/*
* hash_tester.c
* --------------
* This program sends several commands to the coretest_hashes subsystem
* in order to verify the SHA-1, SHA-256 and SHA-512/x hash function
* cores.
*
* Note: This version of the program talks to the FPGA over an EIM bus.
*
* The single and dual block test cases are taken from the
* NIST KAT document:
* http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA_All.pdf
*
*
* Authors: Joachim Strömbergson, Paul Selkirk
* Copyright (c) 2014-2015, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <ctype.h>
#include <signal.h>
#include "novena-eim.h"
int debug = 0;
int quiet = 0;
int repeat = 0;
/* instead of core number 0 we have a page of global registers */
#define ADDR_GLOBAL_BOARD_TYPE EIM_BASE_ADDR + (0x00 << 2)
#define ADDR_GLOBAL_BITSTREAM_VER EIM_BASE_ADDR + (0x01 << 2)
#define ADDR_GLOBAL_DUMMY_REG EIM_BASE_ADDR + (0xFF << 2)
#define SEGMENT_OFFSET_HASHES EIM_BASE_ADDR + 0x000000
#define SEGMENT_OFFSET_RNGS EIM_BASE_ADDR + 0x010000
#define SEGMENT_OFFSET_CIPHERS EIM_BASE_ADDR + 0x020000
/* addresses and codes common to all hash cores */
#define ADDR_NAME0 0x00
#define ADDR_NAME1 0x04
#define ADDR_VERSION 0x08
#define ADDR_CTRL 0x20
#define CTRL_INIT_CMD 1
#define CTRL_NEXT_CMD 2
#define ADDR_STATUS 0x24
#define STATUS_READY_BIT 1
#define STATUS_VALID_BIT 2
#define ADDR_BLOCK 0x40
#define ADDR_DIGEST 0x80
#define HASH_CORE_SIZE 0x400
/* addresses and codes for the specific hash cores */
#define SHA1_ADDR_BASE SEGMENT_OFFSET_HASHES + (1*HASH_CORE_SIZE)
#define SHA1_ADDR_NAME0 SHA1_ADDR_BASE + ADDR_NAME0
#define SHA1_ADDR_NAME1 SHA1_ADDR_BASE + ADDR_NAME1
#define SHA1_ADDR_VERSION SHA1_ADDR_BASE + ADDR_VERSION
#define SHA1_ADDR_CTRL SHA1_ADDR_BASE + ADDR_CTRL
#define SHA1_ADDR_STATUS SHA1_ADDR_BASE + ADDR_STATUS
#define SHA1_ADDR_BLOCK SHA1_ADDR_BASE + ADDR_BLOCK
#define SHA1_ADDR_DIGEST SHA1_ADDR_BASE + ADDR_DIGEST
#define SHA1_BLOCK_LEN 512 / 8
#define SHA1_DIGEST_LEN 160 / 8
#define SHA256_ADDR_BASE SEGMENT_OFFSET_HASHES + (2*HASH_CORE_SIZE)
#define SHA256_ADDR_NAME0 SHA256_ADDR_BASE + ADDR_NAME0
#define SHA256_ADDR_NAME1 SHA256_ADDR_BASE + ADDR_NAME1
#define SHA256_ADDR_VERSION SHA256_ADDR_BASE + ADDR_VERSION
#define SHA256_ADDR_CTRL SHA256_ADDR_BASE + ADDR_CTRL
#define SHA256_ADDR_STATUS SHA256_ADDR_BASE + ADDR_STATUS
#define SHA256_ADDR_BLOCK SHA256_ADDR_BASE + ADDR_BLOCK
#define SHA256_ADDR_DIGEST SHA256_ADDR_BASE + ADDR_DIGEST
#define SHA256_BLOCK_LEN 512 / 8
#define SHA256_DIGEST_LEN 256 / 8
#define SHA512_ADDR_BASE SEGMENT_OFFSET_HASHES + (3*HASH_CORE_SIZE)
#define SHA512_ADDR_NAME0 SHA512_ADDR_BASE + ADDR_NAME0
#define SHA512_ADDR_NAME1 SHA512_ADDR_BASE + ADDR_NAME1
#define SHA512_ADDR_VERSION SHA512_ADDR_BASE + ADDR_VERSION
#define SHA512_ADDR_CTRL SHA512_ADDR_BASE + ADDR_CTRL
#define SHA512_ADDR_STATUS SHA512_ADDR_BASE + ADDR_STATUS
#define SHA512_ADDR_BLOCK SHA512_ADDR_BASE + ADDR_BLOCK
#define SHA512_ADDR_DIGEST SHA512_ADDR_BASE + 0x100
#define SHA512_BLOCK_LEN 1024 / 8
