//------------------------------------------------------------------------------
//
// ecdsa_fpga_microcode.cpp
// --------------------------------
// Microcode Architecture for ECDSA
//
// Authors: Pavel Shatov
//
// Copyright (c) 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Required for Microcode Routines
//------------------------------------------------------------------------------
#define USE_MICROCODE
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "ecdsa_fpga_model.h"
//------------------------------------------------------------------------------
// Global Buffers
//------------------------------------------------------------------------------
FPGA_BUFFER BUF_LO[ECDSA_UOP_OPERAND_COUNT];
FPGA_BUFFER BUF_HI[ECDSA_UOP_OPERAND_COUNT];
//------------------------------------------------------------------------------
// Global Flags
//------------------------------------------------------------------------------
bool uop_flagz_r0z;
bool uop_flagz_r1z;
//------------------------------------------------------------------------------
void uop_move(UOP_BANK src, int s_op, UOP_BANK dst, int d_op)
//------------------------------------------------------------------------------
{
FPGA_BUFFER *s_ptr = NULL;
FPGA_BUFFER *d_ptr = NULL;
if (src == BANK_LO) s_ptr = &BUF_LO[s_op];
if (src == BANK_HI) s_ptr = &BUF_HI[s_op];
if (dst == BANK_LO) d_ptr = &BUF_LO[d_op];
if (dst == BANK_HI) d_ptr = &BUF_HI[d_op];
fpga_multiword_copy(s_ptr, d_ptr);
}
//------------------------------------------------------------------------------
void uop_cmpz(UOP_BANK src, int s_op)
//------------------------------------------------------------------------------
{
bool flagz;
FPGA_BUFFER *s_ptr = NULL;
if (src == BANK_LO) s_ptr = &BUF_LO[s_op];
if (src == BANK_HI) s_ptr = &BUF_HI[s_op];
flagz = fpga_multiword_is_zero(s_ptr);
switch (s_op)
{
case CYCLE_R0Z:
uop_flagz_r0z = flagz;
break;
case CYCLE_R1Z:
uop_flagz_r1z = flagz;
break;
}
}
//------------------------------------------------------------------------------
void uop_calc(UOP_MATH math,
UOP_BANK src, int s_op1, int s_op2,
UOP_BANK dst, int d_op)
//------------------------------------------------------------------------------
{
FPGA_BUFFER *s_ptr1 = NULL;
FPGA_BUFFER *s_ptr2 = NULL;
FPGA_BUFFER *d_ptr = NULL;
FPGA_BUFFER *n_ptr = NULL;
if (src == BANK_LO)
{ s_ptr1 = &BUF_LO[s_op1];
s_ptr2 = &BUF_LO[s_op2];
}
if (src == BANK_HI)
{ s_ptr1 = &BUF_HI[s_op1];
s_ptr2 = &BUF_HI[s_op2];
}
if (dst == BANK_LO)
{ d_ptr = &BUF_LO[d_op];
}
if (dst == BANK_HI)
{ d_ptr = &BUF_HI[d_op];
}
if (math == ADD) fpga_modular_add(s_ptr1, s_ptr2, d_ptr);
if (math == SUB) fpga_modular_sub(s_ptr1, s_ptr2, d_ptr);
if (math == MUL) fpga_modular_mul(s_ptr1, s_ptr2, d_ptr);
#ifdef DUMP_UOP_OUTPUTS
if (math == ADD) dump_uop_output("ADD", d_ptr);
if (math == SUB) dump_uop_output("SUB", d_ptr);
if (math == MUL) dump_uop_output("MUL", d_ptr);
#endif
}
//------------------------------------------------------------------------------
void uop_load(const FPGA_BUFFER *mem, UOP_BANK dst, int d_op)
//------------------------------------------------------------------------------
{
FPGA_BUFFER *d_ptr = NULL;
if (dst == BANK_LO) d_ptr = &BUF_LO[d_op];
if (dst == BANK_HI) d_ptr = &BUF_HI[d_op];
fpga_multiword_copy(mem, d_ptr);
}
//------------------------------------------------------------------------------
void uop_stor(UOP_BANK src, int s_op, FPGA_BUFFER *mem)
//------------------------------------------------------------------------------
{
FPGA_BUFFER *s_ptr = NULL;
if (src == BANK_LO)
{ s_ptr = &BUF_LO[s_op];
}
if (src == BANK_HI)
{ s_ptr = &BUF_HI[s_op];
}
fpga_multiword_copy(s_ptr, mem);
}
//------------------------------------------------------------------------------
void fpga_modular_inv23_p256_microcode()
//------------------------------------------------------------------------------
//
// This computes A2 = RZ^-2 and A3 = RZ^-3.
