//------------------------------------------------------------------------------
//
// ecdsa_model_fpga.cpp
// --------------------------------------------
// Base point scalar multiplier model for ECDSA
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include "ecdsa_model.h"
#include "fpga_lowlevel.h"
#include "fpga_modular.h"
#include "fpga_curve.h"
#include "fpga_util.h"
//------------------------------------------------------------------------------
// Prototypes
//------------------------------------------------------------------------------
void fpga_model_init ();
bool test_base_point_multiplier (FPGA_BUFFER *k, FPGA_BUFFER *qx, FPGA_BUFFER *qy);
bool abuse_internal_point_adder ();
bool abuse_internal_point_doubler ();
void print_fpga_buffer (const char *s, FPGA_BUFFER *v);
bool compare_fpga_buffers (FPGA_BUFFER *ax, FPGA_BUFFER *ay, FPGA_BUFFER *bx, FPGA_BUFFER *by);
bool compare_fpga_buffers (FPGA_BUFFER *ax, FPGA_BUFFER *ay, FPGA_BUFFER *az, FPGA_BUFFER *bx, FPGA_BUFFER *by, FPGA_BUFFER *bz);
//------------------------------------------------------------------------------
// Locals
//------------------------------------------------------------------------------
static FPGA_BUFFER ecdsa_d;
static FPGA_BUFFER ecdsa_k;
static FPGA_BUFFER ecdsa_n;
//------------------------------------------------------------------------------
int main()
//------------------------------------------------------------------------------
{
bool ok; // flag
//
// initialize buffers
//
fpga_model_init();
fpga_modular_init();
fpga_curve_init();
//
// test base point multiplier: Q = d * G
//
printf("Trying to derive public key from private key...\n\n");
ok = test_base_point_multiplier(&ecdsa_d, &ecdsa_q_x, &ecdsa_q_y);
if (!ok) return EXIT_FAILURE;
//
// test base point multiplier: R = k * G
//
printf("Trying to sign something...\n\n");
ok = test_base_point_multiplier(&ecdsa_k, &ecdsa_r_x, &ecdsa_r_y);
if (!ok) return EXIT_FAILURE;
//
// test base point multiplier: O = n * G
//
printf("Trying to multiply the base point by its order...\n\n");
ok = test_base_point_multiplier(&ecdsa_n, &ecdsa_zero, &ecdsa_zero);
if (!ok) return EXIT_FAILURE;
//
// try to abuse internal point doubler
//
ok = abuse_internal_point_doubler();
if (!ok) return EXIT_FAILURE;
//
// try to abuse internal point adder
//
ok = abuse_internal_point_adder();
if (!ok) return EXIT_FAILURE;
//
// everything went just fine
//
return EXIT_SUCCESS;
}
//------------------------------------------------------------------------------
void fpga_model_init()
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER tmp_d = ECDSA_D;
FPGA_BUFFER tmp_k = ECDSA_K;
FPGA_BUFFER tmp_n = ECDSA_N;
/* fill buffers for large multi-word integers */
for (w=0; w<OPERAND_NUM_WORDS; w++)
{ ecdsa_d.words[w] = tmp_d.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_k.words[w] = tmp_k.words[OPERAND_NUM_WORDS - (w+1)];
ecdsa_n.words[w] = tmp_n.words[OPERAND_NUM_WORDS - (w+1)];
}
}
//------------------------------------------------------------------------------
bool test_base_point_multiplier(FPGA_BUFFER *k, FPGA_BUFFER *qx, FPGA_BUFFER *qy)
//------------------------------------------------------------------------------
//
// k - multiplier
//
// qx, qy - expected coordinates of product
//
// Returns true when point (rx,ry) = k * G matches the point (qx,qy).
//
//------------------------------------------------------------------------------
{
bool ok; // flag
FPGA_BUFFER rx, ry; // result
/* run the model */
fpga_curve_scalar_multiply(k, &rx, &ry);
/* handle result */
ok = compare_fpga_buffers(qx, qy, &rx, &ry);
if (!ok)
{ printf("\n ERROR\n\n");
return false;
}
else printf("\n OK\n\n");
// everything went just fine
return true;
}
//------------------------------------------------------------------------------
bool abuse_internal_point_doubler()
//------------------------------------------------------------------------------
//
// This routine tries to abuse the internal curve point doubler by forcing it
// to double point at infinity.
//
//------------------------------------------------------------------------------
{
int w; // word counter
bool ok; // flag
FPGA_BUFFER px, py, pz; // input
FPGA_BUFFER qx, qy, qz; // output
// set P.X and P.Y to some "random" garbage and P.Z to zero
for (w=0; w<OPERAND_NUM_WORDS; w++)
{ px.words[w] = ecdsa_g_x.words[w] ^ ecdsa_h_x.words[w];
py.words[w] = ecdsa_g_y.words[w] ^ ecdsa_h_y.words[w];
}
fpga_buffer_copy(&ecdsa_zero, &pz);
// try to double point at infinity (should produce point at infinity)
printf("Trying to double something at infinity...\n\n");
fpga_curve_double_jacobian(&px, &py, &pz, &qx, &qy, &qz);
// handle result
ok = compare_fpga_buffers(&ecdsa_one, &ecdsa_one, &ecdsa_zero, &qx, &qy, &qz);
if (! ok)
{ printf("\n ERROR\n\n");
return false;
}
else printf("\n OK\n\n");
// everything went just fine
return true;
}
//------------------------------------------------------------------------------
bool abuse_internal_point_adder()
//------------------------------------------------------------------------------
//
// This routine tries to abuse the internal curve point adder by forcing it to
// go throgh all the possible "corner cases".
