aboutsummaryrefslogtreecommitdiff
path: root/x25519/x25519_fpga_curve_abstract.cpp
blob: bb551df20b511cd049633d451240493bfc34387e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
//------------------------------------------------------------------------------
//
// x25519_fpga_curve_abstract.cpp
// -----------------------------------------------
// Elliptic curve arithmetic procedures for X25519
//
// Authors: Pavel Shatov
//
// Copyright (c) 2015-2016, 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------


//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "x25519_fpga_model.h"


//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER X25519_G_X;		// x-coordinate of the base point
FPGA_BUFFER X25519_A24;		// coefficient (A + 2) / 4


//------------------------------------------------------------------------------
void fpga_curve_x25519_init()
//------------------------------------------------------------------------------
{
	int w_src, w_dst;	// word counters

	FPGA_WORD TMP_G_X[FPGA_OPERAND_NUM_WORDS]	= X25519_G_X_INIT;
	FPGA_WORD TMP_A24[FPGA_OPERAND_NUM_WORDS]	= X25519_A24_INIT;

		/* fill buffers for large multi-word integers */
	for (	w_src = 0, w_dst = FPGA_OPERAND_NUM_WORDS - 1;
			w_src < FPGA_OPERAND_NUM_WORDS;
			w_src++, w_dst--)
	{
		X25519_G_X.words[w_dst]	= TMP_G_X[w_src];
		X25519_A24.words[w_dst] = TMP_A24[w_src];
	}
}


//------------------------------------------------------------------------------
//
// Elliptic curve point scalar multiplication routine.
//
// This uses the Montgomery ladder to do the multiplication and then
// converts the result to affine coordinates.
//
// The algorithm is based on Algorithm 3 from "How to (pre-)compute a ladder"
// https://eprint.iacr.org/2017/264.pdf
//
//------------------------------------------------------------------------------
void fpga_curve_x25519_scalar_multiply_abstract(const FPGA_BUFFER *PX, const FPGA_BUFFER *K, FPGA_BUFFER *QX)
//------------------------------------------------------------------------------
{
	int word_count, bit_count;	// counters

		// temporary buffers
	FPGA_BUFFER R0_X;
	FPGA_BUFFER R0_Z;
	FPGA_BUFFER R1_X;
	FPGA_BUFFER R1_Z;

	FPGA_BUFFER T0_X;
	FPGA_BUFFER T0_Z;
	FPGA_BUFFER T1_X;
	FPGA_BUFFER T1_Z;

		// initialization
	fpga_multiword_copy(&CURVE25519_ONE,  &R0_X);
	fpga_multiword_copy(&CURVE25519_ZERO, &R0_Z);
	fpga_multiword_copy(PX,               &R1_X);
	fpga_multiword_copy(&CURVE25519_ONE,  &R1_Z);

		// handy vars
	FPGA_WORD k_word;
	bool k_bit, r_swap = false;

		// multiply
	for (word_count=FPGA_OPERAND_NUM_WORDS; word_count>0; word_count--)
	{
		for (bit_count=FPGA_WORD_WIDTH; bit_count>0; bit_count--)
		{
				// get current bit of K
			k_word = K->words[word_count - 1] >> (bit_count - 1);
			k_bit = (k_word & (FPGA_WORD)1) == 1;

				// we feed either R0, R1 or R1, R0 into the ladder
			fpga_multiword_copy(r_swap == k_bit ? &R0_X : &R1_X, &T0_X);
			fpga_multiword_copy(r_swap == k_bit ? &R0_Z : &R1_Z, &T0_Z);
			fpga_multiword_copy(r_swap == k_bit ? &R1_X : &R0_X, &T1_X);
			fpga_multiword_copy(r_swap == k_bit ? &R1_Z : &R0_Z, &T1_Z);

				// remember whether we did swapping
			r_swap = k_bit;

				// montgomery ladder step
			fpga_curve_x25519_ladder_step(	PX,
											&T0_X, &T0_Z, &T1_X, &T1_Z,
											&R0_X, &R0_Z, &R1_X, &R1_Z);
		}
	}

		// since the lower three bits of the private key are always ...000,
		// the result is in R0_X, R0_Z and 

