aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRob Austein <sra@hactrn.net>2017-08-22 11:20:22 -0400
committerRob Austein <sra@hactrn.net>2017-08-22 11:20:22 -0400
commit7fe3359559d28f478807bbf7dc23d3f2504c77a6 (patch)
treeb27f128a0c1da7b219c6e9af705405ae44a77785
parente4a0429d37c6d94518041c8fae7a9a1d49bd7c2f (diff)
Old simplification, never committed.
-rw-r--r--aes_keywrap.py594
1 files changed, 146 insertions, 448 deletions
diff --git a/aes_keywrap.py b/aes_keywrap.py
index 1d0be29..bb6968a 100644
--- a/aes_keywrap.py
+++ b/aes_keywrap.py
@@ -1,8 +1,8 @@
#!/usr/bin/env python
"""
-Python prototype of an AES Key Wrap implementation, RFC 5649 flavor
-per Russ, using PyCrypto to supply the AES code.
+Python implementation of RFC 5649 AES Key Wrap With Padding,
+using PyCrypto to supply the AES code.
"""
# Terminology mostly follows the RFC, including variable names.
@@ -14,505 +14,203 @@ per Russ, using PyCrypto to supply the AES code.
# operation, then immediately split the result back into a pair of
# 64-bit blocks.
-
-from struct import pack, unpack
-from Crypto.Cipher import AES
-from array import array
-
-verbose = False
-
-
-def bin2hex(bytes, sep = ":"):
- return sep.join("%02x" % ord(b) for b in bytes)
-
-def hex2bin(text):
- return text.translate(None, ": \t\n\r").decode("hex")
-
-
-def start_stop(start, stop): # syntactic sugar
- step = -1 if start > stop else 1
- return xrange(start, stop + step, step)
-
-
-class Block(long):
- """
- One 64-bit block, a Python long with some extra methods.
- """
-
- def __new__(cls, v):
- assert v >= 0 and v.bit_length() <= 64
- return super(Block, cls).__new__(cls, v)
-
- @classmethod
- def from_bytes(cls, v):
- assert isinstance(v, str) and len(v) == 8
- return cls(unpack(">Q", v)[0])
-
- def to_bytes(self):
- assert self >= 0 and self.bit_length() <= 64
- return pack(">Q", self)
-
- @classmethod
- def from_words(cls, hi, lo):
- assert hi >= 0 and hi.bit_length() <= 32
- assert lo >= 0 and lo.bit_length() <= 32
- return cls((hi << 32L) + lo)
-
- def to_words(self):
- assert self >= 0 and self.bit_length() <= 64
- return ((self >> 32) & 0xFFFFFFFF), (self & 0xFFFFFFFF)
-
- def to_hex(self):
- assert self >= 0 and self.bit_length() <= 64
- return "%016x" % self
-
-
-class Buffer(array):
- """
- Python type B array with a few extra methods.
- """
-
- def __new__(cls, *initializer):
- return super(Buffer, cls).__new__(cls, "B", *initializer)
-
- def get_block(self, i):
- return self.__class__(self[8*i:8*(i+1)])
-
- def set_block(self, i, v):
- assert len(v) == 8
- self[8*i:8*(i+1)] = v
-
- def get_hex(self, i = None):
- return bin2hex(self if i is None else self.get_block(i))
-
-
-class KEK(object):
- """
- Key encryption key, based on a PyCrypto encryption context.
-
- This can work with either Block objects or Python arrays.
-
- Since this is a test tool used with known static keys in an attempt
- to produce known results, we use a totally unsafe keying method.
- Don't try this at home, kids.
- """
-
- def __init__(self, key):
- self.ctx = AES.new(key, AES.MODE_ECB)
-
- def encrypt_block(self, i1, i2):
- """
- Concatenate two 64-bit blocks into a 128-bit block, encrypt it
- with AES-ECB, return the result split back into 64-bit blocks.
