//------------------------------------------------------------------------------
//
// ecdsa_fpga_curve_microcode.cpp
// ----------------------------------------------
// Elliptic curve arithmetic procedures for ECDSA
//
// Authors: Pavel Shatov
//
// Copyright (c) 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Required for Microcode Routines
//------------------------------------------------------------------------------
#define USE_MICROCODE
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "ecdsa_fpga_model.h"
//------------------------------------------------------------------------------
//
// Doubles the point stored in CYCLE_R* and stores the result in CYCLE_S*.
//
//------------------------------------------------------------------------------
void fpga_curve_double_jacobian_microcode()
//------------------------------------------------------------------------------
{
// fpga_modular_mul(RZ, RZ, RZ2 ); // 2. RZ2 = RZ * RZ
// fpga_modular_sub(RX, RZ2, T1 ); // 3. T1 = RX - RZ2
// fpga_modular_add(RX, RZ2, T2 ); // 4. T2 = RX + RZ2
// fpga_modular_mul(T1, T2, T3 ); // 5. T3 = T1 * T2
// fpga_modular_add(T3, T3, T4 ); // 6a. T4 = T3 + T3
// fpga_modular_add(T3, T4, A ); // 6b. A = T3 + T4
// fpga_modular_add(RY, RY, B ); // 7. B = RY + RY
// fpga_modular_mul(B, RZ, SZ ); // 8. SZ = B * RZ [output]
// fpga_modular_mul(B, B, C ); // 9. C = B * B
// fpga_modular_mul(C, RX, D ); // 10. D = C * RX
// fpga_modular_mul(C, C, C2 ); // 11. C2 = C * C
// fpga_modular_mul(C2, DELTA, C2_2); // 12. C2_2 = C / 2
// fpga_modular_mul(A, A, A2 ); // 13. A2 = A * A
// fpga_modular_add(D, D, T1 ); // 14. T1 = D + D
// fpga_modular_sub(A2, T1, SX ); // 15. SX = A2 - T1 [output]
// fpga_modular_sub(D, SX, T1 ); // 16. T1 = D - SX
// fpga_modular_mul(A , T1, T2 ); // 17. T2 = A * T1
// fpga_modular_sub(T2, C2_2, SY ); // 18. SY = T2 - C2_2 [output]
/* BEGIN_MICROCODE: CYCLE_DOUBLE */
FPGA_BUFFER TEMP;
uop_calc(MUL, BANK_LO, CYCLE_RZ, CYCLE_RZ, BANK_HI, CYCLE_Z2);
uop_stor(BANK_HI, CYCLE_Z2, &TEMP); print_fpga_buffer("CYCLE_Z2 = ", &TEMP);
uop_calc(SUB, BANK_HI, CYCLE_RX, CYCLE_Z2, BANK_LO, CYCLE_T1);
uop_stor(BANK_LO, CYCLE_T1, &TEMP); print_fpga_buffer("CYCLE_T1 = ", &TEMP);
uop_calc(ADD, BANK_HI, CYCLE_RX, CYCLE_Z2, BANK_LO, CYCLE_T2);
uop_stor(BANK_LO, CYCLE_T2, &TEMP); print_fpga_buffer("CYCLE_T2 = ", &TEMP);