#define SHA512_224_DIGEST_LEN 224 / 8
#define SHA512_256_DIGEST_LEN 256 / 8
#define SHA384_DIGEST_LEN 384 / 8
#define SHA512_DIGEST_LEN 512 / 8
#define MODE_SHA_512_224 0 << 2
#define MODE_SHA_512_256 1 << 2
#define MODE_SHA_384 2 << 2
#define MODE_SHA_512 3 << 2
/* SHA-1/SHA-256 One Block Message Sample
Input Message: "abc" */
const uint8_t NIST_512_SINGLE[] =
{ 0x61, 0x62, 0x63, 0x80, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18 };
const uint8_t SHA1_SINGLE_DIGEST[] =
{ 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a,
0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c,
0x9c, 0xd0, 0xd8, 0x9d };
const uint8_t SHA256_SINGLE_DIGEST[] =
{ 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD };
/* SHA-1/SHA-256 Two Block Message Sample
Input Message: "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" */
const uint8_t NIST_512_DOUBLE0[] =
{ 0x61, 0x62, 0x63, 0x64, 0x62, 0x63, 0x64, 0x65,
0x63, 0x64, 0x65, 0x66, 0x64, 0x65, 0x66, 0x67,
0x65, 0x66, 0x67, 0x68, 0x66, 0x67, 0x68, 0x69,
0x67, 0x68, 0x69, 0x6A, 0x68, 0x69, 0x6A, 0x6B,
0x69, 0x6A, 0x6B, 0x6C, 0x6A, 0x6B, 0x6C, 0x6D,
0x6B, 0x6C, 0x6D, 0x6E, 0x6C, 0x6D, 0x6E, 0x6F,
0x6D, 0x6E, 0x6F, 0x70, 0x6E, 0x6F, 0x70, 0x71,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
const uint8_t NIST_512_DOUBLE1[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xC0 };
const uint8_t SHA1_DOUBLE_DIGEST[] =
{ 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E,
0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5,
0xE5, 0x46, 0x70, 0xF1 };
const uint8_t SHA256_DOUBLE_DIGEST[] =
{ 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 };
/* SHA-512 One Block Message Sample
Input Message: "abc" */
const uint8_t NIST_1024_SINGLE[] =
{ 0x61, 0x62, 0x63, 0x80, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x18 };
const uint8_t SHA512_224_SINGLE_DIGEST[] =
{ 0x46, 0x34, 0x27, 0x0f, 0x70, 0x7b, 0x6a, 0x54,
0xda, 0xae, 0x75, 0x30, 0x46, 0x08, 0x42, 0xe2,
0x0e, 0x37, 0xed, 0x26, 0x5c, 0xee, 0xe9, 0xa4,
0x3e, 0x89, 0x24, 0xaa };
const uint8_t SHA512_256_SINGLE_DIGEST[] =
{ 0x53, 0x04, 0x8e, 0x26, 0x81, 0x94, 0x1e, 0xf9,
0x9b, 0x2e, 0x29, 0xb7, 0x6b, 0x4c, 0x7d, 0xab,
0xe4, 0xc2, 0xd0, 0xc6, 0x34, 0xfc, 0x6d, 0x46,
0xe0, 0xe2, 0xf1, 0x31, 0x07, 0xe7, 0xaf, 0x23 };
const uint8_t SHA384_SINGLE_DIGEST[] =
{ 0xcb, 0x00, 0x75, 0x3f, 0x45, 0xa3, 0x5e, 0x8b,
0xb5, 0xa0, 0x3d, 0x69, 0x9a, 0xc6, 0x50, 0x07,
0x27, 0x2c, 0x32, 0xab, 0x0e, 0xde, 0xd1, 0x63,
0x1a, 0x8b, 0x60, 0x5a, 0x43, 0xff, 0x5b, 0xed,
0x80, 0x86, 0x07, 0x2b, 0xa1, 0xe7, 0xcc, 0x23,
0x58, 0xba, 0xec, 0xa1, 0x34, 0xc8, 0x25, 0xa7 };
const uint8_t SHA512_SINGLE_DIGEST[] =
{ 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba,
0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31,
0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2,
0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a,
0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8,
0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd,
