aboutsummaryrefslogblamecommitdiff
path: root/ecdsa_fpga_modular.cpp
blob: d24ddad9920e77e4aedf1a516db31b222efceea0 (plain) (tree)
1
2
3
4
5
6
7
8
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750







                                                                                


                                                          










                                                                              


                                                                         





























                                                                                





                                                                                










































































                                                                                         


                                  





















































                                                                                         


                                  


























                                                                                         





                                                            







                                                             






                                                       

























































































































































































































































































































































































































































































































                                                                                                                                                                                                                                                                                                      
//------------------------------------------------------------------------------
//
// ecdsa_fpga_modular.cpp
// -------------------------------------
// Modular arithmetic routines for ECDSA
//
// Authors: Pavel Shatov
//
// Copyright 2015-2016, 2018 NORDUnet A/S
// Copyright 2021 The Commons Conservancy Cryptech Project
// SPDX-License-Identifier: BSD-3-Clause
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// - Neither the name of the copyright holder nor the names of its
//   contributors may be used to endorse or promote products derived from
//   this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------


//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "ecdsa_fpga_model.h"


//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER ECDSA_Q;
FPGA_BUFFER ECDSA_DELTA;


//------------------------------------------------------------------------------
// Settings
//------------------------------------------------------------------------------
bool _DUMP_MODULAR_RESULTS = false;


//------------------------------------------------------------------------------
void fpga_modular_init()
//------------------------------------------------------------------------------
{
    int w_src, w_dst;   // word counters

        // temporary things
    FPGA_WORD TMP_Q    [FPGA_OPERAND_NUM_WORDS] = ECDSA_Q_INIT;
    FPGA_WORD TMP_DELTA[FPGA_OPERAND_NUM_WORDS] = ECDSA_DELTA_INIT;

        /* fill buffers for large multi-word integers, we need to fill them in
         * reverse order because of the way C arrays are initialized
         */
    for (   w_src = 0, w_dst = FPGA_OPERAND_NUM_WORDS - 1;
            w_src < FPGA_OPERAND_NUM_WORDS;
            w_src++, w_dst--)
    {
        ECDSA_Q.words[w_dst] = TMP_Q[w_src];
        ECDSA_DELTA.words[w_dst] = TMP_DELTA[w_src];
    }
}


//------------------------------------------------------------------------------
//
// Modular addition.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// s = (a + b) mod q
//
// The naive approach is like the following:
//
// 1. s = a + b
// 2. if (s >= q) s -= q
//
// The speed-up trick is to simultaneously calculate (a + b) and (a + b - q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_add(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_BUFFER *s)
//------------------------------------------------------------------------------
{
    int w;                  // word counter
    FPGA_BUFFER ab, ab_n;   // intermediate buffers
    bool c_in, c_out;       // carries
    bool b_in, b_out;       // borrows

    c_in = false;           // first word has no carry
    b_in = false;           // first word has no borrow
    
        // run parallel addition and subtraction
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
    {
        fpga_lowlevel_add32(a->words[w], b->words[w],      c_in, &ab.words[w],   &c_out);
        fpga_lowlevel_sub32(ab.words[w], ECDSA_Q.words[w], b_in, &ab_n.words[w], &b_out);

        c_in = c_out;   // propagate carry
        b_in = b_out;   // propagate borrow
    }

