//======================================================================
//
// eim_arbiter.v
// -------------
// Port arbiter for the EIM interface for the Cryptech
// Novena FPGA framework.
//
//
// Author: Pavel Shatov
// Copyright (c) 2015, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module eim_arbiter
(
// eim bus
input wire eim_bclk,
input wire eim_cs0_n,
inout wire [15: 0] eim_da,
input wire [18:16] eim_a,
input wire eim_lba_n,
input wire eim_wr_n,
input wire eim_oe_n,
output wire eim_wait_n,
// system clock
input wire sys_clk,
// user bus
output wire [16: 0] sys_addr,
output wire sys_wren,
output wire [31: 0] sys_data_out,
output wire sys_rden,
input wire [31: 0] sys_data_in
);
//
// Data/Address PHY
//
/* PHY is needed to control bi-directional address/data bus. */
wire [15: 0] da_ro; // value read from pins
reg [15: 0] da_di; // value drives onto pins
eim_da_phy da_phy
(
.buf_io(eim_da), // <-- connect directly top-level port
.buf_di(da_di),
.buf_ro(da_ro),
.buf_t(eim_oe_n) // <-- driven by EIM directly
);
//
// FSM
//
localparam EIM_FSM_STATE_INIT = 5'b0_0_000; // arbiter is idle
localparam EIM_FSM_STATE_WRITE_START = 5'b1_1_000; // got address to write at
localparam EIM_FSM_STATE_WRITE_LSB = 5'b1_1_001; // got lower 16 bits of data to write
localparam EIM_FSM_STATE_WRITE_MSB = 5'b1_1_010; // got upper 16 bits of data to write
localparam EIM_FSM_STATE_WRITE_WAIT = 5'b1_1_100; // request to user-side logic sent
localparam EIM_FSM_STATE_WRITE_DONE = 5'b1_1_111; // user-side logic acknowledged transaction
localparam EIM_FSM_STATE_READ_START = 5'b1_0_000; // got address to read from
localparam EIM_FSM_STATE_READ_WAIT = 5'b1_0_100; // request to user-side logic sent
localparam EIM_FSM_STATE_READ_READY = 5'b1_0_011; // got acknowledge from user logic
localparam EIM_FSM_STATE_READ_LSB = 5'b1_0_001; // returned lower 16 bits to master
localparam EIM_FSM_STATE_READ_MSB = 5'b1_0_010; // returned upper 16 bits to master
localparam EIM_FSM_STATE_READ_DONE = 5'b1_0_111; // transaction complete
reg [ 4: 0] eim_fsm_state = EIM_FSM_STATE_INIT; // fsm state
reg [16: 0] eim_addr_latch = {17{1'bX}}; // transaction address
reg [15: 0] eim_write_lsb_latch = {16{1'bX}}; // lower 16 bits of data to write
/* These flags are used to wake up from INIT state. */
wire eim_write_start_flag = (eim_lba_n == 1'b0) && (eim_wr_n == 1'b0) && (da_ro[1:0] == 2'b00);
wire eim_read_start_flag = (eim_lba_n == 1'b0) && (eim_wr_n == 1'b1) && (da_ro[1:0] == 2'b00);
/* These are transaction response flag and data from user-side logic. */
wire eim_user_ack;
wire [31: 0] eim_user_data;
/* FSM is reset whenever Chip Select is de-asserted. */
//
// FSM Transition Logic
//
always @(posedge eim_bclk or posedge eim_cs0_n)
begin
//
if (eim_cs0_n == 1'b1)
eim_fsm_state <= EIM_FSM_STATE_INIT;
//
else
begin
//
case (eim_fsm_state)
//
// INIT -> WRITE, INIT -> READ
//
EIM_FSM_STATE_INIT:
begin
if (eim_write_start_flag)
eim_fsm_state <= EIM_FSM_STATE_WRITE_START;
if (eim_read_start_flag)
eim_fsm_state <= EIM_FSM_STATE_READ_START;
end
//
// WRITE
//
EIM_FSM_STATE_WRITE_START:
eim_fsm_state <= EIM_FSM_STATE_WRITE_LSB;
//
EIM_FSM_STATE_WRITE_LSB:
eim_fsm_state <= EIM_FSM_STATE_WRITE_MSB;
//
EIM_FSM_STATE_WRITE_MSB:
eim_fsm_state <= EIM_FSM_STATE_WRITE_WAIT;
//
EIM_FSM_STATE_WRITE_WAIT:
if (eim_user_ack)
eim_fsm_state <= EIM_FSM_STATE_WRITE_DONE;
//
EIM_FSM_STATE_WRITE_DONE:
eim_fsm_state <= EIM_FSM_STATE_INIT;
//
// READ
//
EIM_FSM_STATE_READ_START:
eim_fsm_state <= EIM_FSM_STATE_READ_WAIT;
//
EIM_FSM_STATE_READ_WAIT:
if (eim_user_ack)
eim_fsm_state <= EIM_FSM_STATE_READ_READY;
//
EIM_FSM_STATE_READ_READY:
eim_fsm_state <= EIM_FSM_STATE_READ_LSB;
//
EIM_FSM_STATE_READ_LSB:
eim_fsm_state <= EIM_FSM_STATE_READ_MSB;
//
EIM_FSM_STATE_READ_MSB:
eim_fsm_state <= EIM_FSM_STATE_READ_DONE;
//
EIM_FSM_STATE_READ_DONE:
eim_fsm_state <= EIM_FSM_STATE_INIT;
//
//
//
default:
eim_fsm_state <= EIM_FSM_STATE_INIT;
//
endcase
//
end
//
end
//
// Address Latch
//
always @(posedge eim_bclk)
//
if ((eim_fsm_state == EIM_FSM_STATE_INIT) && (eim_write_start_flag || eim_read_start_flag))
eim_addr_latch <= {eim_a[18:16], da_ro[15:2]};
//
// Additional Write Logic
//
always @(posedge eim_bclk)
//
if (eim_fsm_state == EIM_FSM_STATE_WRITE_START)
eim_write_lsb_latch <= da_ro;
//
// Additional Read Logic
//
/* Note that this stuff operates on falling clock edge, because the cpu
* samples our bi-directional data bus on rising clock edge.