0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e,
0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f };
/* SHA-512 Two Block Message Sample
Input Message: "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" */
const uint8_t NIST_1024_DOUBLE0[] =
{ 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a,
0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b,
0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d,
0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e,
0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70,
0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71,
0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72,
0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73,
0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74,
0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
const uint8_t NIST_1024_DOUBLE1[] =
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x80 };
const uint8_t SHA512_224_DOUBLE_DIGEST[] =
{ 0x23, 0xfe, 0xc5, 0xbb, 0x94, 0xd6, 0x0b, 0x23,
0x30, 0x81, 0x92, 0x64, 0x0b, 0x0c, 0x45, 0x33,
0x35, 0xd6, 0x64, 0x73, 0x4f, 0xe4, 0x0e, 0x72,
0x68, 0x67, 0x4a, 0xf9 };
const uint8_t SHA512_256_DOUBLE_DIGEST[] =
{ 0x39, 0x28, 0xe1, 0x84, 0xfb, 0x86, 0x90, 0xf8,
0x40, 0xda, 0x39, 0x88, 0x12, 0x1d, 0x31, 0xbe,
0x65, 0xcb, 0x9d, 0x3e, 0xf8, 0x3e, 0xe6, 0x14,
0x6f, 0xea, 0xc8, 0x61, 0xe1, 0x9b, 0x56, 0x3a };
const uint8_t SHA384_DOUBLE_DIGEST[] =
{ 0x09, 0x33, 0x0c, 0x33, 0xf7, 0x11, 0x47, 0xe8,
0x3d, 0x19, 0x2f, 0xc7, 0x82, 0xcd, 0x1b, 0x47,
0x53, 0x11, 0x1b, 0x17, 0x3b, 0x3b, 0x05, 0xd2,
0x2f, 0xa0, 0x80, 0x86, 0xe3, 0xb0, 0xf7, 0x12,
0xfc, 0xc7, 0xc7, 0x1a, 0x55, 0x7e, 0x2d, 0xb9,
0x66, 0xc3, 0xe9, 0xfa, 0x91, 0x74, 0x60, 0x39 };
const uint8_t SHA512_DOUBLE_DIGEST[] =
{ 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda,
0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f,
0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1,
0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18,
0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4,
0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a,
0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54,
0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09 };
/* ---------------- test-case low-level code ---------------- */
void dump(char *label, const uint8_t *buf, int len)
{
if (debug) {
int i;
printf("%s [", label);
for (i = 0; i < len; ++i)
printf(" %02x", buf[i]);
printf(" ]\n");
}
}
int tc_write(off_t offset, const uint8_t *buf, int len)
{
dump("write ", buf, len);
for (; len > 0; offset += 4, buf += 4, len -= 4) {
uint32_t val;
val = htonl(*(uint32_t *)buf);
eim_write_32(offset, &val);
}
return 0;
}
int tc_read(off_t offset, uint8_t *buf, int len)
{
uint8_t *rbuf = buf;
int rlen = len;
for (; rlen > 0; offset += 4, rbuf += 4, rlen -= 4) {
uint32_t val;
eim_read_32(offset, &val);
*(uint32_t *)rbuf = ntohl(val);
}
dump("read ", buf, len);
return 0;
}
int tc_expected(off_t offset, const uint8_t *expected, int len)
{
uint8_t *buf;
