//------------------------------------------------------------------------------
//
// ecdsa_fpga_modular.cpp
// -------------------------------------
// Modular arithmetic routines for ECDSA
//
// Authors: Pavel Shatov
//
// Copyright 2015-2016, 2018 NORDUnet A/S
// Copyright 2021 The Commons Conservancy Cryptech Project
// SPDX-License-Identifier: BSD-3-Clause
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "ecdsa_fpga_model.h"
//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER ECDSA_Q;
FPGA_BUFFER ECDSA_DELTA;
//------------------------------------------------------------------------------
// Settings
//------------------------------------------------------------------------------
bool _DUMP_MODULAR_RESULTS = false;
//------------------------------------------------------------------------------
void fpga_modular_init()
//------------------------------------------------------------------------------
{
int w_src, w_dst; // word counters
// temporary things
FPGA_WORD TMP_Q [FPGA_OPERAND_NUM_WORDS] = ECDSA_Q_INIT;
FPGA_WORD TMP_DELTA[FPGA_OPERAND_NUM_WORDS] = ECDSA_DELTA_INIT;
/* fill buffers for large multi-word integers, we need to fill them in
* reverse order because of the way C arrays are initialized
*/
for ( w_src = 0, w_dst = FPGA_OPERAND_NUM_WORDS - 1;
w_src < FPGA_OPERAND_NUM_WORDS;
w_src++, w_dst--)
{
ECDSA_Q.words[w_dst] = TMP_Q[w_src];
ECDSA_DELTA.words[w_dst] = TMP_DELTA[w_src];
}
}
//------------------------------------------------------------------------------
//
// Modular addition.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// s = (a + b) mod q
//
// The naive approach is like the following:
//
// 1. s = a + b
// 2. if (s >= q) s -= q
//
// The speed-up trick is to simultaneously calculate (a + b) and (a + b - q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_add(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_BUFFER *s)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER ab, ab_n; // intermediate buffers
bool c_in, c_out; // carries
bool b_in, b_out; // borrows
c_in = false; // first word has no carry
b_in = false; // first word has no borrow
// run parallel addition and subtraction
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
fpga_lowlevel_add32(a->words[w], b->words[w], c_in, &ab.words[w], &c_out);
fpga_lowlevel_sub32(ab.words[w], ECDSA_Q.words[w], b_in, &ab_n.words[w], &b_out);
c_in = c_out; // propagate carry
b_in = b_out; // propagate borrow
}
// now select the right buffer
/*
* We select the right variant based on borrow and carry flags after
* addition and subtraction of the very last pair of words. Note, that
* we only need to select the first variant (a + b) when (a + b) < q.
* This way if we get negative number after subtraction, we discard it
* and use the output of the adder instead. The subtractor output is
* negative when borrow flag is set *and* carry flag is not set. When
* both borrow and carry are set, the number is non-negative, because
* borrow and carry cancel each other out.
*/
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
s->words[w] = (b_out && !c_out) ? ab.words[w] : ab_n.words[w];
if (_DUMP_MODULAR_RESULTS)
dump_uop_output("ADD", s);
}
//------------------------------------------------------------------------------
//
// Modular subtraction.
//
// This routine implements algorithm 3. from "Ultra High Performance ECC over
// NIST Primes on Commercial FPGAs".
//
// d = (a - b) mod q
//
// The naive approach is like the following:
//
// 1. d = a - b
// 2. if (a < b) d += q
//
// The speed-up trick is to simultaneously calculate (a - b) and (a - b + q)
// and then select the right variant.
//
//------------------------------------------------------------------------------
void fpga_modular_sub(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_BUFFER *d)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_BUFFER ab, ab_n; // intermediate buffers
bool c_in, c_out; // carries
bool b_in, b_out; // borrows
c_in = false; // first word has no carry
b_in = false; // first word has no borrow
// run parallel subtraction and addition
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
{
fpga_lowlevel_sub32(a->words[w], b->words[w], b_in, &ab.words[w], &b_out);
fpga_lowlevel_add32(ab.words[w], ECDSA_Q.words[w], c_in, &ab_n.words[w], &c_out);
b_in = b_out; // propagate borrow
c_in = c_out; // propagate carry
}
// now select the right buffer
/*
* We select the right variant based on borrow flag after subtraction
* and addition of the very last pair of words. Note, that we only
* need to select the second variant (a - b + q) when a < b. This way
* if we get negative number after subtraction, we discard it
* and use the output of the adder instead. The Subtractor output is
* negative when borrow flag is set.
