aboutsummaryrefslogblamecommitdiff
path: root/ecdsa_fpga_model.cpp
blob: 19be3c5fd1f58324f5d44365eeadf260cd25d77d (plain) (tree)
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541


































































































                                                                                
                    
                                                                             
      






















































































































































































































































































































































































































































                                                                                             
//------------------------------------------------------------------------------
//
// ecdsa_fpga_model.cpp
// --------------------------------------------
// Base point scalar multiplier model for ECDSA
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------


//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>


//------------------------------------------------------------------------------
// Microcode Switch
//------------------------------------------------------------------------------
#define USE_MICROCODE


//------------------------------------------------------------------------------
// More Headers
//------------------------------------------------------------------------------
#include "ecdsa_fpga_model.h"


//------------------------------------------------------------------------------
// Prototypes
//------------------------------------------------------------------------------
void fpga_model_init ();

bool test_base_point_multiplier (const FPGA_BUFFER *k,
                                 const FPGA_BUFFER *qx,
                                 const FPGA_BUFFER *qy);

bool abuse_internal_point_adder   ();
bool abuse_internal_point_doubler ();


//------------------------------------------------------------------------------
// Locals
//------------------------------------------------------------------------------
static FPGA_BUFFER ecdsa_d_nsa;
static FPGA_BUFFER ecdsa_qx_nsa;
static FPGA_BUFFER ecdsa_qy_nsa;

static FPGA_BUFFER ecdsa_k_nsa;
static FPGA_BUFFER ecdsa_rx_nsa;
static FPGA_BUFFER ecdsa_ry_nsa;

static FPGA_BUFFER ecdsa_d_random;
static FPGA_BUFFER ecdsa_qx_random;
static FPGA_BUFFER ecdsa_qy_random;


//------------------------------------------------------------------------------
int main()
//------------------------------------------------------------------------------
{
    bool    ok;     // flag

        // initialize buffers
    fpga_multiword_init();
    fpga_modular_init();
    fpga_curve_init();
    fpga_model_init();

#ifdef USE_MICROCODE
	printf("ECDSA_UOP_OPERAND_COUNT == %d\n\n", ECDSA_UOP_OPERAND_COUNT);
#endif

		// test base point multiplier: Q = d * G
    printf("Trying to derive public key from private key (NSA test vector)...\n\n");
    ok = test_base_point_multiplier(&ecdsa_d_nsa, &ecdsa_qx_nsa, &ecdsa_qy_nsa);
    if (!ok) return EXIT_FAILURE;

        // test base point multiplier: R = k * G
    printf("Trying to sign something (NSA test vector)...\n\n");
    ok = test_base_point_multiplier(&ecdsa_k_nsa, &ecdsa_rx_nsa, &ecdsa_ry_nsa);
    if (!ok) return EXIT_FAILURE;

		// test base point multiplier: Q = d * G
    printf("Trying to derive public key from private key (random test vector)...\n\n");
    ok = test_base_point_multiplier(&ecdsa_d_random, &ecdsa_qx_random, &ecdsa_qy_random);
    if (!ok) return EXIT_FAILURE;

        // test base point multiplier: O = n * G
    printf("Trying to multiply the base point by its order...\n\n");
    ok = test_base_point_multiplier(&ECDSA_N, &ECDSA_ZERO, &ECDSA_ZERO);
    if (!ok) return EXIT_FAILURE;

        // now run some intricate tests...

        /* Excerpt from the commit message e718fdfae6443466e566ed6ce1515cdecc215ac0:

        The model does multiplication using the double-and-add algorithm. When adding
        two points P and Q on curves P-256 and P-384, four special cases must be
        considered. One of them is P = Q, in that situation the explicit addition
        formulae don't work and either 2*P or 2*Q must be returned from the addition
        routine. In this model Q is always the base point G, so when P = G, then 2*G
        must be returned. Since G is fixed, this model stores precomputed point H = 2*G
        and returns it when adding G + G for true constant-time operation.
    