//
// RZ is read from the lower bank, A2 and A3 are written to the upper bank.
//
//------------------------------------------------------------------------------
{
uop_loop;
//
// operand placement map:
//
// X1 - LO,HI (RZ)
// X2 - LO,HI
// X3 - LO,HI
// X6 - LO
// X12 - HI
// X15 - LO,HI
// X30 - HI
// X32 - LO,HI
/* BEGIN_MICROCODE: INVERT_P256 */
// first obtain intermediate helper quantities (X#)
// mirror X1 to HI bank (don't waste time copying to X1, just use RZ)
uop_move(BANK_LO, CYCLE_R0Z, BANK_HI, CYCLE_R0Z);
// compute X2 and mirror to the other bank
uop_calc(MUL, BANK_LO, CYCLE_R0Z, CYCLE_R0Z, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, CYCLE_R0Z, INVERT_R1, BANK_LO, INVERT_X2);
uop_move(BANK_LO, INVERT_X2, BANK_HI, INVERT_X2);
// compute X3 and mirror to the other bank
uop_calc(MUL, BANK_LO, INVERT_X2, INVERT_X2, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, INVERT_R1, CYCLE_R0Z, BANK_LO, INVERT_X3);
uop_move(BANK_LO, INVERT_X3, BANK_HI, INVERT_X3);
// compute X6 (stored in the lower bank)
uop_calc(MUL, BANK_LO, INVERT_X3, INVERT_X3, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc(MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, INVERT_R1, INVERT_X3, BANK_LO, INVERT_X6);
// compute X12 (stored in the upper bank)
uop_calc(MUL, BANK_LO, INVERT_X6, INVERT_X6, BANK_HI, INVERT_R1);
uop_cycle(5);
uop_calc_if_even(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc_if_odd (MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_LO, INVERT_R2, INVERT_X6, BANK_HI, INVERT_X12);
// compute X15 and mirror to the other bank
uop_calc(MUL, BANK_HI, INVERT_X12, INVERT_X12, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_X3, BANK_HI, INVERT_X15);
uop_move(BANK_HI, INVERT_X15, BANK_LO, INVERT_X15);
// compute X30 (stored in the upper bank)
uop_calc(MUL, BANK_HI, INVERT_X15, INVERT_X15, BANK_LO, INVERT_R1);
uop_cycle(14);
uop_calc_if_even(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc_if_odd (MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_X15, BANK_HI, INVERT_X30);
// compute X32 and mirror to the other bank
uop_calc(MUL, BANK_HI, INVERT_X30, INVERT_X30, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_X2, BANK_LO, INVERT_X32);
uop_move(BANK_LO, INVERT_X32, BANK_HI, INVERT_X32);
// now compute the final results
uop_calc(MUL, BANK_LO, INVERT_X32, INVERT_X32, BANK_HI, INVERT_R1);
uop_cycle(31);
uop_calc_if_even(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc_if_odd (MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_LO, INVERT_R2, CYCLE_R0Z, BANK_HI, INVERT_R1);
uop_cycle(128);
uop_calc_if_even(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc_if_odd (MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_HI, INVERT_R1, INVERT_X32, BANK_LO, INVERT_R2);
uop_cycle(32);
uop_calc_if_even(MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_calc_if_odd (MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_repeat();
uop_calc(MUL, BANK_LO, INVERT_R2, INVERT_X32, BANK_HI, INVERT_R1);
uop_cycle(30);
uop_calc_if_even(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc_if_odd (MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_HI, INVERT_R1, INVERT_X30, BANK_LO, INVERT_R2);
uop_calc(MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
// move A2 into the upper bank
uop_move(BANK_LO, INVERT_R2, BANK_HI, INVERT_A2);
// A3 ends up in the upper bank by itself
uop_calc(MUL, BANK_HI, INVERT_A2, INVERT_A2, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, CYCLE_R0Z, BANK_HI, INVERT_A3);
/* END_MICROCODE */
}
//------------------------------------------------------------------------------
void fpga_modular_inv23_p384_microcode()
//------------------------------------------------------------------------------
//
// This computes A2 = RZ^-2 and A3 = RZ^-3.
//
// RZ is read from the lower bank, A2 and A3 are written to the upper bank.
