aboutsummaryrefslogtreecommitdiff
path: root/src/rtl/eim_arbiter.v
blob: e9b2c762ecf04efe511ffa1a2cd9b16a8ac5956b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//======================================================================
//
// eim_arbiter.v
// -------------
// Port arbiter for the EIM interface for the Cryptech
// Novena FPGA framework.
//
//
// Author: Pavel Shatov
// Copyright (c) 2015, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
//   notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
//   notice, this list of conditions and the following disclaimer in the
//   documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
//   be used to endorse or promote products derived from this software
//   without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================

module eim_arbiter
  (
   // eim bus
   input wire          eim_bclk, 
   input wire          eim_cs0_n,
   inout wire [15: 0]  eim_da,
   input wire [18:16]  eim_a,
   input wire          eim_lba_n,
   input wire          eim_wr_n,
   input wire          eim_oe_n,
   output wire         eim_wait_n,

   // system clock
   input wire          sys_clk,

   // user bus
   output wire [16: 0] sys_addr, 
   output wire         sys_wren,
   output wire [31: 0] sys_data_out,
   output wire         sys_rden,
   input wire [31: 0]  sys_data_in
   );


   //
   // Data/Address PHY
   //

   /* PHY is needed to control bi-directional address/data bus. */

   wire [15: 0]        da_ro;   // value read from pins
   reg [15: 0]         da_di;   // value drives onto pins

   eim_da_phy da_phy
     (
      .buf_io(eim_da),          // <-- connect directly top-level port
      .buf_di(da_di),
      .buf_ro(da_ro),
      .buf_t(eim_oe_n)          // <-- driven by EIM directly
      );


   //
   // FSM
   //
   localparam   EIM_FSM_STATE_INIT        = 5'b0_0_000; // arbiter is idle

   localparam   EIM_FSM_STATE_WRITE_START = 5'b1_1_000; // got address to write at
   localparam   EIM_FSM_STATE_WRITE_LSB   = 5'b1_1_001; // got lower 16 bits of data to write
   localparam   EIM_FSM_STATE_WRITE_MSB   = 5'b1_1_010; // got upper 16 bits of data to write
   localparam   EIM_FSM_STATE_WRITE_WAIT  = 5'b1_1_100; // request to user-side logic sent
   localparam   EIM_FSM_STATE_WRITE_DONE  = 5'b1_1_111; // user-side logic acknowledged transaction

   localparam   EIM_FSM_STATE_READ_START  = 5'b1_0_000; // got address to read from
   localparam   EIM_FSM_STATE_READ_WAIT   = 5'b1_0_100; // request to user-side logic sent
   localparam   EIM_FSM_STATE_READ_READY  = 5'b1_0_011; // got acknowledge from user logic
   localparam   EIM_FSM_STATE_READ_LSB    = 5'b1_0_001; // returned lower 16 bits to master
   localparam   EIM_FSM_STATE_READ_MSB    = 5'b1_0_010; // returned upper 16 bits to master
   localparam   EIM_FSM_STATE_READ_DONE   = 5'b1_0_111; // transaction complete

   reg [ 4: 0]  eim_fsm_state   = EIM_FSM_STATE_INIT;   // fsm state
   reg [16: 0]  eim_addr_latch  = {17{1'bX}};           // transaction address
   reg [15: 0]  eim_write_lsb_latch = {16{1'bX}};       // lower 16 bits of data to write

   /* These flags are used to wake up from INIT state. */
   wire         eim_write_start_flag = (eim_lba_n == 1'b0) && (eim_wr_n == 1'b0) && (da_ro[1:0] == 2'b00);
   wire         eim_read_start_flag  = (eim_lba_n == 1'b0) && (eim_wr_n == 1'b1) && (da_ro[1:0] == 2'b00);

   /* These are transaction response flag and data from user-side logic. */
   wire         eim_user_ack;
   wire [31: 0] eim_user_data;

   /* FSM is reset whenever Chip Select is de-asserted. */

   //
   // FSM Transition Logic
   //
   always @(posedge eim_bclk or posedge eim_cs0_n)
     begin
        //
        if (eim_cs0_n == 1'b1)
          eim_fsm_state <= EIM_FSM_STATE_INIT;
        //
        else
          begin
             //
             case (eim_fsm_state)
               //
               // INIT -> WRITE, INIT -> READ
               //
               EIM_FSM_STATE_INIT:
                 begin
                    if (eim_write_start_flag)
                      eim_fsm_state     <= EIM_FSM_STATE_WRITE_START;
                    if (eim_read_start_flag)
                      eim_fsm_state     <= EIM_FSM_STATE_READ_START;
                 end
               //
               // WRITE
               //
               EIM_FSM_STATE_WRITE_START:
                 eim_fsm_state  <= EIM_FSM_STATE_WRITE_LSB;
               //
               EIM_FSM_STATE_WRITE_LSB:
                 eim_fsm_state  <= EIM_FSM_STATE_WRITE_MSB;
               //
               EIM_FSM_STATE_WRITE_MSB:
                 eim_fsm_state  <= EIM_FSM_STATE_WRITE_WAIT;
               //
               EIM_FSM_STATE_WRITE_WAIT:
                 if (eim_user_ack)
                   eim_fsm_state <= EIM_FSM_STATE_WRITE_DONE;
               //
               EIM_FSM_STATE_WRITE_DONE:
                 eim_fsm_state  <= EIM_FSM_STATE_INIT;
               //
               // READ
               //
               EIM_FSM_STATE_READ_START:
                 eim_fsm_state  <= EIM_FSM_STATE_READ_WAIT;
               //
               EIM_FSM_STATE_READ_WAIT:
                 if (eim_user_ack)
                   eim_fsm_state <= EIM_FSM_STATE_READ_READY;
               //
               EIM_FSM_STATE_READ_READY:
                 eim_fsm_state <= EIM_FSM_STATE_READ_LSB;
               //
               EIM_FSM_STATE_READ_LSB:
                 eim_fsm_state  <= EIM_FSM_STATE_READ_MSB;
               //
               EIM_FSM_STATE_READ_MSB:
                 eim_fsm_state  <= EIM_FSM_STATE_READ_DONE;
               //
               EIM_FSM_STATE_READ_DONE:
                 eim_fsm_state  <= EIM_FSM_STATE_INIT;
               //
               //
               //
               default:
                 eim_fsm_state  <= EIM_FSM_STATE_INIT;
               //
             endcase
             //
          end
        //
     end