int i;
buf = malloc(len);
if (buf == NULL) {
perror("malloc");
return 1;
}
dump("expect", expected, len);
if (tc_read(offset, buf, len) != 0)
goto errout;
for (i = 0; i < len; ++i)
if (buf[i] != expected[i]) {
fprintf(stderr, "response byte %d: expected 0x%02x, got 0x%02x\n",
i, expected[i], buf[i]);
goto errout;
}
free(buf);
return 0;
errout:
free(buf);
return 1;
}
int tc_init(off_t offset)
{
uint8_t buf[4] = { 0, 0, 0, CTRL_INIT_CMD };
return tc_write(offset, buf, 4);
}
int tc_next(off_t offset)
{
uint8_t buf[4] = { 0, 0, 0, CTRL_NEXT_CMD };
return tc_write(offset, buf, 4);
}
int tc_wait(off_t offset, uint8_t status)
{
uint8_t buf[4];
#if 0
do {
if (tc_read(offset, buf, 4) != 0)
return 1;
} while (!(buf[3] & status));
return 0;
#else
int i;
for (i = 0; i < 10; ++i) {
if (tc_read(offset, buf, 4) != 0)
return 1;
if (buf[3] & status)
return 0;
}
fprintf(stderr, "tc_wait timed out\n");
return 1;
#endif
}
int tc_wait_ready(off_t offset)
{
return tc_wait(offset, STATUS_READY_BIT);
}
int tc_wait_valid(off_t offset)
{
return tc_wait(offset, STATUS_VALID_BIT);
}
/* ---------------- sanity test case ---------------- */
int TC0()
{
uint8_t board_type[4] = { 'P', 'V', 'T', '1'}; /* "PVT1" */
uint8_t bitstream_ver[4] = { 0x00, 0x01, 0x00, 0x0B }; /* v0.1.0b */
uint8_t t[4];
uint8_t seg_rngs_reg_first[4] = { 0xAA, 0xAA, 0xAA, 0xAA};
uint8_t seg_rngs_reg_second[4] = { 0xBB, 0xBB, 0xBB, 0xBB};
uint8_t seg_rngs_reg_third[4] = { 0xCC, 0xCC, 0xCC, 0xCC};
uint8_t seg_ciphers_reg_first[4] = { 0xDD, 0xDD, 0xDD, 0xDD};
uint8_t seg_ciphers_reg_second[4] = { 0xEE, 0xEE, 0xEE, 0xEE};
uint8_t seg_ciphers_reg_third[4] = { 0xFF, 0xFF, 0xFF, 0xFF};
if (!quiet)
printf("TC0: Reading board type, version, and dummy reg from global registers.\n");
/* write current time into dummy register, then try to read it back
* to make sure that we can actually write something into EIM
*/
(void)time((time_t *)t);
tc_write(ADDR_GLOBAL_DUMMY_REG, (void *)&t, 4);
return
tc_expected(ADDR_GLOBAL_BOARD_TYPE, board_type, 4) ||
tc_expected(ADDR_GLOBAL_BITSTREAM_VER, bitstream_ver, 4) ||
tc_expected(ADDR_GLOBAL_DUMMY_REG, (void *)t, 4) ||
tc_expected(SEGMENT_OFFSET_RNGS + (0 << 2), seg_rngs_reg_first, 4) ||
tc_expected(SEGMENT_OFFSET_RNGS + (1 << 2), seg_rngs_reg_second, 4) ||
tc_expected(SEGMENT_OFFSET_RNGS + (2 << 2), seg_rngs_reg_third, 4) ||
tc_expected(SEGMENT_OFFSET_CIPHERS + (0 << 2), seg_ciphers_reg_first, 4) ||
tc_expected(SEGMENT_OFFSET_CIPHERS + (1 << 2), seg_ciphers_reg_second, 4) ||
tc_expected(SEGMENT_OFFSET_CIPHERS + (2 << 2), seg_ciphers_reg_third, 4);
}
/* ---------------- SHA-1 test cases ---------------- */
/* TC1: Read name and version from SHA-1 core. */
int TC1(void)
{
uint8_t name0[4] = { 0x73, 0x68, 0x61, 0x31 }; /* "sha1" */
uint8_t name1[4] = { 0x20, 0x20, 0x20, 0x20 }; /* " " */
uint8_t version[4] = { 0x30, 0x2e, 0x35, 0x30 }; /* "0.50" */
if (!quiet)
printf("TC1: Reading name, type and version words from SHA-1 core.\n");
return
tc_expected(SHA1_ADDR_NAME0, name0, 4) ||