*/
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
d->words[w] = b_out ? ab_n.words[w] : ab.words[w];
if (_DUMP_MODULAR_RESULTS)
dump_uop_output("SUB", d);
}
//------------------------------------------------------------------------------
//
// Modular multiplication.
//
// This routine implements modular multiplication algorithm from "Ultra High
// Performance ECC over NIST Primes on Commercial FPGAs".
//
// p = (a * b) mod q
//
// The complex algorithm is split into three parts:
//
// 1. Calculation of partial words
// 2. Acccumulation of partial words into full-size product
// 3. Modular reduction of the full-size product
//
// See comments for corresponding helper routines for more information.
//
//------------------------------------------------------------------------------
void fpga_modular_mul(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_BUFFER *p)
//------------------------------------------------------------------------------
{
FPGA_WORD_EXTENDED si[4*FPGA_OPERAND_NUM_WORDS-1]; // parts of intermediate product
FPGA_WORD c[2*FPGA_OPERAND_NUM_WORDS]; // full-size intermediate product
/* save debug flag */
bool _save_dump_modular_results = _DUMP_MODULAR_RESULTS;
/* mask debug flag to not garble output */
_DUMP_MODULAR_RESULTS = false;
/* multiply to get partial words */
fpga_modular_mul_helper_multiply(a, b, si);
/* accumulate partial words into full-size product */
fpga_modular_mul_helper_accumulate(si, c);
/* reduce full-size product using special routine */
fpga_modular_mul_helper_reduce(c, p);
/* restore debug flag */
_DUMP_MODULAR_RESULTS = _save_dump_modular_results;
/* now dump result if needed */
if (_DUMP_MODULAR_RESULTS)
dump_uop_output("MUL", p);
}
//------------------------------------------------------------------------------
//
// Parallelized multiplication.
//
// This routine implements the algorithm in Fig. 3. from "Ultra High
// Performance ECC over NIST Primes on Commercial FPGAs".
//
// Inputs a and b are split into 2*OPERAND_NUM_WORDS words of FPGA_WORD_WIDTH/2
// bits each, because FPGA multipliers can't handle full FPGA_WORD_WIDTH-wide
// inputs. These smaller words are multiplied by an array of 2*OPERAND_NUM_WORDS
// multiplers and accumulated into an array of 4*OPERAND_NUM_WORDS-1 partial
// output words si[].
//
// The order of loading a and b into the multipliers is a bit complicated,
// during the first 2*OPERAND_NUM_WORDS-1 cycles one si word per cycle is
// obtained, during the very last 2*OPERAND_NUM_WORDS'th cycle all the
// remaining 2*OPERAND_NUM_WORDS partial words are obtained simultaneously.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_multiply(const FPGA_BUFFER *a, const FPGA_BUFFER *b, FPGA_WORD_EXTENDED *si)
//------------------------------------------------------------------------------
{
int w; // counter
int t, x; // more counters
int j, i; // word indices
FPGA_WORD p; // product
// buffers for smaller words that multipliers can handle
FPGA_WORD_REDUCED ai[2*FPGA_OPERAND_NUM_WORDS];
FPGA_WORD_REDUCED bj[2*FPGA_OPERAND_NUM_WORDS];
// split a and b into smaller words
for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
ai[2*w] = (FPGA_WORD_REDUCED)a->words[w], ai[2*w + 1] = (FPGA_WORD_REDUCED)(a->words[w] >> (FPGA_WORD_WIDTH / 2)),
bj[2*w] = (FPGA_WORD_REDUCED)b->words[w], bj[2*w + 1] = (FPGA_WORD_REDUCED)(b->words[w] >> (FPGA_WORD_WIDTH / 2));
// accumulators
FPGA_WORD_EXTENDED mac[2*FPGA_OPERAND_NUM_WORDS];
// clear accumulators
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++) mac[w] = 0;
// run the crazy algorithm :)
for (t=0; t<(2*FPGA_OPERAND_NUM_WORDS); t++)
{
// save upper half of si[] (one word per cycle)
if (t > 0)
{ si[4*FPGA_OPERAND_NUM_WORDS - (t+1)] = mac[t];
mac[t] = 0;
}
// update index
j = 2*FPGA_OPERAND_NUM_WORDS - (t+1);
// parallel multiplication
for (x=0; x<(2*FPGA_OPERAND_NUM_WORDS); x++)
{
// update index
i = t - x;
if (i < 0) i += 2*FPGA_OPERAND_NUM_WORDS;
// multiply...