        // now select the right buffer

        /*
         * We select the right variant based on borrow and carry flags after
         * addition and subtraction of the very last pair of words. Note, that
         * we only need to select the first variant (a + b) when (a + b) < q.
         * This way if we get negative number after subtraction, we discard it
         * and use the output of the adder instead. The subtractor output is
         * negative when borrow flag is set *and* carry flag is not set. When
         * both borrow and carry are set, the number is non-negative, because
         * borrow and carry cancel each other out.
         */
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
        s->words[w] = (b_out && !c_out) ? ab.words[w] : ab_n.words[w];

    if (_DUMP_MODULAR_RESULTS)
        dump_uop_output("ADD", s);
}


//------------------------------------------------------------------------------
//
// Modular subtraction.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// d = (a - b) mod q
//
// The naive approach is like the following:
//
// 1. d = a - b
// 2. if (a < b) d += q
//
// The speed-up trick is to simultaneously calculate (a - b) and (a - b + q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_sub(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_BUFFER *d)
//------------------------------------------------------------------------------
{
    int w;                  // word counter
    FPGA_BUFFER ab, ab_n;   // intermediate buffers
    bool c_in, c_out;       // carries
    bool b_in, b_out;       // borrows

    c_in = false;           // first word has no carry
    b_in = false;           // first word has no borrow
    
        // run parallel subtraction and addition
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
    {
        fpga_lowlevel_sub32(a->words[w], b->words[w],      b_in, &ab.words[w],   &b_out);
        fpga_lowlevel_add32(ab.words[w], ECDSA_Q.words[w], c_in, &ab_n.words[w], &c_out);

        b_in = b_out;   // propagate borrow
        c_in = c_out;   // propagate carry
    }

        // now select the right buffer

        /*
         * We select the right variant based on borrow flag after subtraction
         * and addition of the very last pair of words. Note, that we only
         * need to select the second variant (a - b + q) when a < b. This way
         * if we get negative number after subtraction, we discard it
         * and use the output of the adder instead. The Subtractor output is
         * negative when borrow flag is set.
         */
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
        d->words[w] = b_out ? ab_n.words[w] : ab.words[w];

    if (_DUMP_MODULAR_RESULTS)
        dump_uop_output("SUB", d);
}


//------------------------------------------------------------------------------
//
// Modular multiplication.
//
// This routine implements modular multiplication algorithm from "Ultra High
// Performance ECC over NIST Primes on Commercial FPGAs".
//
// p = (a * b) mod q
//
// The complex algorithm is split into three parts:
//
// 1. Calculation of partial words
// 2. Acccumulation of partial words into full-size product
// 3. Modular reduction of the full-size product
//
// See comments for corresponding helper routines for more information.
//
//------------------------------------------------------------------------------
void fpga_modular_mul(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_BUFFER *p)
//------------------------------------------------------------------------------
{
    FPGA_WORD_EXTENDED si[4*FPGA_OPERAND_NUM_WORDS-1];  // parts of intermediate product
    FPGA_WORD c[2*FPGA_OPERAND_NUM_WORDS];              // full-size intermediate product

        /* save debug flag */
    bool _save_dump_modular_results = _DUMP_MODULAR_RESULTS;

        /* mask debug flag to not garble output */
    _DUMP_MODULAR_RESULTS = false;

        /* multiply to get partial words */
    fpga_modular_mul_helper_multiply(a, b, si);

        /* accumulate partial words into full-size product */
    fpga_modular_mul_helper_accumulate(si, c);

        /* reduce full-size product using special routine */
    fpga_modular_mul_helper_reduce(c, p);

        /* restore debug flag */
    _DUMP_MODULAR_RESULTS = _save_dump_modular_results;

        /* now dump result if needed */
    if (_DUMP_MODULAR_RESULTS)
        dump_uop_output("MUL", p);
}


//------------------------------------------------------------------------------
//
// Parallelized multiplication.
//
// This routine implements the algorithm in Fig. 3. from "Ultra High
// Performance ECC over NIST Primes on Commercial FPGAs".
//
// Inputs a and b are split into 2*OPERAND_NUM_WORDS words of FPGA_WORD_WIDTH/2
// bits each, because FPGA multipliers can't handle full FPGA_WORD_WIDTH-wide
// inputs. These smaller words are multiplied by an array of 2*OPERAND_NUM_WORDS
// multiplers and accumulated into an array of 4*OPERAND_NUM_WORDS-1 partial
// output words si[].
//
// The order of loading a and b into the multipliers is a bit complicated,
// during the first 2*OPERAND_NUM_WORDS-1 cycles one si word per cycle is
// obtained, during the very last 2*OPERAND_NUM_WORDS'th cycle all the
// remaining 2*OPERAND_NUM_WORDS partial words are obtained simultaneously.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_multiply(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_WORD_EXTENDED *si)
//------------------------------------------------------------------------------
{
    int w;          // counter
    int t, x;       // more counters
    int j, i;       // word indices
    FPGA_WORD p;    // product