        During multiplication the bits of k are scanned left-to-right, so doubling is
        done before addition. This way the only situation when both inputs to the
        addition routine are equal to G is when after doubling the result is G. This in
        its turn is only possible when k = n + 2 (where n is the order of the base
        point G). ECDSA requires integer k to be [1, n-1], one of the side effects
        is that the model has a code path that will never be used under normal
        operation. This code path can be verified by first multiplying by k = 2
        (special handling for P = G not triggered), then multiplying by k = n + 2
        (special handling for P = G triggered). Both multiplications should produce
        the same output. In the former case the output will be calculated on-the-fly,
        in the latter case the pre-computed coordinates of H will be used.
         */


		// test base point multiplier: H = 2 * G
    FPGA_BUFFER two;
    fpga_modular_add(&ECDSA_ONE, &ECDSA_ONE, &two);

    printf("Trying to double the base point...\n\n");
    ok = test_base_point_multiplier(&two, &ECDSA_HX, &ECDSA_HY);
    if (!ok) return EXIT_FAILURE;

		// test base point multiplier: G = (n + 1) * G
    FPGA_BUFFER n1;
    fpga_modular_add(&ECDSA_N, &ECDSA_ONE, &n1);	// n1 = n + 1

    printf("Trying to multiply the base point by its order plus one...\n\n");
    ok = test_base_point_multiplier(&n1, &ECDSA_GX, &ECDSA_GY);
    if (!ok) return EXIT_FAILURE;

        // test base point multiplier: H = (n + 2) * G
    FPGA_BUFFER n2;
    fpga_modular_add(&ECDSA_N, &two, &n2);	// n2 = n + two

    printf("Trying to multiply the base point by its order plus two...\n\n");
    ok = test_base_point_multiplier(&n2, &ECDSA_HX, &ECDSA_HY);
    if (!ok) return EXIT_FAILURE;

        // ..and some more tests

        // try to abuse internal point doubler
    ok = abuse_internal_point_doubler();
    if (!ok) return EXIT_FAILURE;
    
        // try to abuse internal point adder
    ok = abuse_internal_point_adder();
    if (!ok) return EXIT_FAILURE;

        // everything went just fine
    return EXIT_SUCCESS;
}


//------------------------------------------------------------------------------
void fpga_model_init()
//------------------------------------------------------------------------------
{
    int w;  // word counter

    FPGA_BUFFER tmp_d_nsa  = ECDSA_D_NSA_INIT, tmp_k_nsa = ECDSA_K_NSA_INIT;
    FPGA_BUFFER tmp_qx_nsa = ECDSA_QX_NSA_INIT, tmp_rx_nsa = ECDSA_RX_NSA_INIT;
    FPGA_BUFFER tmp_qy_nsa = ECDSA_QY_NSA_INIT, tmp_ry_nsa = ECDSA_RY_NSA_INIT;

	FPGA_BUFFER tmp_d_random  = ECDSA_D_RANDOM_INIT;
    FPGA_BUFFER tmp_qx_random = ECDSA_QX_RANDOM_INIT;
    FPGA_BUFFER tmp_qy_random = ECDSA_QY_RANDOM_INIT;

        // fill buffers for large multi-word integers
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
    {
        ecdsa_d_nsa.words[w] = tmp_d_nsa.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
        ecdsa_qx_nsa.words[w] = tmp_qx_nsa.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
        ecdsa_qy_nsa.words[w] = tmp_qy_nsa.words[FPGA_OPERAND_NUM_WORDS - (w+1)];

        ecdsa_k_nsa.words[w] = tmp_k_nsa.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
        ecdsa_rx_nsa.words[w] = tmp_rx_nsa.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
        ecdsa_ry_nsa.words[w] = tmp_ry_nsa.words[FPGA_OPERAND_NUM_WORDS - (w+1)];

		ecdsa_d_random.words[w] = tmp_d_random.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
        ecdsa_qx_random.words[w] = tmp_qx_random.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
        ecdsa_qy_random.words[w] = tmp_qy_random.words[FPGA_OPERAND_NUM_WORDS - (w+1)];
    }
}


//------------------------------------------------------------------------------
bool test_base_point_multiplier (const FPGA_BUFFER *k,
                                 const FPGA_BUFFER *qx,
                                 const FPGA_BUFFER *qy)
//------------------------------------------------------------------------------
//
// k - multiplier
//
// qx, qy - expected coordinates of product
//
// Returns true when point (rx,ry) = k * G matches the point (qx,qy).
//
//------------------------------------------------------------------------------
{
    bool ok;                // flag
    FPGA_BUFFER rx, ry;     // result

