aboutsummaryrefslogtreecommitdiff
path: root/aes_keywrap.py
blob: 1d0be29f087e9ca7682407f3ef2929ec6bc67390 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#!/usr/bin/env python

"""
Python prototype of an AES Key Wrap implementation, RFC 5649 flavor
per Russ, using PyCrypto to supply the AES code.
"""

# Terminology mostly follows the RFC, including variable names.
#
# Block sizes get confusing: AES Key Wrap uses 64-bit blocks, not to
# be confused with AES, which uses 128-bit blocks.  In practice, this
# is less confusing than when reading the description, because we
# concatenate two 64-bit blocks just prior to performing an AES ECB
# operation, then immediately split the result back into a pair of
# 64-bit blocks.


from struct import pack, unpack
from Crypto.Cipher import AES
from array import array

verbose = False


def bin2hex(bytes, sep = ":"):
  return sep.join("%02x" % ord(b) for b in bytes)

def hex2bin(text):
  return text.translate(None, ": \t\n\r").decode("hex")


def start_stop(start, stop):            # syntactic sugar
  step = -1 if start > stop else 1
  return xrange(start, stop + step, step)


class Block(long):
  """
  One 64-bit block, a Python long with some extra methods.
  """

  def __new__(cls, v):
    assert v >= 0 and v.bit_length() <= 64
    return super(Block, cls).__new__(cls, v)

  @classmethod
  def from_bytes(cls, v):
    assert isinstance(v, str) and len(v) == 8
    return cls(unpack(">Q", v)[0])

  def to_bytes(self):
    assert self >= 0 and self.bit_length() <= 64
    return pack(">Q", self)

  @classmethod
  def from_words(cls, hi, lo):
    assert hi >= 0 and hi.bit_length() <= 32
    assert lo >= 0 and lo.bit_length() <= 32
    return cls((hi << 32L) + lo)

  def to_words(self):
    assert self >= 0 and self.bit_length() <= 64
    return ((self >> 32) & 0xFFFFFFFF), (self & 0xFFFFFFFF)

  def to_hex(self):
    assert self >= 0 and self.bit_length() <= 64
    return "%016x" % self


class Buffer(array):
  """
  Python type B array with a few extra methods.
  """

  def __new__(cls, *initializer):
    return super(Buffer, cls).__new__(cls, "B", *initializer)

  def get_block(self, i):
    return self.__class__(self[8*i:8*(i+1)])

  def set_block(self, i, v):
    assert len(v) == 8
    self[8*i:8*(i+1)] = v

  def get_hex(self, i = None):
    return bin2hex(self if i is None else self.get_block(i))


class KEK(object):
  """
  Key encryption key, based on a PyCrypto encryption context.

  This can work with either Block objects or Python arrays.

  Since this is a test tool used with known static keys in an attempt
  to produce known results, we use a totally unsafe keying method.
  Don't try this at home, kids.
  """

  def __init__(self, key):
    self.ctx = AES.new(key, AES.MODE_ECB)

  def encrypt_block(self, i1, i2):
    """
    Concatenate two 64-bit blocks into a 128-bit block, encrypt it
    with AES-ECB, return the result split back into 64-bit blocks.
    """

    aes_block = pack(">QQ", i1, i2)
    aes_block = self.ctx.encrypt(aes_block)
    o1, o2 = tuple(Block(b) for b in unpack(">QQ", aes_block))
    if verbose:
      print "  Encrypt: %s | %s  =>  %s | %s" % tuple(b.to_hex() for b in (i1, i2, o1, o2))
    return o1, o2

  def encrypt_array(self, b1, b2):
    """
    Concatenate two 64-bit blocks into a 128-bit block, encrypt it
    with AES-ECB, return the result split back into 64-bit blocks.
    """

    aes_block = b1 + b2
    aes_block = self.ctx.encrypt(aes_block.tostring())
    return Buffer(aes_block[:8]), Buffer(aes_block[8:])

  def decrypt_block(self, i1, i2):
    """
    Concatenate two 64-bit blocks into a 128-bit block, decrypt it
    with AES-ECB, return the result split back into 64-bit blocks.
    """

    aes_block = pack(">QQ", i1, i2)
    aes_block = self.ctx.decrypt(aes_block)
    o1, o2 = tuple(Block(b) for b in unpack(">QQ", aes_block))
    if verbose:
      print "  Decrypt: %s | %s  =>  %s | %s" % tuple(b.to_hex() for b in (i1, i2, o1, o2))
    return o1, o2

  def decrypt_array(self, b1, b2):
    """
    Concatenate two 64-bit blocks into a 128-bit block, decrypt it
    with AES-ECB, return the result split back into 64-bit blocks.
    """

    aes_block = b1 + b2
    aes_block = self.ctx.decrypt(aes_block.tostring())
    return Buffer(aes_block[:8]), Buffer(aes_block[8:])


def block_wrap_key(Q, K):
  """
  Wrap a key according to RFC 5649 section 4.1.