        // buffers for smaller words that multipliers can handle
    FPGA_WORD_REDUCED ai[2*FPGA_OPERAND_NUM_WORDS];
    FPGA_WORD_REDUCED bj[2*FPGA_OPERAND_NUM_WORDS];
    
        // split a and b into smaller words
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
        ai[2*w] = (FPGA_WORD_REDUCED)a->words[w], ai[2*w + 1] = (FPGA_WORD_REDUCED)(a->words[w] >> (FPGA_WORD_WIDTH / 2)),
        bj[2*w] = (FPGA_WORD_REDUCED)b->words[w], bj[2*w + 1] = (FPGA_WORD_REDUCED)(b->words[w] >> (FPGA_WORD_WIDTH / 2));

        // accumulators
    FPGA_WORD_EXTENDED mac[2*FPGA_OPERAND_NUM_WORDS];
    
        // clear accumulators
    for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++) mac[w] = 0;

        // run the crazy algorithm :)
    for (t=0; t<(2*FPGA_OPERAND_NUM_WORDS); t++)
    {
            // save upper half of si[] (one word per cycle)
        if (t > 0)
        {   si[4*FPGA_OPERAND_NUM_WORDS - (t+1)] = mac[t];
            mac[t] = 0;
        }

            // update index
        j = 2*FPGA_OPERAND_NUM_WORDS - (t+1);

            // parallel multiplication
        for (x=0; x<(2*FPGA_OPERAND_NUM_WORDS); x++)
        {
                // update index
            i = t - x;
            if (i < 0) i += 2*FPGA_OPERAND_NUM_WORDS;

                // multiply...
            fpga_lowlevel_mul16(ai[i], bj[j], &p);

                // ...accumulate
            mac[x] += p;
        }

    }

        // now finally save lower half of si[] (2*OPERAND_NUM_WORDS words at once)
    for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
        si[w] = mac[2*FPGA_OPERAND_NUM_WORDS - (w+1)];
}


//------------------------------------------------------------------------------
//
// Accumulation of partial words into full-size product.
//
// This routine implements the Algorithm 4. from "Ultra High Performance ECC
// over NIST Primes on Commercial FPGAs".
//
// Input words si[] are accumulated into full-size product c[].
//
// The algorithm is a bit tricky, there are 4*OPERAND_NUM_WORDS-1 words in
// si[]. Complete operation takes 2*OPERAND_NUM_WORDS cycles, even words are
// summed in full, odd words are split into two parts. During every cycle the
// upper part of the previous word and the lower part of the following word are
// summed too.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_accumulate(const FPGA_WORD_EXTENDED *si, FPGA_WORD *c)
//------------------------------------------------------------------------------
{
    int w;                          // word counter
    FPGA_WORD_EXTENDED cw0, cw1;    // intermediate sums
    FPGA_WORD_REDUCED  cw_carry;    // wide carry

        // clear carry
    cw_carry = 0;

        // execute the algorithm
    for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
    {
            // handy flags
        bool w_is_first = (w == 0);
        bool w_is_last  = (w == (2*FPGA_OPERAND_NUM_WORDS-1));

            // accumulate full current even word...
            // ...and also the upper part of the previous odd word (if not the first word)
        fpga_lowlevel_add47(si[2*w], w_is_first ? 0 : si[2*w-1] >> (FPGA_WORD_WIDTH / 2), &cw0);