- """
-
- aes_block = pack(">QQ", i1, i2)
- aes_block = self.ctx.encrypt(aes_block)
- o1, o2 = tuple(Block(b) for b in unpack(">QQ", aes_block))
- if verbose:
- print " Encrypt: %s | %s => %s | %s" % tuple(b.to_hex() for b in (i1, i2, o1, o2))
- return o1, o2
-
- def encrypt_array(self, b1, b2):
- """
- Concatenate two 64-bit blocks into a 128-bit block, encrypt it
- with AES-ECB, return the result split back into 64-bit blocks.
- """
-
- aes_block = b1 + b2
- aes_block = self.ctx.encrypt(aes_block.tostring())
- return Buffer(aes_block[:8]), Buffer(aes_block[8:])
-
- def decrypt_block(self, i1, i2):
- """
- Concatenate two 64-bit blocks into a 128-bit block, decrypt it
- with AES-ECB, return the result split back into 64-bit blocks.
+class AESKeyWrapWithPadding(object):
"""
-
- aes_block = pack(">QQ", i1, i2)
- aes_block = self.ctx.decrypt(aes_block)
- o1, o2 = tuple(Block(b) for b in unpack(">QQ", aes_block))
- if verbose:
- print " Decrypt: %s | %s => %s | %s" % tuple(b.to_hex() for b in (i1, i2, o1, o2))
- return o1, o2
-
- def decrypt_array(self, b1, b2):
- """
- Concatenate two 64-bit blocks into a 128-bit block, decrypt it
- with AES-ECB, return the result split back into 64-bit blocks.
+ Implementation of AES Key Wrap With Padding from RFC 5649.
"""
- aes_block = b1 + b2
- aes_block = self.ctx.decrypt(aes_block.tostring())
- return Buffer(aes_block[:8]), Buffer(aes_block[8:])
-
-
-def block_wrap_key(Q, K):
- """
- Wrap a key according to RFC 5649 section 4.1.
-
- Q is the plaintext to be wrapped, a byte string.
-
- K is the KEK with which to encrypt.
-
- Returns C, the wrapped ciphertext.
-
- This implementation is based on Python long integers and includes
- code to log internal state in verbose mode.
- """
-
- if verbose:
- def log_registers():
- print " A: ", A.to_hex()
- for r in xrange(1, n+1):
- print " R[%3d]" % r, R[r].to_hex()
+ class UnwrapError(Exception):
+ "Something went wrong during unwrap."
- m = len(Q)
- if m % 8 != 0:
- Q += "\x00" * (8 - (m % 8))
- assert len(Q) % 8 == 0
+ def __init__(self, key):
+ from Crypto.Cipher import AES
+ self.ctx = AES.new(key, AES.MODE_ECB)
- n = len(Q) / 8
- P = [Block.from_bytes(Q[i:i+8]) for i in xrange(0, len(Q), 8)]
- assert len(P) == n
+ def _encrypt(self, b1, b2):
+ aes_block = self.ctx.encrypt(b1 + b2)
+ return aes_block[:8], aes_block[8:]
- P.insert(0, None) # Make P one-based
- A = Block.from_words(0xA65959A6, m) # RFC 5649 section 3 AIV
- R = P # Alias to follow the spec
-
- if verbose:
- print " Starting wrap, n =", n
+ def _decrypt(self, b1, b2):
+ aes_block = self.ctx.decrypt(b1 + b2)
+ return aes_block[:8], aes_block[8:]
- if n == 1:
- if verbose:
- log_registers()
- C = K.encrypt_block(A, P[1])
+ @staticmethod
+ def _start_stop(start, stop): # Syntactic sugar
+ step = -1 if start > stop else 1
+ return xrange(start, stop + step, step)
- else:
- # RFC 3394 section 2.2.1
- for j in start_stop(0, 5):
- for i in start_stop(1, n):
- t = n * j + i
- if verbose:
- print " i = %d, j = %d, t = 0x%x" % (i, j, t)
- log_registers()
- B_hi, B_lo = K.encrypt_block(A, R[i])
- A = Block(B_hi ^ t)
- R[i] = B_lo
- C = R
- C[0] = A
- if verbose:
- print " Finishing wrap"
- for i in xrange(len(C)):
- print " C[%3d]" % i, C[i].to_hex()
- print
-
- assert len(C) == n + 1
- return "".join(c.to_bytes() for c in C)
-
-
-def array_wrap_key(Q, K):
- """
- Wrap a key according to RFC 5649 section 4.1.
