1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
//------------------------------------------------------------------------------
//
// ed25519_fpga_curve_abstract.cpp
// ------------------------------------------------
// Elliptic curve arithmetic procedures for Ed25519
//
// Authors: Pavel Shatov
//
// Copyright (c) 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
#include <stdio.h>
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "ed25519_fpga_model.h"
//------------------------------------------------------------------------------
// Globals
//------------------------------------------------------------------------------
FPGA_BUFFER ED25519_G_X; // x-coordinate of the base point
FPGA_BUFFER ED25519_G_Y; // y-coordinate of the base point
FPGA_BUFFER ED25519_G_Z; // z-coordinate of the base point
FPGA_BUFFER ED25519_G_T; // y-coordinate of the base point
//------------------------------------------------------------------------------
void fpga_curve_ed25519_init()
//------------------------------------------------------------------------------
{
int w_src, w_dst; // word counters
FPGA_WORD TMP_G_X[FPGA_OPERAND_NUM_WORDS] = ED25519_G_X_INIT;
FPGA_WORD TMP_G_Y[FPGA_OPERAND_NUM_WORDS] = ED25519_G_Y_INIT;
FPGA_WORD TMP_G_Z[FPGA_OPERAND_NUM_WORDS] = ED25519_G_Z_INIT;
FPGA_WORD TMP_G_T[FPGA_OPERAND_NUM_WORDS] = ED25519_G_T_INIT;
/* fill buffers for large multi-word integers */
for ( w_src = 0, w_dst = FPGA_OPERAND_NUM_WORDS - 1;
w_src < FPGA_OPERAND_NUM_WORDS;
w_src++, w_dst--)
{
ED25519_G_X.words[w_dst] = TMP_G_X[w_src];
ED25519_G_Y.words[w_dst] = TMP_G_Y[w_src];
ED25519_G_Z.words[w_dst] = TMP_G_Z[w_src];
ED25519_G_T.words[w_dst] = TMP_G_T[w_src];
}
}
//------------------------------------------------------------------------------
//
// Elliptic curve base point scalar multiplication routine.
//
// This uses Algorithm 4 ("Joye double-and-add") from "Fast and Regular
// Algorithms for Scalar Multiplication over Elliptic Curves"
// https://eprint.iacr.org/2011/338.pdf
//
//------------------------------------------------------------------------------
void fpga_curve_ed25519_base_scalar_multiply_abstract(const FPGA_BUFFER *K, FPGA_BUFFER *Q_Y)
//------------------------------------------------------------------------------
{
int word_count, bit_count; // counters
// temporary buffers
FPGA_BUFFER R0_X;
FPGA_BUFFER R0_Y;
FPGA_BUFFER R0_Z;
FPGA_BUFFER R0_T;
FPGA_BUFFER R1_X;
FPGA_BUFFER R1_Y;
FPGA_BUFFER R1_Z;
FPGA_BUFFER R1_T;
FPGA_BUFFER T_X;
FPGA_BUFFER T_Y;
FPGA_BUFFER T_Z;
FPGA_BUFFER T_T;
// initialization
fpga_multiword_copy(&CURVE25519_ZERO, &R0_X);
fpga_multiword_copy(&CURVE25519_ONE, &R0_Y);
fpga_multiword_copy(&CURVE25519_ONE, &R0_Z);
fpga_multiword_copy(&CURVE25519_ZERO, &R0_T);
fpga_multiword_copy(&ED25519_G_X, &R1_X);
fpga_multiword_copy(&ED25519_G_Y, &R1_Y);
fpga_multiword_copy(&ED25519_G_Z, &R1_Z);
fpga_multiword_copy(&ED25519_G_T, &R1_T);
// force zero bits
FPGA_BUFFER K_INT;
fpga_multiword_copy(K, &K_INT);
K_INT.words[0] &= 0xFFFFFFF8;
K_INT.words[FPGA_OPERAND_NUM_WORDS-1] &= 0x3FFFFFFF;
K_INT.words[FPGA_OPERAND_NUM_WORDS-1] |= 0x40000000;
// handy vars
FPGA_WORD k_word;
bool k_bit = false;
// multiply
for (word_count=0; word_count<FPGA_OPERAND_NUM_WORDS; word_count++)
{
for (bit_count=0; bit_count<FPGA_WORD_WIDTH; bit_count++)
{
// get current bit of K