  Q is the plaintext to be wrapped, a byte string.

  K is the KEK with which to encrypt.

  Returns C, the wrapped ciphertext.

  This implementation is based on Python long integers and includes
  code to log internal state in verbose mode.
  """

  if verbose:
    def log_registers():
      print "  A:    ", A.to_hex()
      for r in xrange(1, n+1):
        print "  R[%3d]" % r, R[r].to_hex()

  m = len(Q)
  if m % 8 != 0:
    Q += "\x00" * (8 - (m % 8))
  assert len(Q) % 8 == 0

  n = len(Q) / 8
  P = [Block.from_bytes(Q[i:i+8]) for i in xrange(0, len(Q), 8)]
  assert len(P) == n

  P.insert(0, None)                     # Make P one-based
  A = Block.from_words(0xA65959A6, m)   # RFC 5649 section 3 AIV 
  R = P                                 # Alias to follow the spec
  
  if verbose:
    print "  Starting wrap, n =", n

  if n == 1:
    if verbose:
      log_registers()
    C = K.encrypt_block(A, P[1])

  else:
    # RFC 3394 section 2.2.1
    for j in start_stop(0, 5):
      for i in start_stop(1, n):
        t = n * j + i
        if verbose:
          print "  i = %d, j = %d, t = 0x%x" % (i, j, t)
          log_registers()
        B_hi, B_lo = K.encrypt_block(A, R[i])
        A = Block(B_hi ^ t)
        R[i] = B_lo
    C = R
    C[0] = A

  if verbose:
    print "  Finishing wrap"
    for i in xrange(len(C)):
      print "  C[%3d]" % i, C[i].to_hex()
    print

  assert len(C) == n + 1
  return "".join(c.to_bytes() for c in C)


def array_wrap_key(Q, K):
  """
  Wrap a key according to RFC 5649 section 4.1.

  Q is the plaintext to be wrapped, a byte string.

  K is the KEK with which to encrypt.

  Returns C, the wrapped ciphertext.

  This implementation is based on Python byte arrays.
  """

  m = len(Q)                            # Plaintext length
  R = Buffer("\xa6\x59\x59\xa6")        # Magic MSB(32,A)
  for i in xrange(24, -8, -8):
    R.append((m >> i) & 0xFF)           # Build LSB(32,A)
  R.fromstring(Q)                       # Append Q
  if m % 8 != 0:                        # Pad Q if needed
    R.fromstring("\x00" * (8 - (m % 8)))

  assert len(R) % 8 == 0
  n = (len(R) / 8) - 1

  if n == 1:
    B1, B2 = K.encrypt_array(R.get_block(0), R.get_block(1))
    R.set_block(0, B1)
    R.set_block(1, B2)

  else:
    # RFC 3394 section 2.2.1
    for j in start_stop(0, 5):
      for i in start_stop(1, n):
        B1, B2 = K.encrypt_array(R.get_block(0), R.get_block(i))
        t = n * j + i
        R.set_block(0, B1)
        R.set_block(i, B2)
        R[7] ^= t & 0xFF; t >>= 8
        R[6] ^= t & 0xFF; t >>= 8
        R[5] ^= t & 0xFF; t >>= 8
        R[4] ^= t & 0xFF

  assert len(R) == (n + 1) * 8
  return R.tostring()


class UnwrapError(Exception):
  "Something went wrong during unwrap."


def block_unwrap_key(C, K):
  """
  Unwrap a key according to RFC 5649 section 4.2.

  C is the ciphertext to be unwrapped, a byte string

  K is the KEK with which to decrypt.

  Returns Q, the unwrapped plaintext.