-
- Q is the plaintext to be wrapped, a byte string.
-
- K is the KEK with which to encrypt.
-
- Returns C, the wrapped ciphertext.
-
- This implementation is based on Python byte arrays.
- """
-
- m = len(Q) # Plaintext length
- R = Buffer("\xa6\x59\x59\xa6") # Magic MSB(32,A)
- for i in xrange(24, -8, -8):
- R.append((m >> i) & 0xFF) # Build LSB(32,A)
- R.fromstring(Q) # Append Q
- if m % 8 != 0: # Pad Q if needed
- R.fromstring("\x00" * (8 - (m % 8)))
-
- assert len(R) % 8 == 0
- n = (len(R) / 8) - 1
+ def wrap_key(self, Q):
+ """
+ Wrap a key according to RFC 5649 section 4.1.
- if n == 1:
- B1, B2 = K.encrypt_array(R.get_block(0), R.get_block(1))
- R.set_block(0, B1)
- R.set_block(1, B2)
+ Q is the plaintext to be wrapped, a byte string.
- else:
- # RFC 3394 section 2.2.1
- for j in start_stop(0, 5):
- for i in start_stop(1, n):
- B1, B2 = K.encrypt_array(R.get_block(0), R.get_block(i))
- t = n * j + i
- R.set_block(0, B1)
- R.set_block(i, B2)
- R[7] ^= t & 0xFF; t >>= 8
- R[6] ^= t & 0xFF; t >>= 8
- R[5] ^= t & 0xFF; t >>= 8
- R[4] ^= t & 0xFF
+ Returns C, the wrapped ciphertext.
+ """
- assert len(R) == (n + 1) * 8
- return R.tostring()
+ from struct import pack, unpack
+ m = len(Q) # Plaintext length
+ if m % 8 != 0: # Pad Q if needed
+ Q += "\x00" * (8 - (m % 8))
+ R = [pack(">LL", 0xa65959a6, m)] # Magic MSB(32,A), build LSB(32,A)
+ R.extend(Q[i : i + 8] # Append Q
+ for i in xrange(0, len(Q), 8))
-class UnwrapError(Exception):
- "Something went wrong during unwrap."
-
-
-def block_unwrap_key(C, K):
- """
- Unwrap a key according to RFC 5649 section 4.2.
-
- C is the ciphertext to be unwrapped, a byte string
-
- K is the KEK with which to decrypt.
-
- Returns Q, the unwrapped plaintext.
-
- This implementation is based on Python long integers and includes
- code to log internal state in verbose mode.
- """
-
- if verbose:
- def log_registers():
- print " A: ", A.to_hex()
- for r in xrange(1, n+1):
- print " R[%3d]" % r, R[r].to_hex()
+ n = len(R) - 1
- if len(C) % 8 != 0:
- raise UnwrapError("Ciphertext length %d is not an integral number of blocks" % len(C))
+ if n == 1:
+ R[0], R[1] = self._encrypt(R[0], R[1])
- n = (len(C) / 8) - 1
- C = [Block.from_bytes(C[i:i+8]) for i in xrange(0, len(C), 8)]
- assert len(C) == n + 1
+ else:
+ # RFC 3394 section 2.2.1
+ for j in self._start_stop(0, 5):
+ for i in self._start_stop(1, n):
+ R[0], R[i] = self._encrypt(R[0], R[i])
+ W0, W1 = unpack(">LL", R[0])
+ W1 ^= n * j + i
+ R[0] = pack(">LL", W0, W1)
- P = R = C # Lots of names for the same list of blocks
- A = C[0]
-
- if verbose:
- print " Starting unwrap, n =", n
+ assert len(R) == (n + 1) and all(len(r) == 8 for r in R)
+ return "".join(R)
- if n == 1:
- if verbose:
- log_registers()
- A, R[1] = K.decrypt_block(A, R[1])
- else:
- # RFC 3394 section 2.2.2 steps (1), (2), and part of (3)
- for j in start_stop(5, 0):
- for i in start_stop(n, 1):
- t = n * j + i
- if verbose:
- print " i = %d, j = %d, t = 0x%x" % (i, j, t)
- log_registers()
- B_hi, B_lo = K.decrypt_block(Block(A ^ t), R[i])
- A = B_hi
- R[i] = B_lo
+ def unwrap_key(self, C):
+ """
+ Unwrap a key according to RFC 5649 section 4.2.
