAI*/
{
/* Configure the PLLI2S division factor */
/* PLL_VCO Input = PLL_SOURCE/PLLM */
if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI)
{
/* In Case the PLL Source is HSI (Internal Clock) */
vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM));
}
else
{
/* In Case the PLL Source is HSE (External Clock) */
vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)));
}
/* PLL_VCO Output = PLL_VCO Input * PLLN */
/* SAI_CLK_x = PLL_VCO Output/PLLR */
tmpreg1 = (RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 28;
frequency = (vcoinput * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6))/(tmpreg1);
break;
}
case RCC_DCKCFGR_SAI1SRC: /* External clock is the clock source for SAI*/
{
frequency = EXTERNAL_CLOCK_VALUE;
break;
}
case RCC_DCKCFGR_SAI2SRC: /* PLLSRC(HSE or HSI) is the clock source for SAI*/
{
if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI)
{
/* In Case the PLL Source is HSI (Internal Clock) */
frequency = (uint32_t)(HSI_VALUE);
}
else
{
/* In Case the PLL Source is HSE (External Clock) */
frequency = (uint32_t)(HSE_VALUE);
}
break;
}
default :
{
break;
}
}
}
return frequency;
}
#endif /* STM32F446xx */
#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx)
/**
* @brief Initializes the RCC extended peripherals clocks according to the specified
* parameters in the RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* contains the configuration information for the Extended Peripherals
* clocks(I2S, SAI, LTDC RTC and TIM).
*
* @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select
* the RTC clock source; in this case the Backup domain will be reset in
* order to modify the RTC Clock source, as consequence RTC registers (including
* the backup registers) and RCC_BDCR register are set to their reset values.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tickstart = 0;
uint32_t tmpreg1 = 0;
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
/*----------------------- SAI/I2S Configuration (PLLI2S) -------------------------*/
/*----------------------- Common configuration SAI/I2S ---------------------------*/
/* In Case of SAI or I2S Clock Configuration through PLLI2S, PLLI2SN division
factor is common parameters for both peripherals */
if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == RCC_PERIPHCLK_I2S) ||
(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLI2S) == RCC_PERIPHCLK_SAI_PLLI2S))
{
/* check for Parameters */
assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN));
/* Disable the PLLI2S */
__HAL_RCC_PLLI2S_DISABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLI2S is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
/*---------------------------- I2S configuration -------------------------------*/
/* In Case of I2S Clock Configuration through PLLI2S, PLLI2SR must be added
only for I2S configuration */
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == (RCC_PERIPHCLK_I2S))
{
/* check for Parameters */
assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR));
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) � (PLLI2SN/PLLM) */
/* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */
__HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SR);
}
/*---------------------------- SAI configuration -------------------------------*/
/* In Case of SAI Clock Configuration through PLLI2S, PLLI2SQ and PLLI2S_DIVQ must
be added only for SAI configuration */
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLI2S) == (RCC_PERIPHCLK_SAI_PLLI2S))
{
/* Check the PLLI2S division factors */
assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ));
assert_param(IS_RCC_PLLI2S_DIVQ_VALUE(PeriphClkInit->PLLI2SDivQ));
/* Read PLLI2SR value from PLLI2SCFGR register (this value is not need for SAI configuration) */
tmpreg1 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR));
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO Input = PLL_SOURCE/PLLM */
/* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */
/* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */
__HAL_RCC_PLLI2S_SAICLK_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SQ , tmpreg1);
/* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */
__HAL_RCC_PLLI2S_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLI2SDivQ);
}