*/
always @(negedge eim_bclk or posedge eim_cs0_n)
//
if (eim_cs0_n == 1'b1) da_di <= {16{1'bX}}; // don't care what to drive
else begin
//
if (eim_fsm_state == EIM_FSM_STATE_READ_LSB)
da_di <= eim_user_data[15: 0]; // drive lower 16 bits at first...
if (eim_fsm_state == EIM_FSM_STATE_READ_MSB)
da_di <= eim_user_data[31:16]; // ...then drive upper 16 bits
//
end
//
// Wait Logic
//
/* Note that this stuff operates on falling clock edge, because the cpu
* samples our WAIT_N flag on rising clock edge.
*/
reg eim_wait_reg = 1'b0;
always @(negedge eim_bclk or posedge eim_cs0_n)
//
if (eim_cs0_n == 1'b1)
eim_wait_reg <= 1'b0; // clear wait
else begin
//
if (eim_fsm_state == EIM_FSM_STATE_WRITE_START)
eim_wait_reg <= 1'b1; // start waiting for write to complete
if (eim_fsm_state == EIM_FSM_STATE_READ_START)
eim_wait_reg <= 1'b1; // start waiting for read to complete
//
if (eim_fsm_state == EIM_FSM_STATE_WRITE_DONE)
eim_wait_reg <= 1'b0; // write transaction done
if (eim_fsm_state == EIM_FSM_STATE_READ_READY)
eim_wait_reg <= 1'b0; // read transaction done
//
if (eim_fsm_state == EIM_FSM_STATE_INIT)
eim_wait_reg <= 1'b0; // fsm is idle, no need to wait any more
//
end
assign eim_wait_n = ~eim_wait_reg;
/* These flags are used to generate 1-cycle pulses to trigger CDC
* transaction. Note that FSM goes from WRITE_LSB to WRITE_MSB and from
* READ_START to READ_WAIT unconditionally, so these flags will always be
* active for 1 cycle only, which is exactly what we need.
*/
wire arbiter_write_req_pulse = (eim_fsm_state == EIM_FSM_STATE_WRITE_LSB) ? 1'b1 : 1'b0;
wire arbiter_read_req_pulse = (eim_fsm_state == EIM_FSM_STATE_READ_START) ? 1'b1 : 1'b0;
//
// CDC Block
//
/* This block is used to transfer request data from BCLK clock domain to
* SYS_CLK clock domain and then transfer acknowledge from SYS_CLK to BCLK
* clock domain in return. Af first 1+1+3+14+32 = 51 bits are transfered,
* these are: write flag, read flag, msb part of address, lsb part of address,
* write data. During read transaction some bogus write data is passed,
* which is not used later anyway. During read requests 32 bits of data are
* returned, during write requests 32 bits of bogus data are returned, that
* are never used later.
*/
eim_arbiter_cdc eim_cdc
(
.eim_clk(eim_bclk),
.eim_req(arbiter_write_req_pulse | arbiter_read_req_pulse),
.eim_ack(eim_user_ack),
.eim_din({arbiter_write_req_pulse, arbiter_read_req_pulse,
eim_addr_latch, da_ro, eim_write_lsb_latch}),
.eim_dout(eim_user_data),
.sys_clk(sys_clk),
.sys_addr(sys_addr),
.sys_wren(sys_wren),
.sys_data_out(sys_data_out),
.sys_rden(sys_rden),
.sys_data_in(sys_data_in)
);
endmodule
//======================================================================
// EOF eim_arbiter.v
//======================================================================