- if verbose:
- print " Finishing unwrap"
- print " A: ", A.to_hex()
- for i in xrange(1, len(P)):
- print " P[%3d]" % i, P[i].to_hex()
- print
+ C is the ciphertext to be unwrapped, a byte string
- magic, m = A.to_words()
+ Returns Q, the unwrapped plaintext.
+ """
- if magic != 0xA65959A6:
- raise UnwrapError("Magic value in AIV should hae been a65959a6, was %08x" % magic)
+ from struct import pack, unpack
- if m <= 8 * (n - 1) or m > 8 * n:
- raise UnwrapError("Length encoded in AIV out of range: m %d, n %d" % (m, n))
+ if len(C) % 8 != 0:
+ raise self.UnwrapError("Ciphertext length {} is not an integral number of blocks"
+ .format(len(C)))
- Q = "".join(p.to_bytes() for p in P[1:])
- assert len(Q) == 8 * n
+ n = (len(C) / 8) - 1
+ R = [C[i : i + 8] for i in xrange(0, len(C), 8)]
- if any(q != "\x00" for q in Q[m:]):
- raise UnwrapError("Nonzero trailing bytes %s" % bin2hex(Q[m:]))
+ if n == 1:
+ R[0], R[1] = self._decrypt(R[0], R[1])
- return Q[:m]
+ else:
+ # RFC 3394 section 2.2.2 steps (1), (2), and part of (3)
+ for j in self._start_stop(5, 0):
+ for i in self._start_stop(n, 1):
+ W0, W1 = unpack(">LL", R[0])
+ W1 ^= n * j + i
+ R[0] = pack(">LL", W0, W1)
+ R[0], R[i] = self._decrypt(R[0], R[i])
+ magic, m = unpack(">LL", R[0])
-def array_unwrap_key(C, K):
- """
- Unwrap a key according to RFC 5649 section 4.2.
+ if magic != 0xa65959a6:
+ raise self.UnwrapError("Magic value in AIV should have been 0xa65959a6, was 0x{:02x}"
+ .format(magic))
- C is the ciphertext to be unwrapped, a byte string
+ if m <= 8 * (n - 1) or m > 8 * n:
+ raise self.UnwrapError("Length encoded in AIV out of range: m {}, n {}".format(m, n))
- K is the KEK with which to decrypt.
+ R = "".join(R[1:])
+ assert len(R) == 8 * n
- Returns Q, the unwrapped plaintext.
+ if any(r != "\x00" for r in R[m:]):
+ raise self.UnwrapError("Nonzero trailing bytes {}".format(R[m:].encode("hex")))
- This implementation is based on Python byte arrays.