fpga_lowlevel_mul16(ai[i], bj[j], &p);
// ...accumulate
mac[x] += p;
}
}
// now finally save lower half of si[] (2*OPERAND_NUM_WORDS words at once)
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
si[w] = mac[2*FPGA_OPERAND_NUM_WORDS - (w+1)];
}
//------------------------------------------------------------------------------
//
// Accumulation of partial words into full-size product.
//
// This routine implements the Algorithm 4. from "Ultra High Performance ECC
// over NIST Primes on Commercial FPGAs".
//
// Input words si[] are accumulated into full-size product c[].
//
// The algorithm is a bit tricky, there are 4*OPERAND_NUM_WORDS-1 words in
// si[]. Complete operation takes 2*OPERAND_NUM_WORDS cycles, even words are
// summed in full, odd words are split into two parts. During every cycle the
// upper part of the previous word and the lower part of the following word are
// summed too.
//
//------------------------------------------------------------------------------
void fpga_modular_mul_helper_accumulate(const FPGA_WORD_EXTENDED *si, FPGA_WORD *c)
//------------------------------------------------------------------------------
{
int w; // word counter
FPGA_WORD_EXTENDED cw0, cw1; // intermediate sums
FPGA_WORD_REDUCED cw_carry; // wide carry
// clear carry
cw_carry = 0;
// execute the algorithm
for (w=0; w<(2*FPGA_OPERAND_NUM_WORDS); w++)
{
// handy flags
bool w_is_first = (w == 0);
bool w_is_last = (w == (2*FPGA_OPERAND_NUM_WORDS-1));
// accumulate full current even word...
// ...and also the upper part of the previous odd word (if not the first word)
fpga_lowlevel_add47(si[2*w], w_is_first ? 0 : si[2*w-1] >> (FPGA_WORD_WIDTH / 2), &cw0);
// generate another word from "carry" part of the previous even word...
// ...and also the lower part of the following odd word (if not the last word)
cw1 = w_is_last ? 0 : (FPGA_WORD)(si[2*w+1] << (FPGA_WORD_WIDTH / 2));
cw1 |= (FPGA_WORD_EXTENDED)cw_carry;
// accumulate once again
fpga_lowlevel_add47(cw0, cw1, &cw1);
// store current word...
c[w] = (FPGA_WORD)cw1;
// ...and carry
cw_carry = (FPGA_WORD_REDUCED) (cw1 >> FPGA_WORD_WIDTH);
}
}
//------------------------------------------------------------------------------
//
// Fast modular reduction for NIST prime P-256.
//
// p = c mod p256
//
// This routine implements the algorithm 2.29 from "Guide to Elliptic Curve
// Cryptography".
//
// Output p is OPERAND_WIDTH wide (contains OPERAND_NUM_WORDS words), input c
// on the other hand is the output of the parallelized Comba multiplier, so it
// is 2*OPERAND_WIDTH wide and has twice as many words (2*OPERAND_NUM_WORDS).
//
// To save FPGA resources, the calculation is done using only two adders and
// one subtractor. The algorithm is split into five steps.
