1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
/*
* hsm.c
* ----------------
* Main module for the HSM project.
*
* Copyright (c) 2016-2017, NORDUnet A/S All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the NORDUnet nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This is the main RPC server module. At the moment, it has a single
* worker thread to handle RPC requests, while the main thread handles CLI
* activity. The design allows for multiple worker threads to handle
* concurrent RPC requests from multiple clients (muxed through a daemon
* on the host).
*/
#include <string.h>
/* Rename both CMSIS HAL_OK and libhal HAL_OK to disambiguate */
#define HAL_OK CMSIS_HAL_OK
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
#include "stm-uart.h"
#include "stm-sdram.h"
#include "task.h"
#include "mgmt-cli.h"
#undef HAL_OK
#define HAL_OK LIBHAL_OK
#include "hal.h"
#include "hal_internal.h"
#include "slip_internal.h"
#include "xdr_internal.h"
#undef HAL_OK
#ifndef NUM_RPC_TASK
#define NUM_RPC_TASK 1
#elif NUM_RPC_TASK < 1 || NUM_RPC_TASK > 10
#error invalid NUM_RPC_TASK
#endif
#ifndef TASK_STACK_SIZE
/* Define an absurdly large task stack, because some pkey operation use a
* lot of stack variables. This has to go in SDRAM, because it exceeds the
* total RAM on the ARM.
*/
#define TASK_STACK_SIZE 200*1024
#endif
/* Stack for the busy task. This doesn't need to be very big.
*/
#ifndef BUSY_STACK_SIZE
#define BUSY_STACK_SIZE 1*1024
#endif
static uint8_t busy_stack[BUSY_STACK_SIZE];
/* Stack for the CLI task. This needs to be big enough to accept a
* 4096-byte block of an FPGA or bootloader image upload.
*/
#ifndef CLI_STACK_SIZE
#define CLI_STACK_SIZE 8*1024
#endif
static uint8_t cli_stack[CLI_STACK_SIZE];
#ifndef MAX_PKT_SIZE
/* An arbitrary number, more or less driven by the 4096-bit RSA
* keygen test.
*/
#define MAX_PKT_SIZE 4096
#endif
/* RPC buffers. For each active request, there will be two - input and output.
*/
typedef struct rpc_buffer_s {
size_t len;
uint8_t buf[MAX_PKT_SIZE];
struct rpc_buffer_s *next; /* for ibuf queue linking */
} rpc_buffer_t;
/* RPC input (requst) buffers */
static rpc_buffer_t ibufs[NUM_RPC_TASK];
/* ibuf queue structure */
typedef struct {
rpc_buffer_t *head, *tail;
size_t len, max; /* for reporting */
} ibufq_t;
/* ibuf queues. These correspond roughly to task states - 'waiting' is for
* unallocated ibufs, while 'ready' is for requests that are ready to be
* processed.
*/
static ibufq_t ibuf_waiting, ibuf_ready;
/* Get an ibuf from a queue. */
static rpc_buffer_t *ibuf_get(ibufq_t *q)
{
hal_critical_section_start();
rpc_buffer_t *ibuf = q->head;
if (ibuf) {
q->head = ibuf->next;
if (q->head == NULL)
q->tail = NULL;
ibuf->next = NULL;
--q->len;
}
hal_critical_section_end();
return ibuf;
}
/* Put an ibuf on a queue. */
static void ibuf_put(ibufq_t *q, rpc_buffer_t *ibuf)
{
hal_critical_section_start();
if (q->tail)
q->tail->next = ibuf;
else
q->head = ibuf;
q->tail = ibuf;
ibuf->next = NULL;
if (++q->len > q->max)
q->max = q->len;
hal_critical_section_end();
}
/* Get the current length of the 'ready' queue, for reporting in the CLI. */
size_t request_queue_len(void)
{
size_t n;
hal_critical_section_start();
n = ibuf_ready.len;
hal_critical_section_end();
return n;
}
/* Get the maximum length of the 'ready' queue, for reporting in the CLI. */
size_t request_queue_max(void)
{
size_t n;
hal_critical_section_start();
n = ibuf_ready.max;
hal_critical_section_end();
return n;
}
static void dispatch_task(void);
static void busy_task(void);
static tcb_t *busy_tcb;
/* Select an available dispatch task. For simplicity, this doesn't try to
* allocate tasks in a round-robin fashion, so the lowest-numbered task
* will see the most action. OTOH, this lets us gauge the level of system
* activity in the CLI's 'task show' command.
*/
static tcb_t *task_next_waiting(void)
{
for (tcb_t *t = task_iterate(NULL); t; t = task_iterate(t)) {
if (task_get_func(t) == dispatch_task &&
task_get_state(t) == TASK_WAITING)
return t;
}
return NULL;
}
static uint8_t *sdram_malloc(size_t size);
/* Callback for HAL_UART_Receive_DMA().
*/
static void RxCallback(uint8_t c)
{
int complete;
static rpc_buffer_t *ibuf = NULL;
/* If we couldn't previously get an ibuf, a task may have freed one up
* in the meantime. Otherwise, allocate one from SDRAM. In normal
* operation, the number of ibufs will expand to the number of remote
* clients (which we don't know and can't predict). It would take an
* active attempt to DOS the system to exhaust SDRAM, and there are
* easier ways to attack the device (don't release hash or pkey handles).