            // generate another word from "carry" part of the previous even word...
            // ...and also the lower part of the following odd word (if not the last word)
        cw1 = w_is_last ? 0 : (FPGA_WORD)(si[2*w+1] << (FPGA_WORD_WIDTH / 2));
        cw1 |= (FPGA_WORD_EXTENDED)cw_carry;

            // accumulate once again
        fpga_lowlevel_add47(cw0, cw1, &cw1);

            // store current word...
        c[w] = (FPGA_WORD)cw1;

            // ...and carry
        cw_carry = (FPGA_WORD_REDUCED) (cw1 >> FPGA_WORD_WIDTH);
    }
}


//------------------------------------------------------------------------------
//
// Fast modular reduction for NIST prime P-256.
//
// p = c mod p256
//
// This routine implements the algorithm 2.29 from "Guide to Elliptic Curve
// Cryptography".
//
// Output p is OPERAND_WIDTH wide (contains OPERAND_NUM_WORDS words), input c
// on the other hand is the output of the parallelized Comba multiplier, so it
// is 2*OPERAND_WIDTH wide and has twice as many words (2*OPERAND_NUM_WORDS).
//
// To save FPGA resources, the calculation is done using only two adders and
// one subtractor. The algorithm is split into five steps.
//
//------------------------------------------------------------------------------
#if USE_CURVE == 1
void fpga_modular_mul_helper_reduce_p256(const FPGA_WORD *c, FPGA_BUFFER *p)
{
        // "funny" words
    FPGA_BUFFER s1, s2, s3, s4, s5, s6, s7, s8, s9;

        // compose "funny" words out of input words
    s1.words[7] = c[ 7], s1.words[6] = c[ 6], s1.words[5] = c[ 5], s1.words[4] = c[ 4], s1.words[3] = c[ 3], s1.words[2] = c[ 2], s1.words[1] = c[ 1], s1.words[0] = c[ 0];
    s2.words[7] = c[15], s2.words[6] = c[14], s2.words[5] = c[13], s2.words[4] = c[12], s2.words[3] = c[11], s2.words[2] = 0,     s2.words[1] = 0,     s2.words[0] = 0;
    s3.words[7] = 0,     s3.words[6] = c[15], s3.words[5] = c[14], s3.words[4] = c[13], s3.words[3] = c[12], s3.words[2] = 0,     s3.words[1] = 0,     s3.words[0] = 0;
    s4.words[7] = c[15], s4.words[6] = c[14], s4.words[5] = 0,     s4.words[4] = 0,     s4.words[3] = 0,     s4.words[2] = c[10], s4.words[1] = c[ 9], s4.words[0] = c[ 8];
    s5.words[7] = c[ 8], s5.words[6] = c[13], s5.words[5] = c[15], s5.words[4] = c[14], s5.words[3] = c[13], s5.words[2] = c[11], s5.words[1] = c[10], s5.words[0] = c[ 9];
    s6.words[7] = c[10], s6.words[6] = c[ 8], s6.words[5] = 0,     s6.words[4] = 0,     s6.words[3] = 0,     s6.words[2] = c[13], s6.words[1] = c[12], s6.words[0] = c[11];
    s7.words[7] = c[11], s7.words[6] = c[ 9], s7.words[5] = 0,     s7.words[4] = 0,     s7.words[3] = c[15], s7.words[2] = c[14], s7.words[1] = c[13], s7.words[0] = c[12];
    s8.words[7] = c[12], s8.words[6] = 0,     s8.words[5] = c[10], s8.words[4] = c[ 9], s8.words[3] = c[ 8], s8.words[2] = c[15], s8.words[1] = c[14], s8.words[0] = c[13];
    s9.words[7] = c[13], s9.words[6] = 0,     s9.words[5] = c[11], s9.words[4] = c[10], s9.words[3] = c[ 9], s9.words[2] = 0,     s9.words[1] = c[15], s9.words[0] = c[14];
    