/* Enable the PLLI2S */
__HAL_RCC_PLLI2S_ENABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLI2S is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
}
/*----------------------- SAI/LTDC Configuration (PLLSAI) ------------------*/
/*----------------------- Common configuration SAI/LTDC --------------------*/
/* In Case of SAI or LTDC Clock Configuration through PLLSAI, PLLSAIN division
factor is common parameters for both peripherals */
if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLSAI) == RCC_PERIPHCLK_SAI_PLLSAI) ||
(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC))
{
/* Check the PLLSAI division factors */
assert_param(IS_RCC_PLLSAIN_VALUE(PeriphClkInit->PLLSAI.PLLSAIN));
/* Disable PLLSAI Clock */
__HAL_RCC_PLLSAI_DISABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLSAI is disabled */
while(__HAL_RCC_PLLSAI_GET_FLAG() != RESET)
{
if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
/*---------------------------- SAI configuration -------------------------*/
/* In Case of SAI Clock Configuration through PLLSAI, PLLSAIQ and PLLSAI_DIVQ must
be added only for SAI configuration */
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLSAI) == (RCC_PERIPHCLK_SAI_PLLSAI))
{
assert_param(IS_RCC_PLLSAIQ_VALUE(PeriphClkInit->PLLSAI.PLLSAIQ));
assert_param(IS_RCC_PLLSAI_DIVQ_VALUE(PeriphClkInit->PLLSAIDivQ));
/* Read PLLSAIR value from PLLSAICFGR register (this value is not need for SAI configuration) */
tmpreg1 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIR) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR));
/* PLLSAI_VCO Input = PLL_SOURCE/PLLM */
/* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */
/* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */
__HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIN , PeriphClkInit->PLLSAI.PLLSAIQ, tmpreg1);
/* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */
__HAL_RCC_PLLSAI_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLSAIDivQ);
}
/*---------------------------- LTDC configuration ------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == (RCC_PERIPHCLK_LTDC))
{
assert_param(IS_RCC_PLLSAIR_VALUE(PeriphClkInit->PLLSAI.PLLSAIR));
assert_param(IS_RCC_PLLSAI_DIVR_VALUE(PeriphClkInit->PLLSAIDivR));
/* Read PLLSAIR value from PLLSAICFGR register (this value is not need for SAI configuration) */
tmpreg1 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ));
/* PLLSAI_VCO Input = PLL_SOURCE/PLLM */
/* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */
/* LTDC_CLK(first level) = PLLSAI_VCO Output/PLLSAIR */
__HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIN , tmpreg1, PeriphClkInit->PLLSAI.PLLSAIR);
/* LTDC_CLK = LTDC_CLK(first level)/PLLSAIDIVR */
__HAL_RCC_PLLSAI_PLLSAICLKDIVR_CONFIG(PeriphClkInit->PLLSAIDivR);
}
/* Enable PLLSAI Clock */
__HAL_RCC_PLLSAI_ENABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLSAI is ready */
while(__HAL_RCC_PLLSAI_GET_FLAG() == RESET)
{
if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
}
/*---------------------------- RTC configuration ---------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
{
/* Enable Power Clock*/
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable write access to Backup domain */
PWR->CR |= PWR_CR_DBP;
/* Get tick */
tickstart = HAL_GetTick();
while((PWR->CR & PWR_CR_DBP) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset the Backup domain only if the RTC Clock source selection is modified */
if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))
{
/* Store the content of BDCR register before the reset of Backup Domain */
tmpreg1 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = tmpreg1;
/* Wait for LSERDY if LSE was enabled */
if(HAL_IS_BIT_SET(tmpreg1, RCC_BDCR_LSERDY))
{
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
}
}
/*---------------------------- TIM configuration ---------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_TIM) == (RCC_PERIPHCLK_TIM))
{
__HAL_RCC_TIMCLKPRESCALER(PeriphClkInit->TIMPresSelection);
}
return HAL_OK;
}
/**
* @brief Configures the RCC_OscInitStruct according to the internal
* RCC configuration registers.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* will be configured.