- """
+ return R[:m]
- if len(C) % 8 != 0:
- raise UnwrapError("Ciphertext length %d is not an integral number of blocks" % len(C))
- n = (len(C) / 8) - 1
- R = Buffer(C)
-
- if n == 1:
- B1, B2 = K.decrypt_array(R.get_block(0), R.get_block(1))
- R.set_block(0, B1)
- R.set_block(1, B2)
+if __name__ == "__main__":
- else:
- # RFC 3394 section 2.2.2 steps (1), (2), and part of (3)
- for j in start_stop(5, 0):
- for i in start_stop(n, 1):
- t = n * j + i
- R[7] ^= t & 0xFF; t >>= 8
- R[6] ^= t & 0xFF; t >>= 8
- R[5] ^= t & 0xFF; t >>= 8
- R[4] ^= t & 0xFF
- B1, B2 = K.decrypt_array(R.get_block(0), R.get_block(i))
- R.set_block(0, B1)
- R.set_block(i, B2)
+ # Test code from here down
- if R[:4].tostring() != "\xa6\x59\x59\xa6":
- raise UnwrapError("Magic value in AIV should hae been a65959a6, was %02x%02x%02x%02x" % (R[0], R[1], R[2], R[3]))
+ import unittest
- m = (((((R[4] << 8) + R[5]) << 8) + R[6]) << 8) + R[7]
+ class TestAESKeyWrapWithPadding(unittest.TestCase):
- if m <= 8 * (n - 1) or m > 8 * n:
- raise UnwrapError("Length encoded in AIV out of range: m %d, n %d" % (m, n))
+ @staticmethod
+ def bin2hex(bytes, sep = ":"):
+ return sep.join("{:02x}".format(ord(b)) for b in bytes)
- del R[:8]
- assert len(R) == 8 * n
+ @staticmethod
+ def hex2bin(text):
+ return text.translate(None, ": \t\n\r").decode("hex")
- if any(r != 0 for r in R[m:]):
- raise UnwrapError("Nonzero trailing bytes %s" % ":".join("%02x" % r for r in R[m:]))
+ def loopback_test(self, I):
+ K = AESKeyWrapWithPadding(self.hex2bin("00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f"))
+ C = K.wrap_key(I)
+ O = K.unwrap_key(C)
+ if I != O:
+ raise RuntimeError("Input and output plaintext did not match: {!r} <> {!r}".format(I, O))
- del R[m:]
- assert len(R) == m
- return R.tostring()
+ def rfc5649_test(self, K, Q, C):
+ K = AESKeyWrapWithPadding(key = self.hex2bin(K))
+ Q = self.hex2bin(Q)
+ C = self.hex2bin(C)
+ c = K.wrap_key(Q)
+ q = K.unwrap_key(C)
+ if q != Q:
+ raise RuntimeError("Input and output plaintext did not match: {} <> {}".format(self.bin2hex(Q), self.bin2hex(q)))
+ if c != C:
+ raise RuntimeError("Input and output ciphertext did not match: {} <> {}".format(self.bin2hex(C), self.bin2hex(c)))
+ def test_rfc5649_1(self):
+ self.rfc5649_test(K = "5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8",
+ Q = "c37b7e6492584340 bed1220780894115 5068f738",
+ C = "138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a 5f54f373fa543b6a")
-if __name__ == "__main__":
+ def test_rfc5649_2(self):
+ self.rfc5649_test(K = "5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8",
+ Q = "466f7250617369",
+ C = "afbeb0f07dfbf541 9200f2ccb50bb24f")
- # Test code from here down
+ def test_mangled_1(self):
+ self.assertRaises(AESKeyWrapWithPadding.UnwrapError, self.rfc5649_test,
+ K = "5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8",
+ Q = "466f7250617368",
+ C = "afbeb0f07dfbf541 9200f2ccb50bb24f")
- def loopback_test(K, I):
- """
- Loopback test, just encrypt followed by decrypt to see if we can
- get matching results without throwing any errors.
- """
+ def test_mangled_2(self):
+ self.assertRaises(AESKeyWrapWithPadding.UnwrapError, self.rfc5649_test,
+ K = "5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8",
+ Q = "466f7250617368",
+ C = "afbeb0f07dfbf541 9200f2ccb50bb24f 0123456789abcdef")
- print "Testing:", repr(I)
- C = wrap_key(I, K)
- print "Wrapped: [%d]" % len(C), bin2hex(C)
- O = unwrap_key(C, K)
- if I != O:
- raise RuntimeError("Input and output plaintext did not match: %r <> %r" % (I, O))
- print
+ def test_mangled_3(self):
+ self.assertRaises(AESKeyWrapWithPadding.UnwrapError, self.rfc5649_test,
+ K = "5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8",
+ Q = "c37b7e6492584340 bed1220780894115 5068f738",
+ C = "138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a")
+ def test_loopback_1(self):
+ self.loopback_test("!")
- def rfc5649_test(K, Q, C):
- """
- Test vectors as in RFC 5649 or similar.
- """
+ def test_loopback_2(self):
+ self.loopback_test("Yo!")
