1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
//------------------------------------------------------------------------------
//
// fpga_curve.cpp
// ------------------------------------
// Elliptic curve arithmetic procedures
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include <stdint.h>
#include "ecdsa_model.h"
#include "fpga_lowlevel.h"
#include "fpga_modular.h"
#include "fpga_curve.h"
#include "fpga_util.h"
//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER ecdsa_g_x, ecdsa_g_y;
FPGA_BUFFER ecdsa_h_x, ecdsa_h_y;
FPGA_BUFFER ecdsa_q_x, ecdsa_q_y;
FPGA_BUFFER ecdsa_r_x, ecdsa_r_y;
//------------------------------------------------------------------------------
void fpga_curve_init()
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER tmp_g_x = ECDSA_G_X, tmp_g_y = ECDSA_G_Y;
FPGA_BUFFER tmp_h_x = ECDSA_H_X, tmp_h_y = ECDSA_H_Y;
FPGA_BUFFER tmp_q_x = ECDSA_Q_X, tmp_q_y = ECDSA_Q_Y;
FPGA_BUFFER tmp_r_x = ECDSA_R_X, tmp_r_y = ECDSA_R_Y;
/* fill buffers for large multi-word integers */
for (w=0; w<OPERAND_NUM_WORDS; w++)
{ ecdsa_g_x.words[w] = tmp_g_x.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_g_y.words[w] = tmp_g_y.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_h_x.words[w] = tmp_h_x.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_h_y.words[w] = tmp_h_y.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_r_x.words[w] = tmp_r_x.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_r_y.words[w] = tmp_r_y.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_q_x.words[w] = tmp_q_x.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_q_y.words[w] = tmp_q_y.words[OPERAND_NUM_WORDS - (w+1)];
}
}
//------------------------------------------------------------------------------
//
// Elliptic curve point doubling routine.
//
// R(rx,ry,rz) = 2 * P(px,py,pz)
//
// Note, that P(px,py,pz) is supposed to be in projective Jacobian coordinates,
// R will be in projective Jacobian coordinates.
//
// This routine implements algorithm 3.21 from "Guide to Elliptic Curve
// Cryptography", the only difference is that step 6. does T1 = T2 + T2 and
// then T2 = T2 + T1 instead of T2 = 3 * T2, because our addition is much
// faster, than multiplication.
//
// Note, that this routine also handles one special case, namely when P is at
// infinity.
//
// Instead of actual modular division, multiplication by pre-computed constant
// (2^-1 mod q) is done.
//
// Note, that FPGA modular multiplier can't multiply a given buffer by itself,
// this way it's impossible to do eg. fpga_modular_mul(pz, pz, &t1). To overcome
// the problem the algorithm was modified to do fpga_buffer_copy(pz, &t1) and
// then fpga_modular_mul(pz, &t1, &t1) instead.
//
// WARNING: Though this procedure always does doubling steps, it does not take
// any active measures to keep run-time constant. The main purpose of this
// model is to help debug Verilog code for FPGA, so *DO NOT* use is anywhere
// near production!
//
//------------------------------------------------------------------------------
void fpga_curve_double_jacobian(FPGA_BUFFER *px, FPGA_BUFFER *py, FPGA_BUFFER *pz, FPGA_BUFFER *rx, FPGA_BUFFER *ry, FPGA_BUFFER *rz)
//------------------------------------------------------------------------------
{
FPGA_BUFFER t1, t2, t3; // temporary variables
// check, whether P is at infinity
bool pz_is_zero = fpga_buffer_is_zero(pz);
/* 2. */ fpga_buffer_copy(pz, &t1);
fpga_modular_mul(pz, &t1, &t1);
/* 3. */ fpga_modular_sub(px, &t1, &t2);
/* 4. */ fpga_modular_add(px, &t1, &t1);
/* 5. */ fpga_modular_mul(&t1, &t2, &t2);
/* 6. */ fpga_modular_add(&t2, &t2, &t1);
/* */ fpga_modular_add(&t1, &t2, &t2);
/* 7. */ fpga_modular_add(py, py, ry);
/* 8. */ fpga_modular_mul(pz, ry, rz);
/* 9. */ fpga_buffer_copy(ry, &t1);
fpga_buffer_copy(ry, &t3);
fpga_modular_mul(&t1, &t3, ry);
/* 10. */ fpga_modular_mul(px, ry, &t3);
/* 11. */ fpga_buffer_copy(ry, &t1);
fpga_modular_mul(ry, &t1, &t1);
/* 12. */ fpga_modular_mul(&t1, &ecdsa_delta, ry);
/* 13. */ fpga_buffer_copy(&t2, &t1);
fpga_modular_mul(&t1, &t2, rx);
/* 14. */ fpga_modular_add(&t3, &t3, &t1);
/* 15. */ fpga_modular_sub(rx, &t1, rx);
/* 16. */ fpga_modular_sub(&t3, rx, &t1);
/* 17. */ fpga_modular_mul(&t1, &t2, &t1);
/* 18. */ fpga_modular_sub(&t1, ry, ry);
// handle special case (input point is at infinity)
if (pz_is_zero)
{ fpga_buffer_copy(&ecdsa_one, rx);
fpga_buffer_copy(&ecdsa_one, ry);
fpga_buffer_copy(&ecdsa_zero, rz);
}
}
//------------------------------------------------------------------------------
//
// Elliptic curve point addition routine.