  This implementation is based on Python long integers and includes
  code to log internal state in verbose mode.
  """

  if verbose:
    def log_registers():
      print "  A:    ", A.to_hex()
      for r in xrange(1, n+1):
        print "  R[%3d]" % r, R[r].to_hex()

  if len(C) % 8 != 0:
    raise UnwrapError("Ciphertext length %d is not an integral number of blocks" % len(C))

  n = (len(C) / 8) - 1
  C = [Block.from_bytes(C[i:i+8]) for i in xrange(0, len(C), 8)]
  assert len(C) == n + 1

  P = R = C                             # Lots of names for the same list of blocks
  A = C[0]
  
  if verbose:
    print "  Starting unwrap, n =", n

  if n == 1:
    if verbose:
      log_registers()
    A, R[1] = K.decrypt_block(A, R[1])

  else:
    # RFC 3394 section 2.2.2 steps (1), (2), and part of (3)
    for j in start_stop(5, 0):
      for i in start_stop(n, 1):
        t = n * j + i
        if verbose:
          print "  i = %d, j = %d, t = 0x%x" % (i, j, t)
          log_registers()
        B_hi, B_lo = K.decrypt_block(Block(A ^ t), R[i])
        A = B_hi
        R[i] = B_lo

  if verbose:
    print "  Finishing unwrap"
    print "  A:    ", A.to_hex()
    for i in xrange(1, len(P)):
      print "  P[%3d]" % i, P[i].to_hex()
    print

  magic, m = A.to_words()

  if magic != 0xA65959A6:
    raise UnwrapError("Magic value in AIV should hae been a65959a6, was %08x" % magic)

  if m <= 8 * (n - 1) or m > 8 * n:
    raise UnwrapError("Length encoded in AIV out of range: m %d, n %d" % (m, n))

  Q = "".join(p.to_bytes() for p in P[1:])
  assert len(Q) == 8 * n

  if any(q != "\x00" for q in Q[m:]):
    raise UnwrapError("Nonzero trailing bytes %s" % bin2hex(Q[m:]))

  return Q[:m]


def array_unwrap_key(C, K):
  """
  Unwrap a key according to RFC 5649 section 4.2.

  C is the ciphertext to be unwrapped, a byte string

  K is the KEK with which to decrypt.

  Returns Q, the unwrapped plaintext.

  This implementation is based on Python byte arrays.
  """

  if len(C) % 8 != 0:
    raise UnwrapError("Ciphertext length %d is not an integral number of blocks" % len(C))

  n = (len(C) / 8) - 1
  R = Buffer(C)

  if n == 1:
    B1, B2 = K.decrypt_array(R.get_block(0), R.get_block(1))
    R.set_block(0, B1)
    R.set_block(1, B2)

  else:
    # RFC 3394 section 2.2.2 steps (1), (2), and part of (3)
    for j in start_stop(5, 0):
      for i in start_stop(n, 1):
        t = n * j + i
        R[7] ^= t & 0xFF; t >>= 8
        R[6] ^= t & 0xFF; t >>= 8
        R[5] ^= t & 0xFF; t >>= 8
        R[4] ^= t & 0xFF
        B1, B2 = K.decrypt_array(R.get_block(0), R.get_block(i))
        R.set_block(0, B1)
        R.set_block(i, B2)

  if R[:4].tostring() != "\xa6\x59\x59\xa6":
    raise UnwrapError("Magic value in AIV should hae been a65959a6, was %02x%02x%02x%02x" % (R[0], R[1], R[2], R[3]))

  m = (((((R[4] << 8) + R[5]) << 8) + R[6]) << 8) + R[7]

  if m <= 8 * (n - 1) or m > 8 * n:
    raise UnwrapError("Length encoded in AIV out of range: m %d, n %d" % (m, n))

  del R[:8]
  assert len(R) == 8 * n

  if any(r != 0 for r in R[m:]):
    raise UnwrapError("Nonzero trailing bytes %s" % ":".join("%02x" % r for r in R[m:]))

  del R[m:]
  assert len(R) == m
  return R.tostring()


if __name__ == "__main__":