        // intermediate results
    FPGA_BUFFER sum0, sum1, difference;

        /* Step 1. */
    fpga_modular_add(&s2,         &s2,         &sum0);          // sum0 = 2*s2
    fpga_modular_add(&s3,         &s3,         &sum1);          // sum1 = 2*s3
    fpga_modular_sub(&ECDSA_ZERO, &s6,         &difference);    // difference = -s6

        /* Step 2. */
    fpga_modular_add(&sum0,       &s1,         &sum0);          // sum0 = s1 + 2*s2
    fpga_modular_add(&sum1,       &s4,         &sum1);          // sum1 = s4 + 2*s3
    fpga_modular_sub(&difference, &s7,         &difference);    // difference = -(s6 + s7)

        /* Step 3. */
    fpga_modular_add(&sum0,       &s5,         &sum0);          // sum0 = s1 + 2*s2 + s5
    fpga_modular_add(&sum1,       &ECDSA_ZERO, &sum1);          // compulsory cycle to keep sum1 constant for next stage
    fpga_modular_sub(&difference, &s8,         &difference);    // difference = -(s6 + s7 + s8)

        /* Step 4. */
    fpga_modular_add(&sum0,       &sum1,       &sum0);          // sum0 = s1 + 2*s2 + 2*s3 + s4 + s5
//  fpga_modular_add(<dummy>,     <dummy>,     &sum1);          // dummy cycle, result ignored
    fpga_modular_sub(&difference, &s9,         &difference);    // difference = -(s6 + s7 + s8 + s9)

        /* Step 5. */
    fpga_modular_add(&sum0,       &difference, p);              // p = s1 + 2*s2 + 2*s3 + s4 + s5 - s6 - s7 - s8 - s9
//  fpga_modular_add(<dummy>,     <dummy>,     &sum1);          // dummy cycle, result ignored
//  fpga_modular_add(<dummy>,     <dummy>,     &difference);    // dummy cycle, result ignored
}
#endif


//------------------------------------------------------------------------------
//
// Fast modular reduction for NIST prime P-384.
//
// p = c mod p384
//
// This routine implements the algorithm 2.30 from "Guide to Elliptic Curve
// Cryptography".
//
// Output p is OPERAND_WIDTH wide (contains OPERAND_NUM_WORDS words), input c
// on the other hand is the output of the parallelized Comba multiplier, so it
// is 2*OPERAND_WIDTH wide and has twice as many words (2*OPERAND_NUM_WORDS).
//
// To save FPGA resources, the calculation is done using only two adders and
// one subtractor. The algorithm is split into five steps.
//
//------------------------------------------------------------------------------
#if USE_CURVE == 2
void fpga_modular_mul_helper_reduce_p384(const FPGA_WORD *c, FPGA_BUFFER *p)
{
		// "funny" words
	FPGA_BUFFER s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;