k_word = K_INT.words[word_count] >> bit_count;
k_bit = (k_word & (FPGA_WORD)1) == 1;
// symmetric processing scheme regardless of the current private bit value
if (k_bit)
{
// T = double(R0)
fpga_curve_ed25519_double( &R0_X, &R0_Y, &R0_Z, &R0_T,
&T_X, &T_Y, &T_Z, &T_T);
// R0 = add(T, R1)
fpga_curve_ed25519_add( &T_X, &T_Y, &T_Z, &T_T,
&R1_X, &R1_Y, &R1_Z, &R1_T,
&R0_X, &R0_Y, &R0_Z, &R0_T);
}
else
{
// T = double(R1)
fpga_curve_ed25519_double( &R1_X, &R1_Y, &R1_Z, &R1_T,
&T_X, &T_Y, &T_Z, &T_T);
// R1 = add(T, R0)
fpga_curve_ed25519_add( &T_X, &T_Y, &T_Z, &T_T,
&R0_X, &R0_Y, &R0_Z, &R0_T,
&R1_X, &R1_Y, &R1_Z, &R1_T);
}
}
}
// now conversion to affine coordinates
fpga_curve_ed25519_to_affine(&R0_X, &R0_Y, &R0_Z, &R1_X, &R1_Y);
// so far we've done everything modulo 2*P, we now need
// to do final reduction modulo P, this can be done using
// our modular adder this way:
fpga_modular_add(&R1_X, &CURVE25519_ZERO, &R0_X, &CURVE25519_1P);
fpga_modular_add(&R1_Y, &CURVE25519_ZERO, &R0_Y, &CURVE25519_1P);
// process "sign" of x, see this Cryptography Stack Exchange
// answer for more details:
//
// https://crypto.stackexchange.com/questions/58921/decoding-a-ed25519-key-per-rfc8032
//
// the short story is that odd values of x are negative, so we
// just copy the lsb of x into msb of y
R0_Y.words[FPGA_OPERAND_NUM_WORDS-1] |= (R0_X.words[0] & (FPGA_WORD)1) << 31;
// store result
fpga_multiword_copy(&R0_Y, Q_Y);
}
//------------------------------------------------------------------------------
//
// Elliptic curve point doubling routine.
//
// This implements the "dbl-2008-hwcd" formulae set from
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
//
// The only difference is that E, F, G and H have opposite signs, this is
// equivalent to the original algorithm, because the end result depends on
// (E * F) and (G * H). If both variables have opposite signs, then the
// sign of the product doesn't change.
//
//------------------------------------------------------------------------------
void fpga_curve_ed25519_double( const FPGA_BUFFER *P_X, const FPGA_BUFFER *P_Y, const FPGA_BUFFER *P_Z, const FPGA_BUFFER *P_T,
FPGA_BUFFER *Q_X, FPGA_BUFFER *Q_Y, FPGA_BUFFER *Q_Z, FPGA_BUFFER *Q_T)
{
FPGA_BUFFER A, B, C, D, E, F, G, H, I;
fpga_modular_mul(P_X, P_X, &A, &CURVE25519_2P); // A = (qx * qx) % mod
fpga_modular_mul(P_Y, P_Y, &B, &CURVE25519_2P); // B = (qy * qy) % mod
fpga_modular_mul(P_Z, P_Z, &I, &CURVE25519_2P); // I = (qz * qz) % mod
fpga_modular_add( &I, &I, &C, &CURVE25519_2P); // C = ( I + I) % mod
fpga_modular_add(P_X, P_Y, &I, &CURVE25519_2P); // I = (qx + qy) % mod
fpga_modular_mul( &I, &I, &D, &CURVE25519_2P); // D = ( I * I) % mod
fpga_modular_add( &A, &B, &H, &CURVE25519_2P); // H = ( A + B) % mod
fpga_modular_sub( &H, &D, &E, &CURVE25519_2P); // E = ( H - D) % mod
fpga_modular_sub( &A, &B, &G, &CURVE25519_2P); // G = ( A - B) % mod
fpga_modular_add( &C, &G, &F, &CURVE25519_2P); // F = ( C + G) % mod
fpga_modular_mul( &E, &F, Q_X, &CURVE25519_2P); // rx = ( E * F) % mod
fpga_modular_mul( &G, &H, Q_Y, &CURVE25519_2P); // ry = ( G * H) % mod
fpga_modular_mul( &E, &H, Q_T, &CURVE25519_2P); // rt = ( E * H) % mod
fpga_modular_mul( &F, &G, Q_Z, &CURVE25519_2P); // rz = ( F * G) % mod
}
//------------------------------------------------------------------------------
//
// Elliptic curve point addition routine.