uop_calc(MUL, BANK_LO, CYCLE_T1, CYCLE_T2, BANK_HI, CYCLE_T3);
uop_stor(BANK_HI, CYCLE_T3, &TEMP); print_fpga_buffer("CYCLE_T3 = ", &TEMP);
uop_calc(ADD, BANK_HI, CYCLE_T3, CYCLE_T3, BANK_LO, CYCLE_T4);
uop_stor(BANK_LO, CYCLE_T4, &TEMP); print_fpga_buffer("CYCLE_T4 = ", &TEMP);
uop_move( BANK_LO, CYCLE_T4, BANK_HI, CYCLE_T4);
uop_calc(ADD, BANK_HI, CYCLE_T3, CYCLE_T4, BANK_LO, CYCLE_A);
uop_stor(BANK_LO, CYCLE_A, &TEMP); print_fpga_buffer("CYCLE_A = ", &TEMP);
uop_calc(ADD, BANK_HI, CYCLE_RY, CYCLE_RY, BANK_LO, CYCLE_B);
uop_stor(BANK_LO, CYCLE_B, &TEMP); print_fpga_buffer("CYCLE_B = ", &TEMP);
uop_calc(MUL, BANK_LO, CYCLE_B, CYCLE_RZ, BANK_HI, CYCLE_SZ);
uop_stor(BANK_HI, CYCLE_SZ, &TEMP); print_fpga_buffer("CYCLE_SZ = ", &TEMP);
uop_calc(MUL, BANK_LO, CYCLE_B, CYCLE_B, BANK_HI, CYCLE_C);
uop_stor(BANK_HI, CYCLE_C, &TEMP); print_fpga_buffer("CYCLE_C = ", &TEMP);
uop_calc(MUL, BANK_HI, CYCLE_C, CYCLE_RX, BANK_LO, CYCLE_D);
uop_stor(BANK_LO, CYCLE_D, &TEMP); print_fpga_buffer("CYCLE_D = ", &TEMP);
uop_calc(MUL, BANK_HI, CYCLE_C, CYCLE_C, BANK_LO, CYCLE_C2);
uop_stor(BANK_LO, CYCLE_C2, &TEMP); print_fpga_buffer("CYCLE_C2 = ", &TEMP);
uop_calc(MUL, BANK_LO, CYCLE_C2, CONST_DELTA, BANK_HI, CYCLE_C2_2);
uop_stor(BANK_HI, CYCLE_C2_2, &TEMP); print_fpga_buffer("CYCLE_C2_2 = ", &TEMP);
uop_calc(MUL, BANK_LO, CYCLE_A, CYCLE_A, BANK_HI, CYCLE_A2);
uop_stor(BANK_HI, CYCLE_A2, &TEMP); print_fpga_buffer("CYCLE_A2 = ", &TEMP);
uop_calc(ADD, BANK_LO, CYCLE_D, CYCLE_D, BANK_HI, CYCLE_T1);
uop_stor(BANK_HI, CYCLE_T1, &TEMP); print_fpga_buffer("CYCLE_T1 = ", &TEMP);
uop_calc(SUB, BANK_HI, CYCLE_A2, CYCLE_T1, BANK_LO, CYCLE_SX);
uop_stor(BANK_LO, CYCLE_SX, &TEMP); print_fpga_buffer("CYCLE_SX = ", &TEMP);
uop_calc(SUB, BANK_LO, CYCLE_D, CYCLE_SX, BANK_HI, CYCLE_T1);
uop_stor(BANK_HI, CYCLE_T1, &TEMP); print_fpga_buffer("CYCLE_T1 = ", &TEMP);
uop_move( BANK_HI, CYCLE_T1, BANK_LO, CYCLE_T1);
uop_calc(MUL, BANK_LO, CYCLE_A, CYCLE_T1, BANK_HI, CYCLE_T2);
uop_stor(BANK_HI, CYCLE_T2, &TEMP); print_fpga_buffer("CYCLE_T2 = ", &TEMP);
uop_calc(SUB, BANK_HI, CYCLE_T2, CYCLE_C2_2, BANK_LO, CYCLE_SY);
uop_stor(BANK_LO, CYCLE_SY, &TEMP); print_fpga_buffer("CYCLE_SY = ", &TEMP);
/* END_MICROCODE */
}
//------------------------------------------------------------------------------
//
// Adds the base point G to the point stored in CYCLE_S* and stores the result
// again in CYCLE_R*.