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tempreg;
/* Set all possible values for the extended clock type parameter------------*/
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S | RCC_PERIPHCLK_SAI_PLLSAI | RCC_PERIPHCLK_SAI_PLLI2S | RCC_PERIPHCLK_LTDC | RCC_PERIPHCLK_TIM | RCC_PERIPHCLK_RTC;
/* Get the PLLI2S Clock configuration -----------------------------------------------*/
PeriphClkInit->PLLI2S.PLLI2SN = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN));
PeriphClkInit->PLLI2S.PLLI2SR = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR));
PeriphClkInit->PLLI2S.PLLI2SQ = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ));
/* Get the PLLSAI Clock configuration -----------------------------------------------*/
PeriphClkInit->PLLSAI.PLLSAIN = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIN));
PeriphClkInit->PLLSAI.PLLSAIR = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIR) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR));
PeriphClkInit->PLLSAI.PLLSAIQ = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ));
/* Get the PLLSAI/PLLI2S division factors -----------------------------------------------*/
PeriphClkInit->PLLI2SDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLI2SDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLI2SDIVQ));
PeriphClkInit->PLLSAIDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLSAIDIVQ));
PeriphClkInit->PLLSAIDivR = (uint32_t)(RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVR);
/* Get the RTC Clock configuration -----------------------------------------------*/
tempreg = (RCC->CFGR & RCC_CFGR_RTCPRE);
PeriphClkInit->RTCClockSelection = (uint32_t)((tempreg) | (RCC->BDCR & RCC_BDCR_RTCSEL));
if ((RCC->DCKCFGR & RCC_DCKCFGR_TIMPRE) == RESET)
{
PeriphClkInit->TIMPresSelection = RCC_TIMPRES_DESACTIVATED;
}
else
{
PeriphClkInit->TIMPresSelection = RCC_TIMPRES_ACTIVATED;
}
}
#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */
#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)|| defined(STM32F417xx) ||\
defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE)
/**
* @brief Initializes the RCC extended peripherals clocks according to the specified parameters in the
* RCC_PeriphCLKInitTypeDef.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* contains the configuration information for the Extended Peripherals clocks(I2S and RTC clocks).
*
* @note A caution to be taken when HAL_RCCEx_PeriphCLKConfig() is used to select RTC clock selection, in this case
* the Reset of Backup domain will be applied in order to modify the RTC Clock source as consequence all backup
* domain (RTC and RCC_BDCR register expect BKPSRAM) will be reset
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tickstart = 0;
uint32_t tmpreg1 = 0;
/* Check the parameters */
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
/*---------------------------- I2S configuration ---------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == (RCC_PERIPHCLK_I2S))
{
/* check for Parameters */
assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR));
assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN));
#if defined(STM32F411xE)
assert_param(IS_RCC_PLLI2SM_VALUE(PeriphClkInit->PLLI2S.PLLI2SM));
#endif /* STM32F411xE */
/* Disable the PLLI2S */
__HAL_RCC_PLLI2S_DISABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLI2S is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
#if defined(STM32F411xE)
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) � (PLLI2SN/PLLI2SM) */
/* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */
__HAL_RCC_PLLI2S_I2SCLK_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN, PeriphClkInit->PLLI2S.PLLI2SR);
#else
/* Configure the PLLI2S division factors */
/* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) � (PLLI2SN/PLLM) */
/* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */
__HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SR);
#endif /* STM32F411xE */
/* Enable the PLLI2S */
__HAL_RCC_PLLI2S_ENABLE();
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till PLLI2S is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
{
/* return in case of Timeout detected */
return HAL_TIMEOUT;
}
}
}
/*---------------------------- RTC configuration ---------------------------*/
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
{
/* Enable Power Clock*/
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable write access to Backup domain */
PWR->CR |= PWR_CR_DBP;
/* Get tick */
tickstart = HAL_GetTick();
while((PWR->CR & PWR_CR_DBP) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset the Backup domain only if the RTC Clock source selection is modified */
if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))
{
/* Store the content of BDCR register before the reset of Backup Domain */
tmpreg1 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
/* RTC Clock selection can be changed only if the Backup Domain is reset */
__HAL_RCC_BACKUPRESET_FORCE();
__HAL_RCC_BACKUPRESET_RELEASE();
/* Restore the Content of BDCR register */
RCC->BDCR = tmpreg1;
/* Wait for LSERDY if LSE was enabled */
if(HAL_IS_BIT_SET(tmpreg1, RCC_BDCR_LSERDY))
{
/* Get tick */
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
}
}
return HAL_OK;
}
/**
* @brief Configures the RCC_OscInitStruct according to the internal
* RCC configuration registers.