//
// This implements the "add-2008-hwcd-4" formulae set from
// https://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
//
//------------------------------------------------------------------------------
void fpga_curve_ed25519_add( const FPGA_BUFFER *P_X, const FPGA_BUFFER *P_Y, const FPGA_BUFFER *P_Z, const FPGA_BUFFER *P_T,
const FPGA_BUFFER *Q_X, const FPGA_BUFFER *Q_Y, const FPGA_BUFFER *Q_Z, const FPGA_BUFFER *Q_T,
FPGA_BUFFER *R_X, FPGA_BUFFER *R_Y, FPGA_BUFFER *R_Z, FPGA_BUFFER *R_T)
{
FPGA_BUFFER A, B, C, D, E, F, G, H, I, J;
fpga_modular_sub(P_Y, P_X, &I, &CURVE25519_2P); // I = (qy - qx) % mod
fpga_modular_add(Q_Y, Q_X, &J, &CURVE25519_2P); // J = (py + px) % mod
fpga_modular_mul( &I, &J, &A, &CURVE25519_2P); // A = ( I * J) % mod
fpga_modular_add(P_Y, P_X, &I, &CURVE25519_2P); // I = (qy + qx) % mod
fpga_modular_sub(Q_Y, Q_X, &J, &CURVE25519_2P); // J = (py - px) % mod
fpga_modular_mul( &I, &J, &B, &CURVE25519_2P); // B = ( I * J) % mod
fpga_modular_mul(P_Z, Q_T, &I, &CURVE25519_2P); // I = (qz * pt) % mod
fpga_modular_add( &I, &I, &C, &CURVE25519_2P); // C = ( I + I) % mod
fpga_modular_mul(P_T, Q_Z, &I, &CURVE25519_2P); // I = (qt * pz) % mod
fpga_modular_add( &I, &I, &D, &CURVE25519_2P); // D = ( I + I) % mod
fpga_modular_add( &D, &C, &E, &CURVE25519_2P); // E = (D + C) % mod
fpga_modular_sub( &B, &A, &F, &CURVE25519_2P); // F = (B - A) % mod
fpga_modular_add( &B, &A, &G, &CURVE25519_2P); // G = (B + A) % mod
fpga_modular_sub( &D, &C, &H, &CURVE25519_2P); // H = (D - C) % mod
fpga_modular_mul( &E, &F, R_X, &CURVE25519_2P); // rx = (E * F) % mod
fpga_modular_mul( &G, &H, R_Y, &CURVE25519_2P); // ry = (G * H) % mod
fpga_modular_mul( &E, &H, R_T, &CURVE25519_2P); // rt = (E * H) % mod
fpga_modular_mul( &F, &G, R_Z, &CURVE25519_2P); // rz = (F * G) % mod
}
//------------------------------------------------------------------------------
//
// Conversion to affine coordinates.
//
// Q_X = P_X / P_Z = P_X * P_Z ^ -1
// Q_Y = P_Y / P_Z = P_Y * P_Z ^ -1
//
//------------------------------------------------------------------------------
void fpga_curve_ed25519_to_affine (const FPGA_BUFFER *P_X, const FPGA_BUFFER *P_Y,
const FPGA_BUFFER *P_Z,
FPGA_BUFFER *Q_X, FPGA_BUFFER *Q_Y)
//------------------------------------------------------------------------------
{
FPGA_BUFFER P_Z_1;
fpga_modular_inv_abstract(P_Z, &P_Z_1, &CURVE25519_2P);
fpga_modular_mul(P_X, &P_Z_1, Q_X, &CURVE25519_2P);
fpga_modular_mul(P_Y, &P_Z_1, Q_Y, &CURVE25519_2P);
}
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------
|