//
//------------------------------------------------------------------------------
#if USE_CURVE == 1
void fpga_modular_mul_helper_reduce_p256(const FPGA_WORD *c, FPGA_BUFFER *p)
{
// "funny" words
FPGA_BUFFER s1, s2, s3, s4, s5, s6, s7, s8, s9;
// compose "funny" words out of input words
s1.words[7] = c[ 7], s1.words[6] = c[ 6], s1.words[5] = c[ 5], s1.words[4] = c[ 4], s1.words[3] = c[ 3], s1.words[2] = c[ 2], s1.words[1] = c[ 1], s1.words[0] = c[ 0];
s2.words[7] = c[15], s2.words[6] = c[14], s2.words[5] = c[13], s2.words[4] = c[12], s2.words[3] = c[11], s2.words[2] = 0, s2.words[1] = 0, s2.words[0] = 0;
s3.words[7] = 0, s3.words[6] = c[15], s3.words[5] = c[14], s3.words[4] = c[13], s3.words[3] = c[12], s3.words[2] = 0, s3.words[1] = 0, s3.words[0] = 0;
s4.words[7] = c[15], s4.words[6] = c[14], s4.words[5] = 0, s4.words[4] = 0, s4.words[3] = 0, s4.words[2] = c[10], s4.words[1] = c[ 9], s4.words[0] = c[ 8];
s5.words[7] = c[ 8], s5.words[6] = c[13], s5.words[5] = c[15], s5.words[4] = c[14], s5.words[3] = c[13], s5.words[2] = c[11], s5.words[1] = c[10], s5.words[0] = c[ 9];
s6.words[7] = c[10], s6.words[6] = c[ 8], s6.words[5] = 0, s6.words[4] = 0, s6.words[3] = 0, s6.words[2] = c[13], s6.words[1] = c[12], s6.words[0] = c[11];
s7.words[7] = c[11], s7.words[6] = c[ 9], s7.words[5] = 0, s7.words[4] = 0, s7.words[3] = c[15], s7.words[2] = c[14], s7.words[1] = c[13], s7.words[0] = c[12];
s8.words[7] = c[12], s8.words[6] = 0, s8.words[5] = c[10], s8.words[4] = c[ 9], s8.words[3] = c[ 8], s8.words[2] = c[15], s8.words[1] = c[14], s8.words[0] = c[13];
s9.words[7] = c[13], s9.words[6] = 0, s9.words[5] = c[11], s9.words[4] = c[10], s9.words[3] = c[ 9], s9.words[2] = 0, s9.words[1] = c[15], s9.words[0] = c[14];
// intermediate results
FPGA_BUFFER sum0, sum1, difference;
/* Step 1. */
fpga_modular_add(&s2, &s2, &sum0); // sum0 = 2*s2
fpga_modular_add(&s3, &s3, &sum1); // sum1 = 2*s3
fpga_modular_sub(&ECDSA_ZERO, &s6, &difference); // difference = -s6
/* Step 2. */
fpga_modular_add(&sum0, &s1, &sum0); // sum0 = s1 + 2*s2
fpga_modular_add(&sum1, &s4, &sum1); // sum1 = s4 + 2*s3
fpga_modular_sub(&difference, &s7, &difference); // difference = -(s6 + s7)
/* Step 3. */
fpga_modular_add(&sum0, &s5, &sum0); // sum0 = s1 + 2*s2 + s5
fpga_modular_add(&sum1, &ECDSA_ZERO, &sum1); // compulsory cycle to keep sum1 constant for next stage
fpga_modular_sub(&difference, &s8, &difference); // difference = -(s6 + s7 + s8)
/* Step 4. */
fpga_modular_add(&sum0, &sum1, &sum0); // sum0 = s1 + 2*s2 + 2*s3 + s4 + s5
// fpga_modular_add(<dummy>, <dummy>, &sum1); // dummy cycle, result ignored
fpga_modular_sub(&difference, &s9, &difference); // difference = -(s6 + s7 + s8 + s9)
/* Step 5. */
fpga_modular_add(&sum0, &difference, p); // p = s1 + 2*s2 + 2*s3 + s4 + s5 - s6 - s7 - s8 - s9
// fpga_modular_add(<dummy>, <dummy>, &sum1); // dummy cycle, result ignored
// fpga_modular_add(<dummy>, <dummy>, &difference); // dummy cycle, result ignored
}
#endif
//------------------------------------------------------------------------------
//
// Fast modular reduction for NIST prime P-384.
//
// p = c mod p384
//
// This routine implements the algorithm 2.30 from "Guide to Elliptic Curve
// Cryptography".