//
//------------------------------------------------------------------------------
void fpga_curve_add_jacobian_microcode()
{
//fpga_modular_mul(SZ, SZ, A) ; // 3. A = SZ * SZ
//fpga_modular_mul(A, SZ, B ); // 4. B = A * SZ
//fpga_modular_mul(A, &ECDSA_GX, C ); // 5. C = A * GX
//fpga_modular_mul(B, &ECDSA_GY, D ); // 6. D = B * GY
//fpga_modular_sub(C, SX, E ); // 7. E = C - SX
//fpga_modular_sub(D, SY, F ); // 8. F = D - SY
//fpga_modular_mul(E, SZ, RZ); // 10. RZ = E * SZ [output]
//fpga_modular_mul(E, E, G ); // 11. G = E * E
//fpga_modular_mul(E, G, H ); // 12. H = E * G
//fpga_modular_mul(G, SX, J ); // 13. J = G * SX
//fpga_modular_add(J, J, T1); // 14. T1 = J + J
//fpga_modular_mul(F, F, T2); // 15. T2 = F * F
//fpga_modular_sub(T2, T1, T3); // 16. T3 = T2 - T1
//fpga_modular_sub(T3, H, RX); // 17. RX = T3 - H [output]
//fpga_modular_sub(J, RX, T1); // 18. T1 = J - RX
//fpga_modular_mul(F, T1, T2); // 19. T2 = F * T1
//fpga_modular_mul(H, SY, T3); // 20. T3 = H * SY
//fpga_modular_sub(T2, T3, RY); // 21. RY = T2 - T3 [output]
/* BEGIN_MICROCODE: CYCLE_ADD */
uop_cmpz( BANK_HI, CYCLE_SZ);
uop_move( BANK_HI, CYCLE_SZ, BANK_LO, CYCLE_SZ);
uop_calc(MUL, BANK_LO, CYCLE_SZ, CYCLE_SZ, BANK_HI, CYCLE_A);
uop_calc(MUL, BANK_HI, CYCLE_A, CYCLE_SZ, BANK_LO, CYCLE_B);
uop_move( BANK_LO, CYCLE_B, BANK_HI, CYCLE_B);
uop_calc(MUL, BANK_HI, CYCLE_A, CONST_GX, BANK_LO, CYCLE_C);
uop_calc(MUL, BANK_HI, CYCLE_B, CONST_GY, BANK_LO, CYCLE_D);
uop_calc(SUB, BANK_LO, CYCLE_C, CYCLE_SX, BANK_HI, CYCLE_E);
uop_calc(SUB, BANK_LO, CYCLE_D, CYCLE_SY, BANK_HI, CYCLE_F);
uop_cmpz( BANK_HI, CYCLE_E);
uop_cmpz( BANK_HI, CYCLE_F);
uop_calc(MUL, BANK_HI, CYCLE_E, CYCLE_SZ, BANK_LO, CYCLE_RZ);
uop_calc(MUL, BANK_HI, CYCLE_E, CYCLE_E, BANK_LO, CYCLE_G);
uop_move( BANK_LO, CYCLE_G, BANK_HI, CYCLE_G);
uop_calc(MUL, BANK_HI, CYCLE_E, CYCLE_G, BANK_LO, CYCLE_H);
uop_calc(MUL, BANK_LO, CYCLE_G, CYCLE_SX, BANK_HI, CYCLE_J);
uop_calc(ADD, BANK_HI, CYCLE_J, CYCLE_J, BANK_LO, CYCLE_T1);
uop_calc(MUL, BANK_HI, CYCLE_F, CYCLE_F, BANK_LO, CYCLE_T2);
uop_calc(SUB, BANK_LO, CYCLE_T2, CYCLE_T1, BANK_HI, CYCLE_T3);
uop_move( BANK_HI, CYCLE_T3, BANK_LO, CYCLE_T3);
uop_calc(SUB, BANK_LO, CYCLE_T3, CYCLE_H, BANK_HI, CYCLE_RX);
uop_calc(SUB, BANK_HI, CYCLE_J, CYCLE_RX, BANK_LO, CYCLE_T1);
uop_move( BANK_HI, CYCLE_F, BANK_LO, CYCLE_F);
uop_calc(MUL, BANK_LO, CYCLE_F, CYCLE_T1, BANK_HI, CYCLE_T2);
uop_calc(MUL, BANK_LO, CYCLE_H, CYCLE_SY, BANK_HI, CYCLE_T3);
uop_calc(SUB, BANK_HI, CYCLE_T2, CYCLE_T3, BANK_LO, CYCLE_RY);
uop_move( BANK_LO, CYCLE_RY, BANK_HI, CYCLE_RY);
/* END_MICROCODE */
//
// handle special corner cases
//
if (uop_flagz_sz)
{
/* BEGIN_MICROCODE: CYCLE_ADD_AT_INFINITY */
uop_move(BANK_LO, CONST_GX, BANK_HI, CYCLE_RX);
uop_move(BANK_LO, CONST_GY, BANK_HI, CYCLE_RY);
uop_move(BANK_HI, CONST_ONE, BANK_LO, CYCLE_RZ);
/* END_MICROCODE */
}
else
{
if (uop_flagz_e)
{
if (uop_flagz_f)
{
/* BEGIN_MICROCODE: CYCLE_ADD_SAME_X_SAME_Y */
uop_move(BANK_LO, CONST_HX, BANK_HI, CYCLE_RX);
uop_move(BANK_LO, CONST_HY, BANK_HI, CYCLE_RY);
uop_move(BANK_HI, CONST_ONE, BANK_LO, CYCLE_RZ);
/* END_MICROCODE */
}
else
{
/* BEGIN_MICROCODE: CYCLE_ADD_SAME_X */