* @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
* will be configured.
* @retval None
*/
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
{
uint32_t tempreg;
/* Set all possible values for the extended clock type parameter------------*/
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S | RCC_PERIPHCLK_RTC;
/* Get the PLLI2S Clock configuration -----------------------------------------------*/
PeriphClkInit->PLLI2S.PLLI2SN = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN));
PeriphClkInit->PLLI2S.PLLI2SR = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR));
#if defined(STM32F411xE)
PeriphClkInit->PLLI2S.PLLI2SM = (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM);
#endif /* STM32F411xE */
/* Get the RTC Clock configuration -----------------------------------------------*/
tempreg = (RCC->CFGR & RCC_CFGR_RTCPRE);
PeriphClkInit->RTCClockSelection = (uint32_t)((tempreg) | (RCC->BDCR & RCC_BDCR_RTCSEL));
}
#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F401xC || STM32F401xE || STM32F411xE */
#if defined(STM32F411xE) || defined(STM32F446xx)
/**
* @brief Select LSE mode
*
* @note This mode is only available for STM32F411xx devices.
*
* @param Mode: specifies the LSE mode.
* This parameter can be one of the following values:
* @arg RCC_LSE_LOWPOWER_MODE: LSE oscillator in low power mode selection
* @arg RCC_LSE_HIGHDRIVE_MODE: LSE oscillator in High Drive mode selection
* @retval None
*/
void HAL_RCCEx_SelectLSEMode(uint8_t Mode)
{
/* Check the parameters */
assert_param(IS_RCC_LSE_MODE(Mode));
if(Mode == RCC_LSE_HIGHDRIVE_MODE)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEMOD);
}
else
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEMOD);
}
}
#endif /* STM32F411xE || STM32F446xx */
#if defined(STM32F446xx)
/**
* @brief Initializes the RCC Oscillators according to the specified parameters in the
* RCC_OscInitTypeDef.
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
* contains the configuration information for the RCC Oscillators.
* @note The PLL is not disabled when used as system clock.
* @note This function add the PLL/PLLR factor management during PLL configuration this feature is only available in STM32F446xx devices
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
uint32_t tickstart = 0;
/* Check the parameters */
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
/*------------------------------- HSE Configuration ------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
{
/* Check the parameters */
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
/* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)) ||\
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLLR) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)))
{
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
{
return HAL_ERROR;
}
}
else
{
/* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
__HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSE is disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set the new HSE configuration ---------------------------------------*/
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
/* Check the HSE State */
if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF)
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSE is bypassed or disabled */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*----------------------------- HSI Configuration --------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
{
/* Check the parameters */
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)) ||\
((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLLR) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)))
{
/* When HSI is used as system clock it will not disabled */
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
{
return HAL_ERROR;
}
/* Otherwise, just the calibration is allowed */
else
{
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
}
else
{
/* Check the HSI State */
if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
{
/* Enable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
}
else
{
/* Disable the Internal High Speed oscillator (HSI). */
__HAL_RCC_HSI_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till HSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
}
/*------------------------------ LSI Configuration -------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
{
/* Check the parameters */
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
/* Check the LSI State */
if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
{
/* Enable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the Internal Low Speed oscillator (LSI). */
__HAL_RCC_LSI_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSI is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
/*------------------------------ LSE Configuration -------------------------*/
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
{
/* Check the parameters */
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
/* Enable Power Clock*/
__HAL_RCC_PWR_CLK_ENABLE();
/* Enable write access to Backup domain */
PWR->CR |= PWR_CR_DBP;
/* Wait for Backup domain Write protection disable */
tickstart = HAL_GetTick();
while((PWR->CR & PWR_CR_DBP) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
__HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set the new LSE configuration -----------------------------------------*/
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
/* Check the LSE State */
if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till LSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
/*-------------------------------- PLL Configuration -----------------------*/
/* Check the parameters */
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
{
/* Check if the PLL is used as system clock or not */
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
{
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
{
/* Check the parameters */
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM));
assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN));
assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP));
assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ));
assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR));
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Configure the main PLL clock source, multiplication and division factors. */
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
RCC_OscInitStruct->PLL.PLLM,
RCC_OscInitStruct->PLL.PLLN,
RCC_OscInitStruct->PLL.PLLP,
RCC_OscInitStruct->PLL.PLLQ,
RCC_OscInitStruct->PLL.PLLR);
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
else
{
/* Disable the main PLL. */
__HAL_RCC_PLL_DISABLE();
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
{
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
}
}
else
{
return HAL_ERROR;
}
}
return HAL_OK;
}
/**
* @brief Configures the RCC_OscInitStruct according to the internal
* RCC configuration registers.