//
// Output p is OPERAND_WIDTH wide (contains OPERAND_NUM_WORDS words), input c
// on the other hand is the output of the parallelized Comba multiplier, so it
// is 2*OPERAND_WIDTH wide and has twice as many words (2*OPERAND_NUM_WORDS).
//
// To save FPGA resources, the calculation is done using only two adders and
// one subtractor. The algorithm is split into five steps.
//
//------------------------------------------------------------------------------
#if USE_CURVE == 2
void fpga_modular_mul_helper_reduce_p384(const FPGA_WORD *c, FPGA_BUFFER *p)
{
// "funny" words
FPGA_BUFFER s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
// compose "funny" words
s1.words[11] = c[11], s1.words[10] = c[10], s1.words[ 9] = c[ 9], s1.words[ 8] = c[ 8], s1.words[ 7] = c[ 7], s1.words[ 6] = c[ 6], s1.words[ 5] = c[ 5], s1.words[ 4] = c[ 4], s1.words[ 3] = c[ 3], s1.words[ 2] = c[ 2], s1.words[ 1] = c[ 1], s1.words[ 0] = c[ 0];
s2.words[11] = 0, s2.words[10] = 0, s2.words[ 9] = 0, s2.words[ 8] = 0, s2.words[ 7] = 0, s2.words[ 6] = c[23], s2.words[ 5] = c[22], s2.words[ 4] = c[21], s2.words[ 3] = 0, s2.words[ 2] = 0, s2.words[ 1] = 0, s2.words[ 0] = 0;
s3.words[11] = c[23], s3.words[10] = c[22], s3.words[ 9] = c[21], s3.words[ 8] = c[20], s3.words[ 7] = c[19], s3.words[ 6] = c[18], s3.words[ 5] = c[17], s3.words[ 4] = c[16], s3.words[ 3] = c[15], s3.words[ 2] = c[14], s3.words[ 1] = c[13], s3.words[ 0] = c[12];
s4.words[11] = c[20], s4.words[10] = c[19], s4.words[ 9] = c[18], s4.words[ 8] = c[17], s4.words[ 7] = c[16], s4.words[ 6] = c[15], s4.words[ 5] = c[14], s4.words[ 4] = c[13], s4.words[ 3] = c[12], s4.words[ 2] = c[23], s4.words[ 1] = c[22], s4.words[ 0] = c[21];
s5.words[11] = c[19], s5.words[10] = c[18], s5.words[ 9] = c[17], s5.words[ 8] = c[16], s5.words[ 7] = c[15], s5.words[ 6] = c[14], s5.words[ 5] = c[13], s5.words[ 4] = c[12], s5.words[ 3] = c[20], s5.words[ 2] = 0, s5.words[ 1] = c[23], s5.words[ 0] = 0;
s6.words[11] = 0, s6.words[10] = 0, s6.words[ 9] = 0, s6.words[ 8] = 0, s6.words[ 7] = c[23], s6.words[ 6] = c[22], s6.words[ 5] = c[21], s6.words[ 4] = c[20], s6.words[ 3] = 0, s6.words[ 2] = 0, s6.words[ 1] = 0, s6.words[ 0] = 0;
s7.words[11] = 0, s7.words[10] = 0, s7.words[ 9] = 0, s7.words[ 8] = 0, s7.words[ 7] = 0, s7.words[ 6] = 0, s7.words[ 5] = c[23], s7.words[ 4] = c[22], s7.words[ 3] = c[21], s7.words[ 2] = 0, s7.words[ 1] = 0, s7.words[ 0] = c[20];
s8.words[11] = c[22], s8.words[10] = c[21], s8.words[ 9] = c[20], s8.words[ 8] = c[19], s8.words[ 7] = c[18], s8.words[ 6] = c[17], s8.words[ 5] = c[16], s8.words[ 4] = c[15], s8.words[ 3] = c[14], s8.words[ 2] = c[13], s8.words[ 1] = c[12], s8.words[ 0] = c[23];
s9.words[11] = 0, s9.words[10] = 0, s9.words[ 9] = 0, s9.words[ 8] = 0, s9.words[ 7] = 0, s9.words[ 6] = 0, s9.words[ 5] = 0, s9.words[ 4] = c[23], s9.words[ 3] = c[22], s9.words[ 2] = c[21], s9.words[ 1] = c[20], s9.words[ 0] = 0;
s10.words[11] = 0, s10.words[10] = 0, s10.words[ 9] = 0, s10.words[ 8] = 0, s10.words[ 7] = 0, s10.words[ 6] = 0, s10.words[ 5] = 0, s10.words[ 4] = c[23], s10.words[ 3] = c[23], s10.words[ 2] = 0, s10.words[ 1] = 0, s10.words[ 0] = 0;