		// compose "funny" words
	 s1.words[11] = c[11],   s1.words[10] = c[10],   s1.words[ 9] = c[ 9],   s1.words[ 8] = c[ 8],   s1.words[ 7] = c[ 7],   s1.words[ 6] = c[ 6],   s1.words[ 5] = c[ 5],   s1.words[ 4] = c[ 4],   s1.words[ 3] = c[ 3],   s1.words[ 2] = c[ 2],   s1.words[ 1] = c[ 1],   s1.words[ 0] = c[ 0];
	 s2.words[11] = 0,       s2.words[10] = 0,       s2.words[ 9] = 0,       s2.words[ 8] = 0,       s2.words[ 7] = 0,       s2.words[ 6] = c[23],   s2.words[ 5] = c[22],   s2.words[ 4] = c[21],   s2.words[ 3] = 0,       s2.words[ 2] = 0,       s2.words[ 1] = 0,       s2.words[ 0] = 0;
	 s3.words[11] = c[23],   s3.words[10] = c[22],   s3.words[ 9] = c[21],   s3.words[ 8] = c[20],   s3.words[ 7] = c[19],   s3.words[ 6] = c[18],   s3.words[ 5] = c[17],   s3.words[ 4] = c[16],   s3.words[ 3] = c[15],   s3.words[ 2] = c[14],   s3.words[ 1] = c[13],   s3.words[ 0] = c[12];
	 s4.words[11] = c[20],   s4.words[10] = c[19],   s4.words[ 9] = c[18],   s4.words[ 8] = c[17],   s4.words[ 7] = c[16],   s4.words[ 6] = c[15],   s4.words[ 5] = c[14],   s4.words[ 4] = c[13],   s4.words[ 3] = c[12],   s4.words[ 2] = c[23],   s4.words[ 1] = c[22],   s4.words[ 0] = c[21];
	 s5.words[11] = c[19],   s5.words[10] = c[18],   s5.words[ 9] = c[17],   s5.words[ 8] = c[16],   s5.words[ 7] = c[15],   s5.words[ 6] = c[14],   s5.words[ 5] = c[13],   s5.words[ 4] = c[12],   s5.words[ 3] = c[20],   s5.words[ 2] = 0,       s5.words[ 1] = c[23],   s5.words[ 0] = 0;
	 s6.words[11] = 0,       s6.words[10] = 0,       s6.words[ 9] = 0,       s6.words[ 8] = 0,       s6.words[ 7] = c[23],   s6.words[ 6] = c[22],   s6.words[ 5] = c[21],   s6.words[ 4] = c[20],   s6.words[ 3] = 0,       s6.words[ 2] = 0,       s6.words[ 1] = 0,       s6.words[ 0] = 0;
	 s7.words[11] = 0,       s7.words[10] = 0,       s7.words[ 9] = 0,       s7.words[ 8] = 0,       s7.words[ 7] = 0,       s7.words[ 6] = 0,       s7.words[ 5] = c[23],   s7.words[ 4] = c[22],   s7.words[ 3] = c[21],   s7.words[ 2] = 0,       s7.words[ 1] = 0,       s7.words[ 0] = c[20];
	 s8.words[11] = c[22],   s8.words[10] = c[21],   s8.words[ 9] = c[20],   s8.words[ 8] = c[19],   s8.words[ 7] = c[18],   s8.words[ 6] = c[17],   s8.words[ 5] = c[16],   s8.words[ 4] = c[15],   s8.words[ 3] = c[14],   s8.words[ 2] = c[13],   s8.words[ 1] = c[12],   s8.words[ 0] = c[23];
	 s9.words[11] = 0,       s9.words[10] = 0,       s9.words[ 9] = 0,       s9.words[ 8] = 0,       s9.words[ 7] = 0,       s9.words[ 6] = 0,       s9.words[ 5] = 0,       s9.words[ 4] = c[23],   s9.words[ 3] = c[22],   s9.words[ 2] = c[21],   s9.words[ 1] = c[20],   s9.words[ 0] = 0;
	s10.words[11] = 0,      s10.words[10] = 0,      s10.words[ 9] = 0,      s10.words[ 8] = 0,      s10.words[ 7] = 0,      s10.words[ 6] = 0,      s10.words[ 5] = 0,      s10.words[ 4] = c[23],  s10.words[ 3] = c[23],  s10.words[ 2] = 0,      s10.words[ 1] = 0,      s10.words[ 0] = 0;

		// intermediate results
	FPGA_BUFFER sum0, sum1, difference;

		/* Step 1. */
	fpga_modular_add(&s1,         &s3,         &sum0);			// sum0 = s1 + s3
	fpga_modular_add(&s2,         &s2,         &sum1);			// sum1 = 2*s2
	fpga_modular_sub(&ECDSA_ZERO, &s8,         &difference);	// difference = -s8