  # Test code from here down

  def loopback_test(K, I):
    """
    Loopback test, just encrypt followed by decrypt to see if we can
    get matching results without throwing any errors.
    """

    print "Testing:", repr(I)
    C = wrap_key(I, K)
    print "Wrapped: [%d]" % len(C), bin2hex(C)
    O = unwrap_key(C, K)
    if I != O:
      raise RuntimeError("Input and output plaintext did not match: %r <> %r" % (I, O))
    print


  def rfc5649_test(K, Q, C):
    """
    Test vectors as in RFC 5649 or similar.
    """

    print "Testing: [%d]" % len(Q), bin2hex(Q)
    c = wrap_key(Q, K)

    print "Wrapped: [%d]" % len(C), bin2hex(C)
    q = unwrap_key(C, K)

    if q != Q:
      raise RuntimeError("Input and output plaintext did not match: %s <> %s" % (bin2hex(Q), bin2hex(q)))

    if c != C:
      raise RuntimeError("Input and output ciphertext did not match: %s <> %s" % (bin2hex(C), bin2hex(c)))

    print


  def run_tests():
    """
    Run all tests for a particular implementation.
    """

    if args.rfc5649_test_vectors:
      print "Test vectors from RFC 5649"
      print

      rfc5649_test(K = KEK(hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")),
                   Q = hex2bin("c37b7e6492584340 bed1220780894115 5068f738"),
                   C = hex2bin("138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a 5f54f373fa543b6a"))

      rfc5649_test(K = KEK(hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")),
                   Q = hex2bin("466f7250617369"),
                   C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f"))

    if args.mangled_tests:
      print "Deliberately mangled test vectors to see whether we notice"
      print "These *should* detect errors" 
      for d in (dict(K = KEK(hex2bin("5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8")),
                     Q = hex2bin("466f7250617368"),
                     C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f")),
                dict(K = KEK(key = hex2bin("5840df6e29b02af0 ab493b705bf16ea1 ae8338f4dcc176a8")),
                     Q = hex2bin("466f7250617368"),
                     C = hex2bin("afbeb0f07dfbf541 9200f2ccb50bb24f 0123456789abcdef")),
                dict(K = KEK(key = hex2bin("5840df6e29b02af1 ab493b705bf16ea1 ae8338f4dcc176a8")),
                     Q = hex2bin("c37b7e6492584340 bed1220780894115 5068f738"),
                     C = hex2bin("138bdeaa9b8fa7fc 61f97742e72248ee 5ae6ae5360d1ae6a"))):
        print
        try:
          rfc5649_test(**d)
        except UnwrapError as e:
          print "Detected an error during unwrap: %s" % e
        except RuntimeError as e:
          print "Detected an error in test function: %s" % e
      print

    if args.loopback_tests:
      print "Loopback tests of various lengths"
      print
      K = KEK(hex2bin("00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f"))
      loopback_test(K, "!")
      loopback_test(K, "!")
      loopback_test(K, "Yo!")
      loopback_test(K, "Hi, Mom")
      loopback_test(K, "1" * (64 / 8))
      loopback_test(K, "2" * (128 / 8))
      loopback_test(K, "3" * (256 / 8))
      loopback_test(K, "3.14159265358979323846264338327950288419716939937510")
      loopback_test(K, "3.14159265358979323846264338327950288419716939937510")
      loopback_test(K, "Hello!  My name is Inigo Montoya. You killed my AES key wrapper. Prepare to die.")


  # Main (test) program

  from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter

  parser = ArgumentParser(description = __doc__, formatter_class = ArgumentDefaultsHelpFormatter)
  parser.add_argument("-v", "--verbose", action = "store_true",
                      help = "bark more")
  parser.add_argument("-r", "--rfc5649-test-vectors", action = "store_false",
                      help = "RFC 5649 test vectors")
  parser.add_argument("-m", "--mangled-tests", action = "store_true",
                      help = "test against deliberately mangled test vectors")
  parser.add_argument("-l", "--loopback-tests", action = "store_true",
                      help = "ad hoc collection of loopback tests")
  parser.add_argument("under_test", nargs = "?", choices = ("array", "long", "both"), default = "long",
                      help = "implementation to test")
  args = parser.parse_args()
  verbose = args.verbose

  if args.under_test in ("long", "both"):
    print "Testing with Block (Python long) implementation"
    print
    wrap_key   = block_wrap_key
    unwrap_key = block_unwrap_key
    run_tests()

  if args.under_test in ("array", "both"):
    print "Testing with Python array implementation"
    print
    wrap_key   = array_wrap_key
    unwrap_key = array_unwrap_key
    run_tests()