		// now conversion to affine coordinates
	fpga_curve_x25519_to_affine(&R0_X, &R0_Z, &T0_X);

		// so far we've done everything modulo 2*P, we now need
		// to do final reduction modulo P, this can be done using
		// our modular adder this way:
	fpga_modular_add(&T0_X, &CURVE25519_ZERO, QX, &CURVE25519_1P);
}


//------------------------------------------------------------------------------
//
// Montgomery Ladder Step
//
// There are many papers describing Montgomery ladder, this particular
// implementation is based on Algorithm 2 from "Fast elliptic-curve
// cryptography on the Cell Broadband Engine" by Neil Costigan and Peter
// Schwabe
// https://cryptojedi.org/papers/celldh-20090107.pdf
//
//------------------------------------------------------------------------------
void fpga_curve_x25519_ladder_step	(const FPGA_BUFFER *PX,
									 const FPGA_BUFFER *R0X_in,  const FPGA_BUFFER *R0Z_in,
									 const FPGA_BUFFER *R1X_in,  const FPGA_BUFFER *R1Z_in,
									 FPGA_BUFFER *R0X_out, FPGA_BUFFER *R0Z_out,
									 FPGA_BUFFER *R1X_out, FPGA_BUFFER *R1Z_out)
//------------------------------------------------------------------------------
{
	FPGA_BUFFER S0, S1;
	FPGA_BUFFER D0, D1;
	FPGA_BUFFER QS0, QD0;
	FPGA_BUFFER S0D1, S1D0;
	FPGA_BUFFER TS, TD;
	FPGA_BUFFER QTD;
	FPGA_BUFFER T0, TA, T1;

	fpga_modular_add(R0X_in, R0Z_in,      &S0,     &CURVE25519_2P);
	fpga_modular_add(R1X_in, R1Z_in,      &S1,     &CURVE25519_2P);
	fpga_modular_sub(R0X_in, R0Z_in,      &D0,     &CURVE25519_2P);
	fpga_modular_sub(R1X_in, R1Z_in,      &D1,     &CURVE25519_2P);
	//
	fpga_modular_mul(&S0,    &S0,         &QS0,    &CURVE25519_2P);
	fpga_modular_mul(&D0,    &D0,         &QD0,    &CURVE25519_2P);
	fpga_modular_mul(&S0,    &D1,         &S0D1,   &CURVE25519_2P);
	fpga_modular_mul(&S1,    &D0,         &S1D0,   &CURVE25519_2P);
	//
	fpga_modular_add(&S1D0,  &S0D1,       &TS,     &CURVE25519_2P);
	fpga_modular_sub(&S1D0,  &S0D1,       &TD,     &CURVE25519_2P);
	//
	fpga_modular_mul(&TD,    &TD,         &QTD,    &CURVE25519_2P);
	//
	fpga_modular_sub(&QS0,   &QD0,        &T0,     &CURVE25519_2P);
	fpga_modular_mul(&T0,    &X25519_A24, &TA,     &CURVE25519_2P);
	fpga_modular_add(&TA,    &QD0,        &T1,     &CURVE25519_2P);
	//
	fpga_modular_mul(&QS0,   &QD0,        R0X_out, &CURVE25519_2P);
	fpga_modular_mul(&T0,    &T1,         R0Z_out, &CURVE25519_2P);
	fpga_modular_mul(&TS,    &TS,         R1X_out, &CURVE25519_2P);
	fpga_modular_mul(PX,     &QTD,        R1Z_out, &CURVE25519_2P);
}


//------------------------------------------------------------------------------
//
// Conversion to affine coordinates.
//
// Q_X = P_X / P_Z = P_X * P_Z ^ -1
//
//------------------------------------------------------------------------------
void	fpga_curve_x25519_to_affine		(const FPGA_BUFFER *P_X,
										 const FPGA_BUFFER *P_Z,
										 FPGA_BUFFER *Q_X)
//------------------------------------------------------------------------------
{
	FPGA_BUFFER P_Z_1;

	fpga_modular_inv_abstract(P_Z, &P_Z_1, &CURVE25519_2P);

	fpga_modular_mul(P_X, &P_Z_1, Q_X, &CURVE25519_2P);
}


//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------