1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
`timescale 1ns / 1ps
module tb_demo_adder;
//
// Inputs
//
reg gclk;
wire gclk_p = gclk;
wire gclk_n = ~gclk;
reg reset_mcu_b;
//
// Outputs
//
wire led;
//
// EIM
//
reg eim_cs_n;
reg eim_bclk;
reg eim_lba_n;
wire [15: 0] eim_da;
reg [15: 0] eim_da_out;
reg eim_da_drive;
reg [18:16] eim_a;
reg eim_oe_n;
reg eim_wr_n;
wire eim_wait_n;
assign eim_da = (eim_da_drive == 1'b1) ? eim_da_out : {16{1'bZ}};
//
// UUT
//
novena_baseline_top uut
(
.gclk_p_pin (gclk_p),
.gclk_n_pin (gclk_n),
.eim_bclk (eim_bclk),
.eim_cs0_n (eim_cs_n),
.eim_da (eim_da),
.eim_a (eim_a),
.eim_lba_n (eim_lba_n),
.eim_wr_n (eim_wr_n),
.eim_oe_n (eim_oe_n),
.eim_wait_n (eim_wait_n),
.reset_mcu_b_pin (reset_mcu_b),
.led_pin (led_pin),
.apoptosis_pin (apoptosis_pin)
);
//
// CLK2 (50 MHz)
//
always #10 gclk = ~gclk;
//
// Initialize EIM
//
initial begin
eim_cs_n = 1'b1;
eim_bclk = 1'b0;
eim_lba_n = 1'b1;
eim_da_out = {16{1'bX}};
eim_da_drive = 1'b1;
eim_a = 3'bXXX;
eim_oe_n = 1'b1;
eim_wr_n = 1'b1;
end
//
// Test Logic
//
reg [31: 0] eim_rd = {32{1'bX}};
initial begin
gclk = 1'b0;
reset_mcu_b = 1'b1;
//
#2000;
//
eim_read(19'h10000, eim_rd); // read Z <-- should be 0xBB77B7B7
//
#10000;
//
/*
eim_write({12'h321, 2'd0, 2'b00}, 32'hAA_55_A5_A5); // write X
#100;
eim_write({12'h321, 2'd1, 2'b00}, 32'h11_22_12_12); // write Y
#100;
eim_read( {12'h321, 2'd3, 2'b00}, eim_rd); // read {STS, CTL} <-- should be 0x0000_0000
#100;
eim_rd = eim_rd + 1'b1;
eim_write({12'h321, 2'd3, 2'b00}, eim_rd); // write {STS, CTL} <-- STS is ignored by adder
#100;
eim_read( {12'h321, 2'd3, 2'b00}, eim_rd); // read {STS, CTL} <-- should be 0x0001_0001
#100;
eim_read( {12'h321, 2'd2, 2'b00}, eim_rd); // read Z <-- should be 0xBB77B7B7
*/
end
//
// Write Access
//
integer wr;
task eim_write;
input [18: 0] addr;
input [31: 0] data;
begin
#15 eim_cs_n = 1'b0;
eim_lba_n = 1'b0;
eim_da_out = addr[15: 0];
eim_a = addr[18:16];
eim_wr_n = 1'b0;
#15 eim_bclk = 1'b1;
#15 eim_bclk = 1'b0;
eim_lba_n = 1'b1;
eim_da_out = data[15:0];
eim_a = 3'bXXX;
#15 eim_bclk = 1'b1;
#15 eim_bclk = 1'b0;
eim_da_out = data[31:16];
#15 eim_bclk = 1'b1;
#15 eim_bclk = 1'b0;
eim_da_out = {16{1'bX}};
while (eim_wait_n == 1'b0) begin
#15 eim_bclk = 1'b1;
#15 eim_bclk = 1'b0;
end
#15 eim_cs_n = 1'b1;
eim_wr_n = 1'b1;
#30;
end
endtask;
//
// Read Access
//
task eim_read;
input [18: 0] addr;
output [31: 0] data;
begin
#15 eim_cs_n = 1'b0;
eim_lba_n = 1'b0;
eim_da_out = addr[15: 0];
eim_a = addr[18:16];
#15 eim_bclk = 1'b1;
#15 eim_bclk = 1'b0;
eim_lba_n = 1'b1;
eim_oe_n = 1'b0;
eim_da_drive = 1'b0;
eim_a = 3'bXXX;
#15;
while (eim_wait_n == 1'b0) begin
eim_bclk = 1'b1;
#15 eim_bclk = 1'b0;
#15;
end
eim_bclk = 1'b1;
#15 eim_bclk = 1'b0;
#15 eim_bclk = 1'b1;
data[15: 0] = eim_da;
#15 eim_bclk = 1'b0;
#15 eim_bclk = 1'b1;
data[31:16] = eim_da;
#15 eim_bclk = 1'b0;
eim_da_out = {16{1'bX}};
#15 eim_cs_n = 1'b1;
eim_oe_n = 1'b1;
eim_da_drive = 1'b1;
#30;
end
endtask;
endmodule
|