//
// R(rx,ry,rz) = P(px,py,pz) + Q(qx,qy)
//
// Note, that P(px, py, pz) is supposed to be in projective Jacobian
// coordinates, while Q(qx,qy) is supposed to be in affine coordinates,
// R(rx, ry, rz) will be in projective Jacobian coordinates. Moreover, in this
// particular implementation Q is always the base point G.
//
// This routine implements algorithm 3.22 from "Guide to Elliptic Curve
// Cryptography". Differences from the original algorithm:
//
// 1) Step 1. is omitted, because point Q is always the base point, which is
// not at infinity by definition.
//
// 2) Step 9.1 just returns the pre-computed double of the base point instead
// of actually doubling it.
//
// Note, that this routine also handles three special cases:
//
// 1) P is at infinity
// 2) P == Q
// 3) P == -Q
//
// Note, that FPGA modular multiplier can't multiply a given buffer by itself,
// this way it's impossible to do eg. fpga_modular_mul(pz, pz, &t1). To overcome
// the problem the algorithm was modified to do fpga_buffer_copy(pz, &t1) and
// then fpga_modular_mul(pz, &t1, &t1) instead.
//
// WARNING: This procedure does not take any active measures to keep run-time
// constant. The main purpose of this model is to help debug Verilog code for
// FPGA, so *DO NOT* use is anywhere near production!
//
//------------------------------------------------------------------------------
void fpga_curve_add_jacobian(FPGA_BUFFER *px, FPGA_BUFFER *py, FPGA_BUFFER *pz, FPGA_BUFFER *rx, FPGA_BUFFER *ry, FPGA_BUFFER *rz)
//------------------------------------------------------------------------------
{
FPGA_BUFFER t1, t2, t3, t4; // temporary variables
bool pz_is_zero = fpga_buffer_is_zero(pz); // Step 2.
/* 3. */ fpga_buffer_copy(pz, &t1);
fpga_modular_mul(pz, &t1, &t1);
/* 4. */ fpga_modular_mul(pz, &t1, &t2);
/* 5. */ fpga_modular_mul(&t1, &ecdsa_g_x, &t1);
/* 6. */ fpga_modular_mul(&t2, &ecdsa_g_y, &t2);
/* 7. */ fpga_modular_sub(&t1, px, &t1);
/* 8. */ fpga_modular_sub(&t2, py, &t2);
bool t1_is_zero = fpga_buffer_is_zero(&t1); // | Step 9.
bool t2_is_zero = fpga_buffer_is_zero(&t2); // |
/* 10. */ fpga_modular_mul(pz, &t1, rz);
/* 11. */ fpga_buffer_copy(&t1, &t3);
fpga_modular_mul(&t1, &t3, &t3);
/* 12. */ fpga_modular_mul(&t1, &t3, &t4);
/* 13. */ fpga_modular_mul(px, &t3, &t3);
/* 14. */ fpga_modular_add(&t3, &t3, &t1);
/* 15. */ fpga_buffer_copy(&t2, rx);
fpga_modular_mul(rx, &t2, rx);
/* 16. */ fpga_modular_sub(rx, &t1, rx);
/* 17. */ fpga_modular_sub(rx, &t4, rx);
/* 18. */ fpga_modular_sub(&t3, rx, &t3);
/* 19. */ fpga_modular_mul(&t2, &t3, &t3);
/* 20. */ fpga_modular_mul(py, &t4, &t4);
/* 21. */ fpga_modular_sub(&t3, &t4, ry);
//
// final selection
//
if (pz_is_zero) // P at infinity ?
{ fpga_buffer_copy(&ecdsa_g_x, rx);
fpga_buffer_copy(&ecdsa_g_y, ry);
fpga_buffer_copy(&ecdsa_one, rz);
}
else if (t1_is_zero) // same x for P and Q ?