- print "Testing: [%d]" % len(Q), bin2hex(Q)
- c = wrap_key(Q, K)
+ def test_loopback_3(self):
+ self.loopback_test("Hi, Mom")
- print "Wrapped: [%d]" % len(C), bin2hex(C)
- q = unwrap_key(C, K)
+ def test_loopback_4(self):
+ self.loopback_test("1" * (64 / 8))
- if q != Q:
- raise RuntimeError("Input and output plaintext did not match: %s <> %s" % (bin2hex(Q), bin2hex(q)))
+ def test_loopback_5(self):
+ self.loopback_test("2" * (128 / 8))
- if c != C:
- raise RuntimeError("Input and output ciphertext did not match: %s <> %s" % (bin2hex(C), bin2hex(c)))
+ def test_loopback_6(self):
+ self.loopback_test("3" * (256 / 8))
- print
+ def test_loopback_7(self):
+ self.loopback_test("3.14159265358979323846264338327950288419716939937510")
+ def test_loopback_8(self):
+ self.loopback_test("3.14159265358979323846264338327950288419716939937510")
- def run_tests():
- """
- Run all tests for a particular implementation.
- """
+ def test_loopback_9(self):
+ self.loopback_test("Hello! My name is Inigo Montoya. You killed my AES key wrapper. Prepare to die.")
- if args.rfc5649_test_vectors:
- print "Test vectors from RFC 5649"
- print
-
- rfc5649_test(K = KEK(hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")),
- Q = hex2bin("c37b7e6492584340 bed1220780894115 5068f738"),
- C = hex2bin("138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a 5f54f373fa543b6a"))
-
- rfc5649_test(K = KEK(hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")),
- Q = hex2bin("466f7250617369"),
- C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f"))
-
- if args.mangled_tests:
- print "Deliberately mangled test vectors to see whether we notice"
- print "These *should* detect errors"
- for d in (dict(K = KEK(hex2bin("5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8")),
- Q = hex2bin("466f7250617368"),
- C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f")),
- dict(K = KEK(key = hex2bin("5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8")),
- Q = hex2bin("466f7250617368"),
- C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f 0123456789abcdef")),
- dict(K = KEK(key = hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")),
- Q = hex2bin("c37b7e6492584340 bed1220780894115 5068f738"),
- C = hex2bin("138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a"))):
- print
- try:
- rfc5649_test(**d)
- except UnwrapError as e:
- print "Detected an error during unwrap: %s" % e
- except RuntimeError as e:
- print "Detected an error in test function: %s" % e
- print
-
- if args.loopback_tests:
- print "Loopback tests of various lengths"
- print
- K = KEK(hex2bin("00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f"))
- loopback_test(K, "!")
- loopback_test(K, "!")
- loopback_test(K, "Yo!")
- loopback_test(K, "Hi, Mom")
- loopback_test(K, "1" * (64 / 8))
- loopback_test(K, "2" * (128 / 8))
- loopback_test(K, "3" * (256 / 8))
- loopback_test(K, "3.14159265358979323846264338327950288419716939937510")
- loopback_test(K, "3.14159265358979323846264338327950288419716939937510")
- loopback_test(K, "Hello! My name is Inigo Montoya. You killed my AES key wrapper. Prepare to die.")
-
-
- # Main (test) program
-
- from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
-
- parser = ArgumentParser(description = __doc__, formatter_class = ArgumentDefaultsHelpFormatter)
- parser.add_argument("-v", "--verbose", action = "store_true",
- help = "bark more")
- parser.add_argument("-r", "--rfc5649-test-vectors", action = "store_false",
- help = "RFC 5649 test vectors")
- parser.add_argument("-m", "--mangled-tests", action = "store_true",
- help = "test against deliberately mangled test vectors")
- parser.add_argument("-l", "--loopback-tests", action = "store_true",
- help = "ad hoc collection of loopback tests")
- parser.add_argument("under_test", nargs = "?", choices = ("array", "long", "both"), default = "long",
- help = "implementation to test")
- args = parser.parse_args()
- verbose = args.verbose
-
- if args.under_test in ("long", "both"):
- print "Testing with Block (Python long) implementation"
- print
- wrap_key = block_wrap_key
- unwrap_key = block_unwrap_key
- run_tests()
-
- if args.under_test in ("array", "both"):
- print "Testing with Python array implementation"
- print
- wrap_key = array_wrap_key
- unwrap_key = array_unwrap_key
- run_tests()
+ unittest.main()