        // run the model
    fpga_curve_base_scalar_multiply(k, &rx, &ry);

        // handle result
    ok = compare_fpga_buffers(qx, qy, &rx, &ry);

    if (!ok)
    {   printf("\n    ERROR\n\n");
        return false;
    }
    else printf("\n    OK\n\n");

        // everything went just fine
    return true;
}


//------------------------------------------------------------------------------
bool compare_fpga_buffers(  const FPGA_BUFFER *az,
                            const FPGA_BUFFER *bz)
//------------------------------------------------------------------------------
//
// Compare z-coordinates of two points and return true when they match.
//
//------------------------------------------------------------------------------
{
    int w;  // word counter

        // print all the values
    print_fpga_buffer("  Expected:   Z = ", az);
    print_fpga_buffer("  Calculated: Z = ", bz);

        // compare values
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
    {
            // compare x
        if (az->words[w] != bz->words[w]) return false;
    }

        // values are the same
    return true;
}


//------------------------------------------------------------------------------
bool compare_fpga_buffers(  const FPGA_BUFFER *ax,
                            const FPGA_BUFFER *ay,
                            const FPGA_BUFFER *bx,
                            const FPGA_BUFFER *by)
//------------------------------------------------------------------------------
//
// Compare affine coordinates of two points and return true when they match.
//
//------------------------------------------------------------------------------
{
    int w;  // word counter

        // print all the values
    print_fpga_buffer("  Expected:   X = ", ax);
    print_fpga_buffer("  Calculated: X = ", bx);
    printf("\n");
    print_fpga_buffer("  Expected:   Y = ", ay);
    print_fpga_buffer("  Calculated: Y = ", by);

        // compare values
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
    {
            // compare x
        if (ax->words[w] != bx->words[w]) return false;

            // compare y
        if (ay->words[w] != by->words[w]) return false;
    }

        // values are the same
    return true;
}


//------------------------------------------------------------------------------
bool compare_fpga_buffers(  const FPGA_BUFFER *ax,
                            const FPGA_BUFFER *ay,
                            const FPGA_BUFFER *az,
                            const FPGA_BUFFER *bx,
                            const FPGA_BUFFER *by,
                            const FPGA_BUFFER *bz)
//------------------------------------------------------------------------------
//
// Compare projective coordinates of two points and return true when they match.
//
//------------------------------------------------------------------------------
{
    int w;  // word counter

        // print all the values
    print_fpga_buffer("  Expected:   X = ", ax);
    print_fpga_buffer("  Calculated: X = ", bx);
    printf("\n");
    print_fpga_buffer("  Expected:   Y = ", ay);
    print_fpga_buffer("  Calculated: Y = ", by);
    printf("\n");
    print_fpga_buffer("  Expected:   Z = ", az);
    print_fpga_buffer("  Calculated: Z = ", bz);

        // compare values
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
    {
            // compare x
        if (ax->words[w] != bx->words[w]) return false;

            // compare y
        if (ay->words[w] != by->words[w]) return false;

            // compare z
        if (az->words[w] != bz->words[w]) return false;
    }

        // values are the same
    return true;
}


//------------------------------------------------------------------------------
void print_fpga_buffer(const char *s, const FPGA_BUFFER *buf)
//------------------------------------------------------------------------------
//
// Pretty print large multi-word integer.
//
//------------------------------------------------------------------------------
{
    int w;  // word counter

        // print header
    printf("%s", s);

        // print all bytes
    for (w=FPGA_OPERAND_NUM_WORDS; w>0; w--)
    {   
        printf("%08x", buf->words[w-1]);

            // insert space after every group of 4 bytes
        if (w > 1) printf(" ");
    }

        // print footer
    printf("\n");
}


//------------------------------------------------------------------------------
void print_fpga_buffer_nodelim(const char *s, const FPGA_BUFFER *buf)
//------------------------------------------------------------------------------
//
// Pretty print large multi-word integer.
//
//------------------------------------------------------------------------------
{
    int w;  // word counter

        // print header
    printf("%s", s);

        // print all bytes
    for (w=FPGA_OPERAND_NUM_WORDS; w>0; w--)
        printf("%08x", buf->words[w-1]);

        // print footer
    printf("\n");
}


//------------------------------------------------------------------------------
bool abuse_internal_point_doubler()
//------------------------------------------------------------------------------
//
// This routine tries to abuse the internal curve point doubler by forcing it
// to double point at infinity.
//
//------------------------------------------------------------------------------
{
    int w;      // word counter
    bool ok;    // flag
    