// intermediate results
FPGA_BUFFER sum0, sum1, difference;
/* Step 1. */
fpga_modular_add(&s1, &s3, &sum0); // sum0 = s1 + s3
fpga_modular_add(&s2, &s2, &sum1); // sum1 = 2*s2
fpga_modular_sub(&ECDSA_ZERO, &s8, &difference); // difference = -s8
/* Step 2. */
fpga_modular_add(&sum0, &s4, &sum0); // sum0 = s1 + s3 + s4
fpga_modular_add(&sum1, &s5, &sum1); // sum1 = 2*s2 + s5
fpga_modular_sub(&difference, &s9, &difference); // difference = -(s8 + s9)
/* Step 3. */
fpga_modular_add(&sum0, &s6, &sum0); // sum0 = s1 + s3 + s4 + s6
fpga_modular_add(&sum1, &s7, &sum1); // sum1 = 2*s2 + s5 + s7
fpga_modular_sub(&difference, &s10, &difference); // difference = -(s8 + s9 + s10)
/* Step 4. */
fpga_modular_add(&sum0, &sum1, &sum0); // sum0 = s1 + 2*s2 + 2*s3 + s4 + s5
// fpga_modular_add(<dummy>, <dummy>, &sum1); // dummy cycle, result ignored
fpga_modular_sub(&difference, &ECDSA_ZERO, &difference); // compulsory cycle to keep difference constant for next stage
/* Step 5. */
fpga_modular_add(&sum0, &difference, p); // p = s1 + 2*s2 + s3 + s4 + s5 + s6 + s7 - s8 - s9 - s10
// fpga_modular_add(<dummy>, <dummy>, &sum1); // dummy cycle, result ignored
// fpga_modular_add(<dummy>, <dummy>, &difference); // dummy cycle, result ignored
}
#endif
#if USE_CURVE == 1
//------------------------------------------------------------------------------
void fpga_modular_inv23_p256(const FPGA_BUFFER *A, FPGA_BUFFER *A2, FPGA_BUFFER *A3)
//------------------------------------------------------------------------------
//
// This uses the addition chain from
//
// < https://briansmith.org/ecc-inversion-addition-chains-01 >
//
// to calculate A2 = A^-2 and A3 = A^-3.
//
//------------------------------------------------------------------------------
{
// counter
int cyc_cnt;
// working variables
FPGA_BUFFER R1, R2, X1, X2, X3, X6, X12, X15, X30, X32;
// first obtain intermediate helper quantities (X1..X32)
// X1
fpga_multiword_copy(A, &X1);
// X2
fpga_modular_mul(&X1, &X1, &R1);
fpga_modular_mul(&R1, &X1, &X2);
// X3
fpga_modular_mul(&X2, &X2, &R1);
fpga_modular_mul(&R1, &X1, &X3);
// X6
fpga_multiword_copy(&X3, &R1);
for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R2, &X3, &X6);
// X12
fpga_multiword_copy(&X6, &R1);
for (cyc_cnt=0; cyc_cnt<6; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X6, &X12);
// X15
fpga_multiword_copy(&X12, &R1);
for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R2, &X3, &X15);
// X30
fpga_multiword_copy(&X15, &R1);
for (cyc_cnt=0; cyc_cnt<15; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R2, &X15, &X30);
// X32
fpga_multiword_copy(&X30, &R1);
for (cyc_cnt=0; cyc_cnt<2; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X2, &X32);
// now compute the final results
fpga_multiword_copy(&X32, &R1);
for (cyc_cnt=0; cyc_cnt<32; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X1, &R2);
for (cyc_cnt=0; cyc_cnt<128; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R2, &R2, &R1);
else fpga_modular_mul(&R1, &R1, &R2);
}
fpga_modular_mul(&R2, &X32, &R1);
for (cyc_cnt=0; cyc_cnt<32; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X32, &R2);