uop_move(BANK_LO, CONST_ONE, BANK_HI, CYCLE_RX);
uop_move(BANK_LO, CONST_ONE, BANK_HI, CYCLE_RY);
uop_move(BANK_HI, CONST_ZERO, BANK_LO, CYCLE_RZ);
/* END_MICROCODE */
}
}
else
{
/* BEGIN_MICROCODE: CYCLE_ADD_REGULAR */
uop_move(BANK_LO, CONST_ONE, BANK_HI, CYCLE_T1);
uop_move(BANK_LO, CONST_ONE, BANK_HI, CYCLE_T2);
uop_move(BANK_HI, CONST_ZERO, BANK_LO, CYCLE_T3);
/* END_MICROCODE */
}
}
}
#ifdef USE_MICROCODE
//------------------------------------------------------------------------------
void fpga_curve_base_scalar_multiply_microcode(const FPGA_BUFFER *k, FPGA_BUFFER *qx, FPGA_BUFFER *qy)
//------------------------------------------------------------------------------
{
int word_count, bit_count; // counters
FPGA_WORD k_word;
bool k_bit;
// initialize internal banks
fpga_multiword_copy(&ECDSA_ZERO, &BUF_LO[CONST_ZERO]);
fpga_multiword_copy(&ECDSA_ZERO, &BUF_HI[CONST_ZERO]);
fpga_multiword_copy(&ECDSA_ONE, &BUF_LO[CONST_ONE]);
fpga_multiword_copy(&ECDSA_ONE, &BUF_HI[CONST_ONE]);
fpga_multiword_copy(&ECDSA_DELTA, &BUF_LO[CONST_DELTA]);
fpga_multiword_copy(&ECDSA_DELTA, &BUF_HI[CONST_DELTA]);
fpga_multiword_copy(&ECDSA_GX, &BUF_LO[CONST_GX]);
fpga_multiword_copy(&ECDSA_GX, &BUF_HI[CONST_GX]);
fpga_multiword_copy(&ECDSA_GY, &BUF_LO[CONST_GY]);
fpga_multiword_copy(&ECDSA_GY, &BUF_HI[CONST_GY]);
fpga_multiword_copy(&ECDSA_HX, &BUF_LO[CONST_HX]);
fpga_multiword_copy(&ECDSA_HX, &BUF_HI[CONST_HX]);
fpga_multiword_copy(&ECDSA_HY, &BUF_LO[CONST_HY]);
fpga_multiword_copy(&ECDSA_HY, &BUF_HI[CONST_HY]);
/* BEGIN_MICROCODE: PREPARE */
// set initial value of R to point at infinity
uop_move(BANK_LO, CONST_ONE, BANK_HI, CYCLE_RX);
uop_move(BANK_LO, CONST_ONE, BANK_HI, CYCLE_RY);
uop_move(BANK_HI, CONST_ZERO, BANK_LO, CYCLE_RZ);
/* END_MICROCODE */
/* process bits of k left-to-right */
for (word_count=FPGA_OPERAND_NUM_WORDS; word_count>0; word_count--)
for (bit_count=FPGA_WORD_WIDTH; bit_count>0; bit_count--)
{
k_word = k->words[word_count-1];
k_bit = (k_word & (FPGA_WORD)(1 << (bit_count-1))) > 0;
// Banks of working cycle operands
// -------------------------------
// RX: HI
// RY: HI
// RZ: LO
// calculate S = 2 * R
fpga_curve_double_jacobian_microcode();
// Banks of working cycle operands
// -------------------------------
// SX: LO
// SY: LO
// SZ: HI
// always calculate R = S * G for constant-time operation
fpga_curve_add_jacobian_microcode();
// Banks of working cycle operands
// -------------------------------
// RX: HI
// RY: HI
// RZ: LO
if (!k_bit)
{
/* BEGIN_MICROCODE: CYCLE_K0 */
// revert to the value of S before addition if the current bit of k is not set
uop_move(BANK_LO, CYCLE_SX, BANK_HI, CYCLE_RX);
uop_move(BANK_LO, CYCLE_SY, BANK_HI, CYCLE_RY);
uop_move(BANK_HI, CYCLE_SZ, BANK_LO, CYCLE_RZ);
/* END_MICROCODE */
}
else
{
/* BEGIN_MICROCODE: CYCLE_K1 */
// do dummy overwrite for constant-time operation
uop_move(BANK_HI, CYCLE_RX, BANK_LO, CYCLE_SX);
uop_move(BANK_HI, CYCLE_RY, BANK_LO, CYCLE_SY);
uop_move(BANK_LO, CYCLE_RZ, BANK_HI, CYCLE_SZ);
/* END_MICROCODE */
}
FPGA_BUFFER TEMP;
//printf("wc = %d, bc = %d\n", word_count-1, bit_count-1);
uop_stor(BANK_LO, CYCLE_RX, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_RX = ", &TEMP);