tc_expected(SHA1_ADDR_NAME1, name1, 4) ||
tc_expected(SHA1_ADDR_VERSION, version, 4);
}
/* TC2: SHA-1 Single block message test as specified by NIST. */
int TC2(void)
{
const uint8_t *block = NIST_512_SINGLE;
const uint8_t *expected = SHA1_SINGLE_DIGEST;
int ret;
if (!quiet)
printf("TC2: Single block message test for SHA-1.\n");
/* Write block to SHA-1. */
tc_write(SHA1_ADDR_BLOCK, block, SHA1_BLOCK_LEN);
/* Start initial block hashing, wait and check status. */
tc_init(SHA1_ADDR_CTRL);
tc_wait_valid(SHA1_ADDR_STATUS);
/* Extract the digest. */
ret = tc_expected(SHA1_ADDR_DIGEST, expected, SHA1_DIGEST_LEN);
return ret;
}
/* TC3: SHA-1 Double block message test as specified by NIST. */
int TC3(void)
{
const uint8_t *block[2] = { NIST_512_DOUBLE0, NIST_512_DOUBLE1 };
static const uint8_t block0_expected[] =
{ 0xF4, 0x28, 0x68, 0x18, 0xC3, 0x7B, 0x27, 0xAE,
0x04, 0x08, 0xF5, 0x81, 0x84, 0x67, 0x71, 0x48,
0x4A, 0x56, 0x65, 0x72 };
const uint8_t *expected = SHA1_DOUBLE_DIGEST;
int ret;
if (!quiet)
printf("TC3: Double block message test for SHA-1.\n");
/* Write first block to SHA-1. */
tc_write(SHA1_ADDR_BLOCK, block[0], SHA1_BLOCK_LEN);
/* Start initial block hashing, wait and check status. */
tc_init(SHA1_ADDR_CTRL);
tc_wait_valid(SHA1_ADDR_STATUS);
/* Extract the first digest. */
tc_expected(SHA1_ADDR_DIGEST, block0_expected, SHA1_DIGEST_LEN);
/* Write second block to SHA-1. */
tc_write(SHA1_ADDR_BLOCK, block[1], SHA1_BLOCK_LEN);
/* Start next block hashing, wait and check status. */
tc_next(SHA1_ADDR_CTRL);
tc_wait_valid(SHA1_ADDR_STATUS);
/* Extract the second digest. */
ret = tc_expected(SHA1_ADDR_DIGEST, expected, SHA1_DIGEST_LEN);
return ret;
}
/* ---------------- SHA-256 test cases ---------------- */
/* TC4: Read name and version from SHA-256 core. */
int TC4(void)
{
uint8_t name0[4] = { 0x73, 0x68, 0x61, 0x32 }; /* "sha2" */
uint8_t name1[4] = { 0x2d, 0x32, 0x35, 0x36 }; /* "-256" */
uint8_t version[4] = { 0x30, 0x2e, 0x38, 0x30 }; /* "0.80" */
if (!quiet)
printf("TC4: Reading name, type and version words from SHA-256 core.\n");
return
tc_expected(SHA256_ADDR_NAME0, name0, 4) ||
tc_expected(SHA256_ADDR_NAME1, name1, 4) ||
tc_expected(SHA256_ADDR_VERSION, version, 4);
}
/* TC5: SHA-256 Single block message test as specified by NIST. */
int TC5()
{
const uint8_t *block = NIST_512_SINGLE;
const uint8_t *expected = SHA256_SINGLE_DIGEST;
if (!quiet)
printf("TC5: Single block message test for SHA-256.\n");
return
/* Write block to SHA-256. */
tc_write(SHA256_ADDR_BLOCK, block, SHA256_BLOCK_LEN) ||
/* Start initial block hashing, wait and check status. */
tc_init(SHA256_ADDR_CTRL) ||
tc_wait_valid(SHA256_ADDR_STATUS) ||
/* Extract the digest. */
tc_expected(SHA256_ADDR_DIGEST, expected, SHA256_DIGEST_LEN);
}
/* TC6: SHA-256 Double block message test as specified by NIST. */
int TC6()
{
const uint8_t *block[2] = { NIST_512_DOUBLE0, NIST_512_DOUBLE1 };
static const uint8_t block0_expected[] =
{ 0x85, 0xE6, 0x55, 0xD6, 0x41, 0x7A, 0x17, 0x95,