   //
   // Address Latch
   //
   always @(posedge eim_bclk)
     //
     if ((eim_fsm_state == EIM_FSM_STATE_INIT) && (eim_write_start_flag || eim_read_start_flag))
       eim_addr_latch <= {eim_a[18:16], da_ro[15:2]};


   //
   // Additional Write Logic
   //
   always @(posedge eim_bclk)
     //
     if (eim_fsm_state == EIM_FSM_STATE_WRITE_START)
       eim_write_lsb_latch <= da_ro;


   //
   // Additional Read Logic
   //

   /* Note that this stuff operates on falling clock edge, because the cpu
    * samples our bi-directional data bus on rising clock edge.
    */

   always @(negedge eim_bclk or posedge eim_cs0_n)
     //
     if (eim_cs0_n == 1'b1)                                                                             da_di <= {16{1'bX}};                    // don't care what to drive
     else begin
        //
        if (eim_fsm_state == EIM_FSM_STATE_READ_LSB)
          da_di <= eim_user_data[15: 0];        // drive lower 16 bits at first...
        if (eim_fsm_state == EIM_FSM_STATE_READ_MSB)
          da_di <= eim_user_data[31:16];        // ...then drive upper 16 bits
        //
     end


   //
   // Wait Logic
   //

   /* Note that this stuff operates on falling clock edge, because the cpu
    *  samples our WAIT_N flag on rising clock edge.
    */

   reg  eim_wait_reg    = 1'b0;

   always @(negedge eim_bclk or posedge eim_cs0_n)
     //
     if (eim_cs0_n == 1'b1)
       eim_wait_reg     <= 1'b0;                // clear wait
     else begin
        //
        if (eim_fsm_state == EIM_FSM_STATE_WRITE_START)
          eim_wait_reg  <= 1'b1;                // start waiting for write to complete
        if (eim_fsm_state == EIM_FSM_STATE_READ_START)
          eim_wait_reg  <= 1'b1;                // start waiting for read to complete
        //
        if (eim_fsm_state == EIM_FSM_STATE_WRITE_DONE)
          eim_wait_reg  <= 1'b0;                // write transaction done
        if (eim_fsm_state == EIM_FSM_STATE_READ_READY)
          eim_wait_reg  <= 1'b0;                // read transaction done
        //
        if (eim_fsm_state == EIM_FSM_STATE_INIT)
          eim_wait_reg  <= 1'b0;                // fsm is idle, no need to wait any more
        //
     end

   assign eim_wait_n = ~eim_wait_reg;


   /* These flags are used to generate 1-cycle pulses to trigger CDC
    * transaction.  Note that FSM goes from WRITE_LSB to WRITE_MSB and from
    * READ_START to READ_WAIT unconditionally, so these flags will always be
    * active for 1 cycle only, which is exactly what we need.
    */

   wire arbiter_write_req_pulse = (eim_fsm_state == EIM_FSM_STATE_WRITE_LSB)  ? 1'b1 : 1'b0;
   wire arbiter_read_req_pulse  = (eim_fsm_state == EIM_FSM_STATE_READ_START) ? 1'b1 : 1'b0;

   //
   // CDC Block
   //

   /* This block is used to transfer request data from BCLK clock domain to
    * SYS_CLK clock domain and then transfer acknowledge from SYS_CLK to BCLK
    * clock domain in return. Af first 1+1+3+14+32 = 51 bits are transfered,
    * these are: write flag, read flag, msb part of address, lsb part of address,
    * write data. During read transaction some bogus write data is passed,
    * which is not used later anyway. During read requests 32 bits of data are
    * returned, during write requests 32 bits of bogus data are returned, that
    * are never used later.
    */

   eim_arbiter_cdc eim_cdc
     (
      .eim_clk(eim_bclk),

      .eim_req(arbiter_write_req_pulse | arbiter_read_req_pulse),
      .eim_ack(eim_user_ack),

      .eim_din({arbiter_write_req_pulse, arbiter_read_req_pulse,
                eim_addr_latch, da_ro, eim_write_lsb_latch}),
      .eim_dout(eim_user_data),

      .sys_clk(sys_clk),
      .sys_addr(sys_addr),
      .sys_wren(sys_wren),
      .sys_data_out(sys_data_out),
      .sys_rden(sys_rden),
      .sys_data_in(sys_data_in)
      );


endmodule

//======================================================================
// EOF eim_arbiter.v
//======================================================================