uop_stor(BANK_LO, CYCLE_RY, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_RY = ", &TEMP);
uop_stor(BANK_LO, CYCLE_RZ, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_RZ = ", &TEMP);
uop_stor(BANK_LO, CYCLE_SX, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_SX = ", &TEMP);
uop_stor(BANK_LO, CYCLE_SY, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_SY = ", &TEMP);
uop_stor(BANK_LO, CYCLE_SZ, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_SZ = ", &TEMP);
uop_stor(BANK_LO, CYCLE_A, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_A = ", &TEMP);
uop_stor(BANK_LO, CYCLE_A2, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_A2 = ", &TEMP);
uop_stor(BANK_LO, CYCLE_B, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_B = ", &TEMP);
uop_stor(BANK_LO, CYCLE_C, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_C = ", &TEMP);
uop_stor(BANK_LO, CYCLE_C2, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_C2 = ", &TEMP);
uop_stor(BANK_LO, CYCLE_C2_2, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_C2_2 = ", &TEMP);
uop_stor(BANK_LO, CYCLE_D, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_D = ", &TEMP);
uop_stor(BANK_LO, CYCLE_E, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_E = ", &TEMP);
uop_stor(BANK_LO, CYCLE_F, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_F = ", &TEMP);
uop_stor(BANK_LO, CYCLE_G, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_G = ", &TEMP);
uop_stor(BANK_LO, CYCLE_H, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_H = ", &TEMP);
uop_stor(BANK_LO, CYCLE_J, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_J = ", &TEMP);
uop_stor(BANK_LO, CYCLE_Z2, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_Z2 = ", &TEMP);
uop_stor(BANK_LO, CYCLE_T1, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_T1 = ", &TEMP);
uop_stor(BANK_LO, CYCLE_T2, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_T2 = ", &TEMP);
uop_stor(BANK_LO, CYCLE_T3, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_T3 = ", &TEMP);
uop_stor(BANK_LO, CYCLE_T4, &TEMP); print_fpga_buffer_nodelim("LO:CYCLE_T4 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_RX, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_RX = ", &TEMP);
uop_stor(BANK_HI, CYCLE_RY, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_RY = ", &TEMP);
uop_stor(BANK_HI, CYCLE_RZ, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_RZ = ", &TEMP);
uop_stor(BANK_HI, CYCLE_SX, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_SX = ", &TEMP);
uop_stor(BANK_HI, CYCLE_SY, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_SY = ", &TEMP);
uop_stor(BANK_HI, CYCLE_SZ, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_SZ = ", &TEMP);
uop_stor(BANK_HI, CYCLE_A, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_A = ", &TEMP);
uop_stor(BANK_HI, CYCLE_A2, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_A2 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_B, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_B = ", &TEMP);
uop_stor(BANK_HI, CYCLE_C, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_C = ", &TEMP);