0x33, 0x63, 0x37, 0x6A, 0x62, 0x4C, 0xDE, 0x5C,
0x76, 0xE0, 0x95, 0x89, 0xCA, 0xC5, 0xF8, 0x11,
0xCC, 0x4B, 0x32, 0xC1, 0xF2, 0x0E, 0x53, 0x3A };
const uint8_t *expected = SHA256_DOUBLE_DIGEST;
if (!quiet)
printf("TC6: Double block message test for SHA-256.\n");
return
/* Write first block to SHA-256. */
tc_write(SHA256_ADDR_BLOCK, block[0], SHA256_BLOCK_LEN) ||
/* Start initial block hashing, wait and check status. */
tc_init(SHA256_ADDR_CTRL) ||
tc_wait_valid(SHA256_ADDR_STATUS) ||
/* Extract the first digest. */
tc_expected(SHA256_ADDR_DIGEST, block0_expected, SHA256_DIGEST_LEN) ||
/* Write second block to SHA-256. */
tc_write(SHA256_ADDR_BLOCK, block[1], SHA256_BLOCK_LEN) ||
/* Start next block hashing, wait and check status. */
tc_next(SHA256_ADDR_CTRL) ||
tc_wait_valid(SHA256_ADDR_STATUS) ||
/* Extract the second digest. */
tc_expected(SHA256_ADDR_DIGEST, expected, SHA256_DIGEST_LEN);
}
/* TC7: SHA-256 Huge message test. */
int TC7()
{
static const uint8_t block[] =
{ 0xaa, 0x55, 0xaa, 0x55, 0xde, 0xad, 0xbe, 0xef,
0x55, 0xaa, 0x55, 0xaa, 0xf0, 0x0f, 0xf0, 0x0f,
0xaa, 0x55, 0xaa, 0x55, 0xde, 0xad, 0xbe, 0xef,
0x55, 0xaa, 0x55, 0xaa, 0xf0, 0x0f, 0xf0, 0x0f,
0xaa, 0x55, 0xaa, 0x55, 0xde, 0xad, 0xbe, 0xef,
0x55, 0xaa, 0x55, 0xaa, 0xf0, 0x0f, 0xf0, 0x0f,
0xaa, 0x55, 0xaa, 0x55, 0xde, 0xad, 0xbe, 0xef,
0x55, 0xaa, 0x55, 0xaa, 0xf0, 0x0f, 0xf0, 0x0f };
/* final digest after 1000 iterations */
static const uint8_t expected[] =
{ 0x76, 0x38, 0xf3, 0xbc, 0x50, 0x0d, 0xd1, 0xa6,
0x58, 0x6d, 0xd4, 0xd0, 0x1a, 0x15, 0x51, 0xaf,
0xd8, 0x21, 0xd2, 0x35, 0x2f, 0x91, 0x9e, 0x28,
0xd5, 0x84, 0x2f, 0xab, 0x03, 0xa4, 0x0f, 0x2a };
int i, n = 1000;
if (!quiet)
printf("TC7: Message with %d blocks test for SHA-256.\n", n);
/* Write block data to SHA-256. */
if (tc_write(SHA256_ADDR_BLOCK, block, SHA256_BLOCK_LEN))
return 1;
/* Start initial block hashing, wait and check status. */
if (tc_init(SHA256_ADDR_CTRL) ||
tc_wait_ready(SHA256_ADDR_STATUS))
return 1;
/* First block done. Do the rest. */
for (i = 1; i < n; ++i) {
/* Start next block hashing, wait and check status. */
if (tc_next(SHA256_ADDR_CTRL) ||
tc_wait_ready(SHA256_ADDR_STATUS))
return 1;
}
/* XXX valid is probably set at the same time as ready */
if (tc_wait_valid(SHA256_ADDR_STATUS))
return 1;
/* Extract the final digest. */
return tc_expected(SHA256_ADDR_DIGEST, expected, SHA256_DIGEST_LEN);
}
/* ---------------- SHA-512 test cases ---------------- */
/* TC8: Read name and version from SHA-512 core. */
int TC8()
{
uint8_t name0[4] = { 0x73, 0x68, 0x61, 0x32 }; /* "sha2" */
uint8_t name1[4] = { 0x2d, 0x35, 0x31, 0x32 }; /* "-512" */
uint8_t version[4] = { 0x30, 0x2e, 0x38, 0x30 }; /* "0.80" */
if (!quiet)
printf("TC8: Reading name, type and version words from SHA-512 core.\n");
return
tc_expected(SHA512_ADDR_NAME0, name0, 4) ||
tc_expected(SHA512_ADDR_NAME1, name1, 4) ||
tc_expected(SHA512_ADDR_VERSION, version, 4);
}
/* TC9: SHA-512 Single block message test as specified by NIST.