{
fpga_buffer_copy(t2_is_zero ? &ecdsa_h_x : &ecdsa_one, rx); // | same y ? (P==Q => R=2*G) : (P==-Q => R=O)
fpga_buffer_copy(t2_is_zero ? &ecdsa_h_y : &ecdsa_one, ry); // |
fpga_buffer_copy(t2_is_zero ? &ecdsa_one : &ecdsa_zero, rz); // |
}
}
//------------------------------------------------------------------------------
//
// Conversion from projective Jacobian to affine coordinates.
//
// P(px,py,pz) -> Q(qx,qy)
//
// Note, that qx = px / Z^2 and qy = py / Z^3. Division in modular arithmetic
// is equivalent to multiplication by the inverse value of divisor, so
// qx = px * (pz^-1)^2 and qy = py * (pz^-1)^3.
//
// Note, that this procedure does *NOT* handle points at infinity correctly. It
// can only be called from the base point multiplication routine, that
// specifically makes sure that P is not at infinity, so pz will always be
// non-zero value.
//
//------------------------------------------------------------------------------
void fpga_curve_point_to_affine(FPGA_BUFFER *px, FPGA_BUFFER *py, FPGA_BUFFER *pz, FPGA_BUFFER *qx, FPGA_BUFFER *qy)
//------------------------------------------------------------------------------
{
FPGA_BUFFER pz1; // inverse value of pz
FPGA_BUFFER t2, t3; // intermediate values
fpga_modular_inv(pz, &pz1); // pz1 = pz^-1 (mod q)
fpga_modular_mul(&pz1, &pz1, &t2); // t2 = pz1 ^ 2 (mod q)
fpga_modular_mul(&pz1, &t2, &t3); // t3 = tz1 ^ 3 (mod q)
fpga_modular_mul(px, &t2, qx); // qx = px * (pz^-1)^2 (mod q)
fpga_modular_mul(py, &t3, qy); // qy = py * (pz^-1)^3 (mod q)
}
//------------------------------------------------------------------------------
//
// Elliptic curve base point scalar multiplication routine.
//
// Q(qx,qy) = k * G(px,py)
//
// Note, that Q is supposed to be in affine coordinates. Multiplication is done
// using the double-and-add algorithm 3.27 from "Guide to Elliptic Curve
// Cryptography".
//
// WARNING: Though this procedure always does the addition step, it only
// updates the result when current bit of k is set. It does not take any
// active measures to keep run-time constant. The main purpose of this model
// is to help debug Verilog code for FPGA, so *DO NOT* use it anywhere near
// production!
//
//------------------------------------------------------------------------------
void fpga_curve_scalar_multiply(FPGA_BUFFER *k, FPGA_BUFFER *qx, FPGA_BUFFER *qy)
//------------------------------------------------------------------------------
{
int word_count, bit_count; // counters
FPGA_BUFFER rx, ry, rz; // intermediate result
FPGA_BUFFER tx, ty, tz; // temporary variable
/* set initial value of R to point at infinity */
fpga_buffer_copy(&ecdsa_one, &rx);
fpga_buffer_copy(&ecdsa_one, &ry);
fpga_buffer_copy(&ecdsa_zero, &rz);
/* process bits of k left-to-right */
for (word_count=OPERAND_NUM_WORDS; word_count>0; word_count--)
for (bit_count=FPGA_WORD_WIDTH; bit_count>0; bit_count--)
{
/* calculate T = 2 * R */
fpga_curve_double_jacobian(&rx, &ry, &rz, &tx, &ty, &tz);
/* always calculate R = T + P for constant-time */
fpga_curve_add_jacobian(&tx, &ty, &tz, &rx, &ry, &rz);
/* revert to the value of T before addition if the current bit of k is not set */
if (!((k->words[word_count-1] >> (bit_count-1)) & 1))
{ fpga_buffer_copy(&tx, &rx);
fpga_buffer_copy(&ty, &ry);
fpga_buffer_copy(&tz, &rz);
}
}
// convert result to affine coordinates anyway
fpga_curve_point_to_affine(&rx, &ry, &rz, qx, qy);
// check, that rz is non-zero (not point at infinity)
bool rz_is_zero = fpga_buffer_is_zero(&rz);
// handle special case (result is point at infinity)
if (rz_is_zero)
{ fpga_buffer_copy(&ecdsa_zero, qx);
fpga_buffer_copy(&ecdsa_zero, qy);
}
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------
|