    FPGA_BUFFER px, py, pz;     // input
    FPGA_BUFFER qx, qy, qz;     // output

        // set P.X and P.Y to some "random" garbage and P.Z to zero
    for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
    {   px.words[w] = ECDSA_GX.words[w] ^ ECDSA_HX.words[w];
        py.words[w] = ECDSA_GY.words[w] ^ ECDSA_HY.words[w];
    }
    fpga_multiword_copy(&ECDSA_ZERO, &pz);

        // try to double point at infinity (should produce point at infinity)
    printf("Trying to double something at infinity...\n\n");
    fpga_curve_double_jacobian(&px, &py, &pz, &qx, &qy, &qz);

        // handle result
    ok = compare_fpga_buffers(&ECDSA_ZERO, &qz);
    if (! ok)
    {   printf("\n    ERROR\n\n");
        return false;
    }
    else printf("\n    OK\n\n");

        // everything went just fine
    return true;
}


//------------------------------------------------------------------------------
bool abuse_internal_point_adder()
//------------------------------------------------------------------------------
//
// This routine tries to abuse the internal curve point adder by forcing it to
// go throgh all the possible "corner cases".
//
//------------------------------------------------------------------------------
{
    int w;      // word counter 
    bool ok;    // flag

    FPGA_BUFFER px, py, pz;     // input
    FPGA_BUFFER rx, ry, rz;     // output

    //
    // try to add point at infinity to the base point
    //
    {
            // set P.X and P.Y to some "random" garbage and P.Z to zero
        for (w=0; w<FPGA_OPERAND_NUM_WORDS; w++)
        {   px.words[w] = ECDSA_GX.words[w] ^ ECDSA_HX.words[w];
            py.words[w] = ECDSA_GY.words[w] ^ ECDSA_HY.words[w];
        }
        fpga_multiword_copy(&ECDSA_ZERO, &pz);

            // run addition proceduce
        printf("Trying to add something at infinity to the base point...\n\n");
        fpga_curve_add_jacobian(&px, &py, &pz, &rx, &ry, &rz);

            // handle result
        ok = compare_fpga_buffers(&ECDSA_GX, &ECDSA_GY, &ECDSA_ONE, &rx, &ry, &rz);
        if (! ok)
        {   printf("\n    ERROR\n\n");
            return false;
        }
        else printf("\n    OK\n\n");
    }

    //
    // try to add the base point to itself
    //
    {
            // set P to G
        fpga_multiword_copy(&ECDSA_GX, &px);
        fpga_multiword_copy(&ECDSA_GY, &py);
        fpga_multiword_copy(&ECDSA_ONE, &pz);

            // run addition proceduce
        printf("Trying to add the base point to itself...\n\n");
        fpga_curve_add_jacobian(&px, &py, &pz, &rx, &ry, &rz);

            // handle result
        ok = compare_fpga_buffers(&ECDSA_HX, &ECDSA_HY, &ECDSA_ONE, &rx, &ry, &rz);
        if (! ok)
        {   printf("\n    ERROR\n\n");
            return false;
        }
        else printf("\n    OK\n\n");
    }

    //
    // try to add the base point to its opposite
    //
    {
            // set P to (G.X, -G.Y, 1)
        fpga_multiword_copy(&ECDSA_ZERO, &px);
        fpga_multiword_copy(&ECDSA_ZERO, &py);
        fpga_multiword_copy(&ECDSA_ONE,  &pz);

        fpga_modular_add(&ECDSA_ZERO, &ECDSA_GX, &px);
        fpga_modular_sub(&ECDSA_ZERO, &ECDSA_GY, &py);

            // run addition proceduce
        printf("Trying to add the base point to its opposite...\n\n");
        fpga_curve_add_jacobian(&px, &py, &pz, &rx, &ry, &rz);

            // handle result
        ok = compare_fpga_buffers(&ECDSA_ONE, &ECDSA_ONE, &ECDSA_ZERO, &rx, &ry, &rz);
        if (! ok)
        {   printf("\n    ERROR\n\n");
            return false;
        }
        else printf("\n    OK\n\n");
    }

        // everything went just fine
    return true;
}


//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------