We do this for all modes. */
int tc9(int mode, const uint8_t *expected, int digest_len)
{
const uint8_t *block = NIST_1024_SINGLE;
uint8_t init[4] = { 0, 0, 0, CTRL_INIT_CMD + mode };
return
/* Write block to SHA-512. */
tc_write(SHA512_ADDR_BLOCK, block, SHA512_BLOCK_LEN) ||
/* Start initial block hashing, wait and check status. */
tc_write(SHA512_ADDR_CTRL, init, 4) ||
tc_wait_valid(SHA512_ADDR_STATUS) ||
/* Extract the digest. */
tc_expected(SHA512_ADDR_DIGEST, expected, digest_len);
}
int TC9()
{
if (!quiet)
printf("TC9-1: Single block message test for SHA-512/224.\n");
if (tc9(MODE_SHA_512_224, SHA512_224_SINGLE_DIGEST, SHA512_224_DIGEST_LEN) != 0)
return 1;
if (!quiet)
printf("TC9-2: Single block message test for SHA-512/256.\n");
if (tc9(MODE_SHA_512_256, SHA512_256_SINGLE_DIGEST, SHA512_256_DIGEST_LEN) != 0)
return 1;
if (!quiet)
printf("TC9-3: Single block message test for SHA-384.\n");
if (tc9(MODE_SHA_384, SHA384_SINGLE_DIGEST, SHA384_DIGEST_LEN) != 0)
return 1;
if (!quiet)
printf("TC9-4: Single block message test for SHA-512.\n");
if (tc9(MODE_SHA_512, SHA512_SINGLE_DIGEST, SHA512_DIGEST_LEN) != 0)
return 1;
return 0;
}
/* TC10: SHA-512 Double block message test as specified by NIST.
We do this for all modes. */
int tc10(int mode, const uint8_t *expected, int digest_len)
{
const uint8_t *block[2] = { NIST_1024_DOUBLE0, NIST_1024_DOUBLE1 };
uint8_t init[4] = { 0, 0, 0, CTRL_INIT_CMD + mode };
uint8_t next[4] = { 0, 0, 0, CTRL_NEXT_CMD + mode };
return
/* Write first block to SHA-512. */
tc_write(SHA512_ADDR_BLOCK, block[0], SHA512_BLOCK_LEN) ||
/* Start initial block hashing, wait and check status. */
tc_write(SHA512_ADDR_CTRL, init, 4) ||
tc_wait_ready(SHA512_ADDR_STATUS) ||
/* Write second block to SHA-512. */
tc_write(SHA512_ADDR_BLOCK, block[1], SHA512_BLOCK_LEN) ||
/* Start next block hashing, wait and check status. */
tc_write(SHA512_ADDR_CTRL, next, 4) ||
tc_wait_valid(SHA512_ADDR_STATUS) ||
/* Extract the digest. */
tc_expected(SHA512_ADDR_DIGEST, expected, digest_len);
}
int TC10()
{
if (!quiet)
printf("TC10-1: Double block message test for SHA-512/224.\n");
if (tc10(MODE_SHA_512_224, SHA512_224_DOUBLE_DIGEST, SHA512_224_DIGEST_LEN) != 0)
return 1;
if (!quiet)
printf("TC10-2: Double block message test for SHA-512/256.\n");
if (tc10(MODE_SHA_512_256, SHA512_256_DOUBLE_DIGEST, SHA512_256_DIGEST_LEN) != 0)
return 1;
if (!quiet)
printf("TC10-3: Double block message test for SHA-384.\n");
if (tc10(MODE_SHA_384, SHA384_DOUBLE_DIGEST, SHA384_DIGEST_LEN) != 0)
return 1;
if (!quiet)
printf("TC10-4: Double block message test for SHA-512.\n");
if (tc10(MODE_SHA_512, SHA512_DOUBLE_DIGEST, SHA512_DIGEST_LEN) != 0)
return 1;
return 0;
}
/* ---------------- main ---------------- */
/* signal handler for ctrl-c to end repeat testing */
unsigned long iter = 0;