		/* Step 2. */
	fpga_modular_add(&sum0,       &s4,         &sum0);			// sum0 = s1 + s3 + s4
	fpga_modular_add(&sum1,       &s5,         &sum1);			// sum1 = 2*s2 + s5
	fpga_modular_sub(&difference, &s9,         &difference);	// difference = -(s8 + s9)

		/* Step 3. */
	fpga_modular_add(&sum0,       &s6,         &sum0);			// sum0 = s1 + s3 + s4 + s6
	fpga_modular_add(&sum1,       &s7,         &sum1);			// sum1 = 2*s2 + s5 + s7
	fpga_modular_sub(&difference, &s10,        &difference);	// difference = -(s8 + s9 + s10)

		/* Step 4. */
	fpga_modular_add(&sum0,       &sum1,       &sum0);			// sum0 = s1 + 2*s2 + 2*s3 + s4 + s5
//	fpga_modular_add(<dummy>,     <dummy>,     &sum1);			// dummy cycle, result ignored
	fpga_modular_sub(&difference, &ECDSA_ZERO, &difference);	// compulsory cycle to keep difference constant for next stage

		/* Step 5. */
	fpga_modular_add(&sum0,       &difference, p);				// p = s1 + 2*s2 + s3 + s4 + s5 + s6 + s7 - s8 - s9 - s10
//	fpga_modular_add(<dummy>,     <dummy>,     &sum1);			// dummy cycle, result ignored
//	fpga_modular_add(<dummy>,     <dummy>,     &difference);	// dummy cycle, result ignored
}
#endif


#if USE_CURVE == 1
//------------------------------------------------------------------------------
void fpga_modular_inv23_p256(const FPGA_BUFFER *A, FPGA_BUFFER *A2, FPGA_BUFFER *A3)
//------------------------------------------------------------------------------
//
// This uses the addition chain from
//
// < https://briansmith.org/ecc-inversion-addition-chains-01 >
//
// to calculate A2 = A^-2 and A3 = A^-3.
//
//------------------------------------------------------------------------------
{
    // counter
	int cyc_cnt;

    // working variables
	FPGA_BUFFER R1, R2, X1, X2, X3, X6, X12, X15, X30, X32;

    // first obtain intermediate helper quantities (X1..X32)

    // X1
	fpga_multiword_copy(A, &X1);

    // X2
	fpga_modular_mul(&X1, &X1, &R1);
	fpga_modular_mul(&R1, &X1, &X2);

    // X3
	fpga_modular_mul(&X2, &X2, &R1);
	fpga_modular_mul(&R1, &X1, &X3);

    // X6
	fpga_multiword_copy(&X3, &R1);
	for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R2, &X3, &X6);

    // X12
	fpga_multiword_copy(&X6, &R1);
	for (cyc_cnt=0; cyc_cnt<6; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X6, &X12);

    // X15
	fpga_multiword_copy(&X12, &R1);
	for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R2, &X3, &X15);

    // X30
	fpga_multiword_copy(&X15, &R1);
	for (cyc_cnt=0; cyc_cnt<15; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R2, &X15, &X30);

    // X32
	fpga_multiword_copy(&X30, &R1);
	for (cyc_cnt=0; cyc_cnt<2; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X2, &X32);

	// now compute the final results

	fpga_multiword_copy(&X32, &R1);
	for (cyc_cnt=0; cyc_cnt<32; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X1, &R2);

	for (cyc_cnt=0; cyc_cnt<128; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R2, &R2, &R1);
		else			    fpga_modular_mul(&R1, &R1, &R2);
	}
	fpga_modular_mul(&R2, &X32, &R1);

	for (cyc_cnt=0; cyc_cnt<32; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X32, &R2);

	for (cyc_cnt=0; cyc_cnt<30; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R2, &R2, &R1);
		else			    fpga_modular_mul(&R1, &R1, &R2);
	}
	fpga_modular_mul(&R2, &X30, &R1);

	fpga_modular_mul(&R1, &R1, &R2);
	fpga_modular_mul(&R2, &R2, &R1);

