//======================================================================
//
// Copyright (c) 2019, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module modexpng_recombinator_cell
(
clk,
ce, clr,
din, dout, doutw
);
//
// Headers
//
`include "modexpng_parameters.vh"
`include "modexpng_dsp48e1.vh"
`include "modexpng_dsp_slice_primitives.vh"
//
// Ports
//
input clk;
input ce;
input clr;
input [ MAC_W -1:0] din;
output [WORD_W -1:0] dout;
output [WORD_W :0] doutw;
//
// Pipelined Clock Enable, Clear, Data Input
//
reg ce_pipe = 1'b0;
reg clr_pipe;
reg [MAC_W-1:0] din_pipe;
always @(posedge clk)
{ce_pipe, clr_pipe, din_pipe} <= {ce, clr, din};
//
// din_pipe <=> {z[13:0], y[15:0], x[15:0]}
//
wire [WORD_W -1:0] din_z = {2'b00, din_pipe[3 * WORD_W -3 : 2 * WORD_W]}; // (47:46)[45:32]
wire [WORD_W -1:0] din_y = { din_pipe[2 * WORD_W -1 : WORD_W]}; // [31:16]
wire [WORD_W -1:0] din_x = { din_pipe[ WORD_W -1 : 0]}; // [15: 0]
//
// Phase Flip-Flop
//
reg phase_ff = 1'b0;
always @(posedge clk)
phase_ff <= ce_pipe ? ~phase_ff : 1'b0;
//
// Delayed Clock Enable, Clear, Data Input
//
wire master_ce_0;
reg master_ce_1 = 1'b0;
wire slave_ce_1;
reg slave_ce_2 = 1'b0;
reg dout_ce_3 = 1'b0;
reg dout_ce_4 = 1'b0;
assign master_ce_0 = ce_pipe;
assign slave_ce_1 = master_ce_1;
always @(posedge clk) master_ce_1 <= ce_pipe & ~phase_ff;
always @(posedge clk) slave_ce_2 <= slave_ce_1;
always @(posedge clk) {dout_ce_3, dout_ce_4} <= {slave_ce_2, dout_ce_3};
//
// Shift Registers
//
reg [WORD_W-1:0] din_x_dly1;
reg [WORD_W-1:0] din_y_dly1;
reg [WORD_W-1:0] din_z_dly1;
reg [WORD_W-1:0] din_z_dly2;
always @(posedge clk) begin
//
if (ce_pipe) {din_x_dly1, din_y_dly1, din_z_dly1} <= {din_x, din_y, din_z};
else if (clr_pipe) {din_x_dly1, din_y_dly1, din_z_dly1} <= {WORD_ZERO, WORD_ZERO, WORD_ZERO};
//
if (ce_pipe) {din_z_dly2} <= {din_z_dly1};
else if (clr_pipe) {din_z_dly2} <= {WORD_ZERO};
//
end
//
// DSP Input Registers
//
wire [2 * WORD_W-1:0] master_ab;
wire [2 * WORD_W-1:0] master_c;
wire [2 * WORD_W-1:0] slave_ab;
reg slave_c;
assign master_ab = {din_y, din_y_dly1};
assign master_c = {din_z_dly1, din_z_dly2};
assign slave_ab = {din_x, din_x_dly1};
//
// DSP Cascade Bus
//
wire [DSP48E1_P_W-1:0] master_slave_p_int;
//
// DSP Output Buses
//
wire master_carry_out_int;
wire [DSP48E1_P_W-1:0] slave_p_int;
wire slave_carry_out_int;
//
// Custom Carry Cascade
//
always @(posedge clk)
//
if (slave_ce_2) slave_c <= master_carry_out_int;
//
// DSP Input Mapping
//
wire [DSP48E1_C_W-1:0] master_ab_int = {master_ab, {(DSP48E1_C_W - 2*WORD_W){1'b0}}};
wire [DSP48E1_C_W-1:0] master_c_int = {master_c, {(DSP48E1_C_W - 2*WORD_W){1'b0}}};
wire [DSP48E1_C_W-1:0] slave_ab_int = {slave_ab, {(DSP48E1_C_W - 2*WORD_W){1'b0}}};
wire [DSP48E1_C_W-1:0] slave_c_int = {{(2*WORD_W-1){1'b0}}, slave_c, {(DSP48E1_C_W-2*WORD_W){1'b1}}};
//
// DPS Modes
//
wire [DSP48E1_OPMODE_W -1:0] master_opmode;
wire [DSP48E1_CARRYINSEL_W-1:0] master_carryinsel;
reg [DSP48E1_OPMODE_W -1:0] slave_opmode;
reg [DSP48E1_CARRYINSEL_W-1:0] slave_carryinsel;
assign master_opmode = DSP48E1_OPMODE_Z0_YC_XAB;
assign master_carryinsel = DSP48E1_CARRYINSEL_CARRYIN;
always @(posedge clk) begin
slave_opmode <= clr_pipe ? DSP48E1_OPMODE_ZPCIN_Y0_XAB : DSP48E1_OPMODE_ZPCIN_YC_XAB;
slave_carryinsel <= clr_pipe ? DSP48E1_CARRYINSEL_CARRYIN : DSP48E1_CARRYINSEL_CARRYCASCOUT;
end
//
// DSP Slice Instances
//
`MODEXPNG_DSP_SLICE_ADDSUB dsp_master_inst
(
.clk (clk),
.ce_abc (master_ce_0),
.ce_p (master_ce_1),
.ce_ctrl (master_ce_0),
.ab (master_ab_int),
.c (master_c_int),
.p (),
.op_mode (master_opmode),
.alu_mode (DSP48E1_ALUMODE_Z_PLUS_X_AND_Y_AND_CIN),
.carry_in_sel (master_carryinsel),
.casc_p_in (),
.casc_p_out (master_slave_p_int),
.carry_out (master_carry_out_int)
);
`MODEXPNG_DSP_SLICE_ADDSUB dsp_slave_inst
(
.clk (clk),
.ce_abc (slave_ce_1),
.ce_p (slave_ce_2),
.ce_ctrl (slave_ce_1),
.ab (slave_ab_int),
.c (slave_c_int),
.p (slave_p_int),
.op_mode (slave_opmode),
.alu_mode (DSP48E1_ALUMODE_Z_PLUS_X_AND_Y_AND_CIN),
.carry_in_sel (slave_carryinsel),
.casc_p_in (master_slave_p_int),
.casc_p_out (),
.carry_out (slave_carry_out_int)
);
//
// Output Register
//
reg [WORD_W:0] doutx_reg;
assign dout = doutx_reg[WORD_W-1:0];
assign doutw = doutx_reg;
always @(posedge clk) begin
doutx_reg <= {1'bX, WORD_DNC};
if (dout_ce_4) doutx_reg <= {slave_carry_out_int, slave_p_int[DSP48E1_P_W - 0*WORD_W -1 -: WORD_W]};
if (dout_ce_3) doutx_reg <= {1'b0, slave_p_int[DSP48E1_P_W - 1*WORD_W -1 -: WORD_W]};
end
endmodule