* @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that will be configured.
*
* @note This function is only available in case of STM32F446xx devices.
* @note This function add the PLL/PLLR factor management
* @retval None
*/
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct)
{
/* Set all possible values for the Oscillator type parameter ---------------*/
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;
/* Get the HSE configuration -----------------------------------------------*/
if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
{
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
}
else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
{
RCC_OscInitStruct->HSEState = RCC_HSE_ON;
}
else
{
RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
}
/* Get the HSI configuration -----------------------------------------------*/
if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
{
RCC_OscInitStruct->HSIState = RCC_HSI_ON;
}
else
{
RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
}
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM));
/* Get the LSE configuration -----------------------------------------------*/
if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
{
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
}
else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
{
RCC_OscInitStruct->LSEState = RCC_LSE_ON;
}
else
{
RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
}
/* Get the LSI configuration -----------------------------------------------*/
if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
{
RCC_OscInitStruct->LSIState = RCC_LSI_ON;
}
else
{
RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
}
/* Get the PLL configuration -----------------------------------------------*/
if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
}
else
{
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
}
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM);
RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN));
RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1) >> POSITION_VAL(RCC_PLLCFGR_PLLP));
RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ));
RCC_OscInitStruct->PLL.PLLR = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR));
}
/**
* @brief Returns the SYSCLK frequency
*
* @note This function is only available in case of STM32F446xx devices.
* @note This function add the PLL/PLLR System clock source
*
* @note The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
* @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**)
* @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
* @note (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
* @note (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value
* 25 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* @note The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @note This function can be used by the user application to compute the
* baudrate for the communication peripherals or configure other parameters.
*
* @note Each time SYSCLK changes, this function must be called to update the
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
*
*
* @retval SYSCLK frequency
*/
uint32_t HAL_RCC_GetSysClockFreq(void)
{
uint32_t pllm = 0;
uint32_t pllvco = 0;
uint32_t pllp = 0;
uint32_t pllr = 0;
uint32_t sysclockfreq = 0;
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */
{
sysclockfreq = HSI_VALUE;
break;
}
case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */
{
sysclockfreq = HSE_VALUE;
break;
}
case RCC_CFGR_SWS_PLL: /* PLL/PLLP used as system clock source */
{
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLP */
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI)
{
/* HSE used as PLL clock source */
pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
}
else
{
/* HSI used as PLL clock source */
pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
}
pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> POSITION_VAL(RCC_PLLCFGR_PLLP)) + 1 ) *2);
sysclockfreq = pllvco/pllp;
break;
}
case RCC_CFGR_SWS_PLLR: /* PLL/PLLR used as system clock source */
{
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR */
pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM;
if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI)
{
/* HSE used as PLL clock source */
pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
}
else
{
/* HSI used as PLL clock source */
pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)));
}
pllr = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR));
sysclockfreq = pllvco/pllr;
break;
}
default:
{
sysclockfreq = HSI_VALUE;
break;
}
}
return sysclockfreq;
}
#endif /* STM32F446xx */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RCC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/