for (cyc_cnt=0; cyc_cnt<30; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R2, &R2, &R1);
else fpga_modular_mul(&R1, &R1, &R2);
}
fpga_modular_mul(&R2, &X30, &R1);
fpga_modular_mul(&R1, &R1, &R2);
fpga_modular_mul(&R2, &R2, &R1);
// A2 obtained
fpga_multiword_copy(&R1, A2);
// now calculate compute inverse cubed from inverse squared
fpga_modular_mul(&R1, &R1, &R2);
fpga_modular_mul(&R2, A, &R1);
// A3 obtained
fpga_multiword_copy(&R1, A3);
}
#endif
#if USE_CURVE == 2
//------------------------------------------------------------------------------
void fpga_modular_inv23_p384(const FPGA_BUFFER *A, FPGA_BUFFER *A2, FPGA_BUFFER *A3)
//------------------------------------------------------------------------------
//
// This uses the addition chain from
//
// < https://briansmith.org/ecc-inversion-addition-chains-01 >
//
// to calculate A2 = A^-2 and A3 = A^-3.
//
//------------------------------------------------------------------------------
{
// counter
int cyc_cnt;
// working variables
FPGA_BUFFER R1, R2, X1, X2, X3, X6, X12, X15, X30, X60, X120;
// first obtain intermediate helper quantities (X1..X120)
// X1
fpga_multiword_copy(A, &X1);
// X2
fpga_modular_mul(&X1, &X1, &R1);
fpga_modular_mul(&R1, &X1, &X2);
// X3
fpga_modular_mul(&X2, &X2, &R1);
fpga_modular_mul(&R1, &X1, &X3);
// X6
fpga_multiword_copy(&X3, &R1);
for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R2, &X3, &X6);
// X12
fpga_multiword_copy(&X6, &R1);
for (cyc_cnt=0; cyc_cnt<6; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X6, &X12);
// X15
fpga_multiword_copy(&X12, &R1);
for (cyc_cnt=0; cyc_cnt<3; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R2, &X3, &X15);
// X30
fpga_multiword_copy(&X15, &R1);
for (cyc_cnt=0; cyc_cnt<15; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R2, &X15, &X30);
// X60
fpga_multiword_copy(&X30, &R1);
for (cyc_cnt=0; cyc_cnt<30; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X30, &X60);
// X120
fpga_multiword_copy(&X60, &R1);
for (cyc_cnt=0; cyc_cnt<60; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X60, &X120);
// now compute the final results
fpga_multiword_copy(&X120, &R1);
for (cyc_cnt=0; cyc_cnt<120; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X120, &R2);
for (cyc_cnt=0; cyc_cnt<15; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R2, &R2, &R1);
else fpga_modular_mul(&R1, &R1, &R2);
}
fpga_modular_mul(&R1, &X15, &R2);
for (cyc_cnt=0; cyc_cnt<31; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R2, &R2, &R1);
else fpga_modular_mul(&R1, &R1, &R2);
}
fpga_modular_mul(&R1, &X30, &R2);
fpga_modular_mul(&R2, &R2, &R1);
fpga_modular_mul(&R1, &R1, &R2);
fpga_modular_mul(&R2, &X2, &R1);
for (cyc_cnt=0; cyc_cnt<94; cyc_cnt++)
{ if (!(cyc_cnt % 2)) fpga_modular_mul(&R1, &R1, &R2);
else fpga_modular_mul(&R2, &R2, &R1);
}
fpga_modular_mul(&R1, &X30, &R2);
fpga_modular_mul(&R2, &R2, &R1);
fpga_modular_mul(&R1, &R1, &R2);
// A2 obtained
fpga_multiword_copy(&R2, A2);
// now calculate compute inverse cubed from inverse squared
fpga_modular_mul(&R2, &R2, &R1);
fpga_modular_mul(&R1, A, &R2);
// A3 obtained
fpga_multiword_copy(&R2, A3);
}
#endif
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------