//
//------------------------------------------------------------------------------
{
int w; // word counter
bool ok; // flag
FPGA_BUFFER px, py, pz; // input
FPGA_BUFFER rx, ry, rz; // output
//
// try to add point at infinity to the base point
//
{
// set P.X and P.Y to some "random" garbage and P.Z to zero
for (w=0; w<OPERAND_NUM_WORDS; w++)
{ px.words[w] = ecdsa_g_x.words[w] ^ ecdsa_h_x.words[w];
py.words[w] = ecdsa_g_y.words[w] ^ ecdsa_h_y.words[w];
}
fpga_buffer_copy(&ecdsa_zero, &pz);
// run addition proceduce
printf("Trying to add something at infinity to the base point...\n\n");
fpga_curve_add_jacobian(&px, &py, &pz, &rx, &ry, &rz);
// handle result
ok = compare_fpga_buffers(&ecdsa_g_x, &ecdsa_g_y, &ecdsa_one, &rx, &ry, &rz);
if (! ok)
{ printf("\n ERROR\n\n");
return false;
}
else printf("\n OK\n\n");
}
//
// try to add the base point to itself
//
{
// set P to G
fpga_buffer_copy(&ecdsa_g_x, &px);
fpga_buffer_copy(&ecdsa_g_y, &py);
fpga_buffer_copy(&ecdsa_one, &pz);
// run addition proceduce
printf("Trying to add the base point to itself...\n\n");
fpga_curve_add_jacobian(&px, &py, &pz, &rx, &ry, &rz);
// handle result
ok = compare_fpga_buffers(&ecdsa_h_x, &ecdsa_h_y, &ecdsa_one, &rx, &ry, &rz);
if (! ok)
{ printf("\n ERROR\n\n");
return false;
}
else printf("\n OK\n\n");
}
//
// try to add the base point to its opposite
//
{
// set P to (G.X, -G.Y, 1)
fpga_buffer_copy(&ecdsa_zero, &px);
fpga_buffer_copy(&ecdsa_zero, &py);
fpga_buffer_copy(&ecdsa_one, &pz);
fpga_modular_add(&ecdsa_zero, &ecdsa_g_x, &px);
fpga_modular_sub(&ecdsa_zero, &ecdsa_g_y, &py);
// run addition proceduce
printf("Trying to add the base point to its opposite...\n\n");
fpga_curve_add_jacobian(&px, &py, &pz, &rx, &ry, &rz);
// handle result
ok = compare_fpga_buffers(&ecdsa_one, &ecdsa_one, &ecdsa_zero, &rx, &ry, &rz);
if (! ok)
{ printf("\n ERROR\n\n");
return false;
}
else printf("\n OK\n\n");
}
// everything went just fine
return true;
}
//------------------------------------------------------------------------------
void print_fpga_buffer(const char *s, FPGA_BUFFER *buf)
//------------------------------------------------------------------------------
//
// Pretty print large multi-word integer.
//
//------------------------------------------------------------------------------
{
int w; // word counter
// print header
printf("%s", s);
// print all bytes
for (w=OPERAND_NUM_WORDS; w>0; w--)
{
printf("%08x", buf->words[w-1]);
// insert space after every group of 4 bytes
if (w > 1) printf(" ");
}
// print footer
printf("\n");
}
//------------------------------------------------------------------------------
bool compare_fpga_buffers(FPGA_BUFFER *ax, FPGA_BUFFER *ay, FPGA_BUFFER *bx, FPGA_BUFFER *by)
//------------------------------------------------------------------------------
//
// Compare affine coordinates of two points and return true when they match.
//
//------------------------------------------------------------------------------
{
int w; // word counter
// print all the values
print_fpga_buffer(" Expected: X = ", ax);
print_fpga_buffer(" Calculated: X = ", bx);
printf("\n");
print_fpga_buffer(" Expected: Y = ", ay);
print_fpga_buffer(" Calculated: Y = ", by);
// compare values
for (w=0; w<OPERAND_NUM_WORDS; w++)
{
// compare x
if (ax->words[w] != bx->words[w]) return false;
// compare y
if (ay->words[w] != by->words[w]) return false;
}
// values are the same
return true;
}
//------------------------------------------------------------------------------
bool compare_fpga_buffers(FPGA_BUFFER *ax, FPGA_BUFFER *ay, FPGA_BUFFER *az, FPGA_BUFFER *bx, FPGA_BUFFER *by, FPGA_BUFFER *bz)
//------------------------------------------------------------------------------
//
// Compare projective coordinates of two points and return true when they match.
//
//------------------------------------------------------------------------------
{
int w; // word counter
// print all the values
print_fpga_buffer(" Expected: X = ", ax);
print_fpga_buffer(" Calculated: X = ", bx);
printf("\n");
print_fpga_buffer(" Expected: Y = ", ay);
print_fpga_buffer(" Calculated: Y = ", by);
printf("\n");
print_fpga_buffer(" Expected: Z = ", az);
print_fpga_buffer(" Calculated: Z = ", bz);
// compare values
for (w=0; w<OPERAND_NUM_WORDS; w++)
{
// compare x
if (ax->words[w] != bx->words[w]) return false;
// compare y
if (ay->words[w] != by->words[w]) return false;
// compare z
if (az->words[w] != bz->words[w]) return false;
}
// values are the same
return true;
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------