    // A2 obtained
	fpga_multiword_copy(&R1, A2);

    // now calculate compute inverse cubed from inverse squared
	fpga_modular_mul(&R1, &R1, &R2);
	fpga_modular_mul(&R2, A,   &R1);

    // A3 obtained
	fpga_multiword_copy(&R1, A3);
}
#endif


#if USE_CURVE == 2
//------------------------------------------------------------------------------
void fpga_modular_inv23_p384(const FPGA_BUFFER *A, FPGA_BUFFER *A2, FPGA_BUFFER *A3)
//------------------------------------------------------------------------------
//
// This uses the addition chain from
//
// < https://briansmith.org/ecc-inversion-addition-chains-01 >
//
// to calculate A2 = A^-2 and A3 = A^-3.
//
//------------------------------------------------------------------------------
{
    // counter
	int cyc_cnt;

    // working variables
	FPGA_BUFFER R1, R2, X1, X2, X3, X6, X12, X15, X30, X60, X120;

    // first obtain intermediate helper quantities (X1..X120)

    // X1
	fpga_multiword_copy(A, &X1);

    // X2
	fpga_modular_mul(&X1, &X1, &R1);
	fpga_modular_mul(&R1, &X1, &X2);

    // X3
	fpga_modular_mul(&X2, &X2, &R1);
	fpga_modular_mul(&R1, &X1, &X3);

    // X6
	fpga_multiword_copy(&X3, &R1);
	for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R2, &X3, &X6);

    // X12
	fpga_multiword_copy(&X6, &R1);
	for (cyc_cnt=0; cyc_cnt<6; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X6, &X12);

    // X15
	fpga_multiword_copy(&X12, &R1);
	for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R2, &X3, &X15);

    // X30
	fpga_multiword_copy(&X15, &R1);
	for (cyc_cnt=0; cyc_cnt<15; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R2, &X15, &X30);

    // X60
	fpga_multiword_copy(&X30, &R1);
	for (cyc_cnt=0; cyc_cnt<30; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X30, &X60);

    // X120
	fpga_multiword_copy(&X60, &R1);
	for (cyc_cnt=0; cyc_cnt<60; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X60, &X120);

	// now compute the final results

	fpga_multiword_copy(&X120, &R1);
	for (cyc_cnt=0; cyc_cnt<120; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
	fpga_modular_mul(&R1, &X120, &R2);

    for (cyc_cnt=0; cyc_cnt<15; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R2, &R2, &R1);
		else			    fpga_modular_mul(&R1, &R1, &R2);
	}
    fpga_modular_mul(&R1, &X15, &R2);

    for (cyc_cnt=0; cyc_cnt<31; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R2, &R2, &R1);
		else			    fpga_modular_mul(&R1, &R1, &R2);
	}
    fpga_modular_mul(&R1, &X30, &R2);
    fpga_modular_mul(&R2, &R2, &R1);
    fpga_modular_mul(&R1, &R1, &R2);
    fpga_modular_mul(&R2, &X2, &R1);

    for (cyc_cnt=0; cyc_cnt<94; cyc_cnt++)
	{	if (!(cyc_cnt % 2))	fpga_modular_mul(&R1, &R1, &R2);
		else			    fpga_modular_mul(&R2, &R2, &R1);
	}
    fpga_modular_mul(&R1, &X30, &R2);
    fpga_modular_mul(&R2, &R2, &R1);
    fpga_modular_mul(&R1, &R1, &R2);

    // A2 obtained
	fpga_multiword_copy(&R2, A2);

    // now calculate compute inverse cubed from inverse squared
	fpga_modular_mul(&R2, &R2, &R1);
	fpga_modular_mul(&R1, A,   &R2);

    // A3 obtained
	fpga_multiword_copy(&R2, A3);
}
#endif

//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------