//
//------------------------------------------------------------------------------
{
uop_loop;
//
// operand placement map:
//
// X1 - LO,HI (RZ)
// X2 - LO,HI
// X3 - LO,HI
// X6 - LO
// X12 - HI
// X15 - LO,HI
// X30 - HI
// X32 - LO,HI
/* BEGIN_MICROCODE: INVERT_P384 */
// first obtain intermediate helper quantities (X#)
// mirror X1 to HI bank (don't waste time copying to X1, just use RZ)
uop_move(BANK_LO, CYCLE_R0Z, BANK_HI, CYCLE_R0Z);
// compute X2 and mirror to the other bank
uop_calc(MUL, BANK_LO, CYCLE_R0Z, CYCLE_R0Z, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, CYCLE_R0Z, INVERT_R1, BANK_LO, INVERT_X2);
uop_move(BANK_LO, INVERT_X2, BANK_HI, INVERT_X2);
// compute X3 and mirror to the other bank
uop_calc(MUL, BANK_LO, INVERT_X2, INVERT_X2, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, INVERT_R1, CYCLE_R0Z, BANK_LO, INVERT_X3);
uop_move(BANK_LO, INVERT_X3, BANK_HI, INVERT_X3);
// compute X6 (stored in the lower bank)
uop_calc(MUL, BANK_LO, INVERT_X3, INVERT_X3, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc(MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_calc(MUL, BANK_HI, INVERT_R1, INVERT_X3, BANK_LO, INVERT_X6);
// compute X12 (stored in the upper bank)
uop_calc(MUL, BANK_LO, INVERT_X6, INVERT_X6, BANK_HI, INVERT_R1);
uop_cycle(5);
uop_calc_if_even(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc_if_odd (MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_LO, INVERT_R2, INVERT_X6, BANK_HI, INVERT_X12);
// compute X15 and mirror to the other bank
uop_calc(MUL, BANK_HI, INVERT_X12, INVERT_X12, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_X3, BANK_HI, INVERT_X15);
uop_move(BANK_HI, INVERT_X15, BANK_LO, INVERT_X15);
// compute X30 (stored in the upper bank)
uop_calc(MUL, BANK_HI, INVERT_X15, INVERT_X15, BANK_LO, INVERT_R1);
uop_cycle(14);
uop_calc_if_even(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc_if_odd (MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_X15, BANK_HI, INVERT_X30);
// compute X60 (stored in the lower bank)
uop_calc(MUL, BANK_HI, INVERT_X30, INVERT_X30, BANK_LO, INVERT_R1);
uop_cycle(29);
uop_calc_if_even(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc_if_odd (MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_X30, BANK_LO, INVERT_X60);
// compute X120 (stored in the upper bank)
uop_calc(MUL, BANK_LO, INVERT_X60, INVERT_X60, BANK_HI, INVERT_R1);
uop_cycle(59);
uop_calc_if_even(MUL, BANK_HI, INVERT_R1, INVERT_R1, BANK_LO, INVERT_R2);
uop_calc_if_odd (MUL, BANK_LO, INVERT_R2, INVERT_R2, BANK_HI, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_LO, INVERT_R2, INVERT_X60, BANK_HI, INVERT_X120);
// now compute the final results
uop_calc(MUL, BANK_HI, INVERT_X120, INVERT_X120, BANK_LO, INVERT_R1);
uop_cycle(119);
uop_calc_if_even(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc_if_odd (MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_X120, BANK_LO, INVERT_R1);
uop_cycle(15);
uop_calc_if_even(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc_if_odd (MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_X15, BANK_LO, INVERT_R1);
uop_cycle(31);
uop_calc_if_even(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc_if_odd (MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_repeat();
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_X30, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_X2, BANK_HI, INVERT_R2);
uop_cycle(94);
uop_calc_if_even(MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
uop_calc_if_odd (MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_repeat();
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_X30, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, INVERT_R1, BANK_HI, INVERT_R2);
uop_calc(MUL, BANK_HI, INVERT_R2, INVERT_R2, BANK_LO, INVERT_R1);
// move A2 into the upper bank
uop_move(BANK_LO, INVERT_R1, BANK_HI, INVERT_A2);
// A3 ends up in the upper bank by itself
uop_calc(MUL, BANK_HI, INVERT_A2, INVERT_A2, BANK_LO, INVERT_R1);
uop_calc(MUL, BANK_LO, INVERT_R1, CYCLE_R0Z, BANK_HI, INVERT_A3);
/* END_MICROCODE */
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------