uop_stor(BANK_HI, CYCLE_C2, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_C2 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_C2_2, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_C2_2 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_D, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_D = ", &TEMP);
uop_stor(BANK_HI, CYCLE_E, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_E = ", &TEMP);
uop_stor(BANK_HI, CYCLE_F, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_F = ", &TEMP);
uop_stor(BANK_HI, CYCLE_G, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_G = ", &TEMP);
uop_stor(BANK_HI, CYCLE_H, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_H = ", &TEMP);
uop_stor(BANK_HI, CYCLE_J, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_J = ", &TEMP);
uop_stor(BANK_HI, CYCLE_Z2, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_Z2 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_T1, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_T1 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_T2, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_T2 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_T3, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_T3 = ", &TEMP);
uop_stor(BANK_HI, CYCLE_T4, &TEMP); print_fpga_buffer_nodelim("HI:CYCLE_T4 = ", &TEMP);
}
// now convert to affine coordinates
fpga_modular_inv23_microcode();
/* BEGIN_MICROCODE: CONVERT */
uop_calc(MUL, BANK_HI, INVERT_A2, CYCLE_RX, BANK_LO, CYCLE_SX);
uop_calc(MUL, BANK_HI, INVERT_A3, CYCLE_RY, BANK_LO, CYCLE_SY);
uop_cmpz(BANK_LO, CYCLE_RZ);
/* END_MICROCODE */
if (uop_flagz_rz)
{
/* BEGIN_MICROCODE: CONVERT_AT_INFINITY */
uop_move(BANK_LO, CONST_ZERO, BANK_HI, CYCLE_RX);
uop_move(BANK_LO, CONST_ZERO, BANK_HI, CYCLE_RY);
/* END_MICROCODE */
}
else
{
/* BEGIN_MICROCODE: CONVERT_REGULAR */
uop_move(BANK_LO, CYCLE_SX, BANK_HI, CYCLE_RX);
uop_move(BANK_LO, CYCLE_SY, BANK_HI, CYCLE_RY);
/* END_MICROCODE */
}
// return
uop_stor(BANK_HI, CYCLE_RX, qx);
uop_stor(BANK_HI, CYCLE_RY, qy);
}
#endif USE_MICROCODE
//------------------------------------------------------------------------------
void fpga_curve_double_jacobian_microcode_wrapper(const FPGA_BUFFER *rx,
const FPGA_BUFFER *ry,
const FPGA_BUFFER *rz,
FPGA_BUFFER *sx,
FPGA_BUFFER *sy,
FPGA_BUFFER *sz)
//------------------------------------------------------------------------------
{
uop_load(rx, BANK_HI, CYCLE_RX);
uop_load(ry, BANK_HI, CYCLE_RY);
uop_load(rz, BANK_LO, CYCLE_RZ);
fpga_curve_double_jacobian_microcode();
uop_stor(BANK_LO, CYCLE_SX, sx);
uop_stor(BANK_LO, CYCLE_SY, sy);
uop_stor(BANK_HI, CYCLE_SZ, sz);
}
//------------------------------------------------------------------------------
void fpga_curve_add_jacobian_microcode_wrapper(const FPGA_BUFFER *sx,
const FPGA_BUFFER *sy,
const FPGA_BUFFER *sz,
FPGA_BUFFER *rx,
FPGA_BUFFER *ry,
FPGA_BUFFER *rz)
//------------------------------------------------------------------------------
{
uop_load(sx, BANK_LO, CYCLE_SX);
uop_load(sy, BANK_LO, CYCLE_SY);
uop_load(sz, BANK_HI, CYCLE_SZ);
fpga_curve_add_jacobian_microcode();
uop_stor(BANK_HI, CYCLE_RX, rx);
uop_stor(BANK_HI, CYCLE_RY, ry);
uop_stor(BANK_LO, CYCLE_RZ, rz);
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------