struct timeval tv_start, tv_end;
void sighandler(int unused)
{
double tv_diff;
gettimeofday(&tv_end, NULL);
tv_diff = (double)(tv_end.tv_sec - tv_start.tv_sec) +
(double)(tv_end.tv_usec - tv_start.tv_usec)/1000000;
printf("\n%lu iterations in %.3f seconds (%.3f iterations/sec)\n",
iter, tv_diff, (double)iter/tv_diff);
exit(EXIT_SUCCESS);
}
int main(int argc, char *argv[])
{
typedef int (*tcfp)(void);
tcfp all_tests[] = { TC0, TC1, TC2, TC3, TC4, TC5, TC6, TC7, TC8, TC9, TC10 };
tcfp sha1_tests[] = { TC1, TC2, TC3 };
tcfp sha256_tests[] = { TC4, TC5, TC6, TC7 };
tcfp sha512_tests[] = { TC8, TC9, TC10 };
char *usage = "Usage: %s [-h] [-d] [-q] [-r] tc...\n";
int i, j, opt;
while ((opt = getopt(argc, argv, "h?dqr")) != -1) {
switch (opt) {
case 'h':
case '?':
printf(usage, argv[0]);
return EXIT_SUCCESS;
case 'd':
debug = 1;
break;
case 'q':
quiet = 1;
break;
case 'r':
repeat = 1;
break;
default:
fprintf(stderr, usage, argv[0]);
return EXIT_FAILURE;
}
}
/* set up EIM */
if (eim_setup() != 0) {
fprintf(stderr, "EIM setup failed\n");
return EXIT_FAILURE;
}
/* repeat one test until interrupted */
if (repeat) {
tcfp tc;
if (optind != argc - 1) {
fprintf(stderr, "only one test case can be repeated\n");
return EXIT_FAILURE;
}
j = atoi(argv[optind]);
if (j < 0 || j >= sizeof(all_tests)/sizeof(all_tests[0])) {
fprintf(stderr, "invalid test number %s\n", argv[optind]);
return EXIT_FAILURE;
}
tc = (all_tests[j]);
srand(time(NULL));
signal(SIGINT, sighandler);
gettimeofday(&tv_start, NULL);
while (1) {
++iter;
if ((iter & 0xffff) == 0) {
printf(".");
fflush(stdout);
}
if (tc() != 0)
sighandler(0);
}
return EXIT_SUCCESS; /*NOTREACHED*/
}
/* no args == run all tests */
if (optind >= argc) {
for (j = 0; j < sizeof(all_tests)/sizeof(all_tests[0]); ++j)
if (all_tests[j]() != 0)
return EXIT_FAILURE;
return EXIT_SUCCESS;
}
/* run one or more tests (by number) or groups of tests (by name) */
for (i = optind; i < argc; ++i) {
if (strcmp(argv[i], "all") == 0) {
for (j = 0; j < sizeof(all_tests)/sizeof(all_tests[0]); ++j)
if (all_tests[j]() != 0)
return EXIT_FAILURE;
}
else if (strcmp(argv[i], "sha1") == 0) {
for (j = 0; j < sizeof(sha1_tests)/sizeof(sha1_tests[0]); ++j)
if (sha1_tests[j]() != 0)
return EXIT_FAILURE;
}
else if (strcmp(argv[i], "sha256") == 0) {
for (j = 0; j < sizeof(sha256_tests)/sizeof(sha256_tests[0]); ++j)
if (sha256_tests[j]() != 0)
return EXIT_FAILURE;
}
else if (strcmp(argv[i], "sha512") == 0) {
for (j = 0; j < sizeof(sha512_tests)/sizeof(sha512_tests[0]); ++j)
if (sha512_tests[j]() != 0)
return EXIT_FAILURE;
}
else if (isdigit(argv[i][0]) &&
(((j = atoi(argv[i])) >= 0) &&
(j < sizeof(all_tests)/sizeof(all_tests[0])))) {
if (all_tests[j]() != 0)
return EXIT_FAILURE;
}
else {
fprintf(stderr, "unknown test case %s\n", argv[i]);
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}