*/
if (ibuf == NULL) {
ibuf = ibuf_get(&ibuf_waiting);
if (ibuf == NULL) {
ibuf = (rpc_buffer_t *)sdram_malloc(sizeof(rpc_buffer_t));
if (ibuf == NULL)
Error_Handler();
}
ibuf->len = 0;
}
/* Process this character into the ibuf. */
if (hal_slip_process_char(c, ibuf->buf, &ibuf->len, sizeof(ibuf->buf), &complete) != LIBHAL_OK)
Error_Handler();
if (complete) {
/* Add the ibuf to the request queue, and try to get another ibuf.
*/
ibuf_put(&ibuf_ready, ibuf);
ibuf = ibuf_get(&ibuf_waiting);
if (ibuf != NULL)
ibuf->len = 0;
/* else all ibufs are busy, try again next time */
/* Wake a dispatch task to deal with this request, or wake the
* busy task to re-try scheduling a dispatch task.
*/
tcb_t *t = task_next_waiting();
if (t)
task_wake(t);
else
task_wake(busy_tcb);
}
}
static uint8_t uart_rx[2]; /* current character received from UART */
static uint32_t uart_rx_idx = 0;
/* UART DMA half-complete and complete callbacks. With a 2-character DMA
* buffer, one or the other of these will fire on each incoming character.
* Under heavy load, these will sometimes fire in the wrong order, but the
* data are in the right order in the DMA buffer, so we have a flip-flop
* buffer index that doesn't depend on the order of the callbacks.
*/
void HAL_UART2_RxHalfCpltCallback(UART_HandleTypeDef *huart)
{
RxCallback(uart_rx[uart_rx_idx]);
uart_rx_idx ^= 1;
}
void HAL_UART2_RxCpltCallback(UART_HandleTypeDef *huart)
{
RxCallback(uart_rx[uart_rx_idx]);
uart_rx_idx ^= 1;
}
/* Send one character over the UART. This is called from
* hal_slip_send_char().
*/
hal_error_t hal_serial_send_char(uint8_t c)
{
return (uart_send_char2(STM_UART_USER, c) == 0) ? LIBHAL_OK : HAL_ERROR_RPC_TRANSPORT;
}
/* Task entry point for the RPC request handler.
*/
static void dispatch_task(void)
{
rpc_buffer_t obuf_s, *obuf = &obuf_s;
while (1) {
/* Wait for a complete RPC request */
task_sleep();
rpc_buffer_t *ibuf = ibuf_get(&ibuf_ready);
if (ibuf == NULL)
/* probably an error, but go back to sleep */
continue;
memset(obuf, 0, sizeof(*obuf));
obuf->len = sizeof(obuf->buf);
/* Process the request */
hal_error_t ret = hal_rpc_server_dispatch(ibuf->buf, ibuf->len, obuf->buf, &obuf->len);
ibuf_put(&ibuf_waiting, ibuf);
if (ret == LIBHAL_OK) {
/* Send the response */
if (hal_rpc_sendto(obuf->buf, obuf->len, NULL) != LIBHAL_OK)
Error_Handler();
}
/* Else hal_rpc_server_dispatch failed with an XDR error, which
* probably means the request packet was garbage. In any case, we
* have nothing to transmit.
*/
}
}
/* Task entry point for the task-rescheduling task.
*/
static void busy_task(void)
{
while (1) {
/* Wake as many tasks as we have requests.
*/
size_t n;
for (n = request_queue_len(); n > 0; --n) {
tcb_t *t;
if ((t = task_next_waiting()) != NULL)
task_wake(t);
else
break;
}
if (n == 0)
/* flushed the queue, our work here is done */
task_sleep();
else
/* more work to do, try again after some tasks have run */
task_yield();
}
}
/* Allocate memory from SDRAM1. There is only malloc, no free, so we don't
* worry about fragmentation. */
static uint8_t *sdram_malloc(size_t size)
{
/* end of variables declared with __attribute__((section(".sdram1"))) */
extern uint8_t _esdram1 __asm ("_esdram1");
/* end of SDRAM1 section */
extern uint8_t __end_sdram1 __asm ("__end_sdram1");
static uint8_t *sdram_heap = &_esdram1;
uint8_t *p = sdram_heap;
#define pad(n) (((n) + 3) & ~3)
size = pad(size);
if (p + size > &__end_sdram1)
return NULL;
sdram_heap += size;
return p;
}
/* Implement static memory allocation for libhal over sdram_malloc().
* Once again, there's only alloc, not free. */
void *hal_allocate_static_memory(const size_t size)
{
return sdram_malloc(size);
}
/* Critical section start/end - temporarily disable interrupts.
*/
void hal_critical_section_start(void)
{
__disable_irq();
}
void hal_critical_section_end(void)
{
__enable_irq();
}
/* A genericized public interface to task_yield(), for calling from
* libhal.
*/
void hal_task_yield(void)
{
task_yield();
}
/* A mutex to arbitrate concurrent access to the keystore.
*/
task_mutex_t ks_mutex = { 0 };
void hal_ks_lock(void) { task_mutex_lock(&ks_mutex); }
void hal_ks_unlock(void) { task_mutex_unlock(&ks_mutex); }
/* Sleep for specified number of seconds.
*/
void hal_sleep(const unsigned seconds) { task_delay(seconds * 1000); }
/* The main task. This does all the setup, and the worker tasks handle
* the rest.
*/
int main(void)
{
stm_init();
uart_set_default(STM_UART_MGMT);
led_on(LED_GREEN);
/* Prepare FMC interface. */
fmc_init();
sdram_init();
if (hal_rpc_server_init() != LIBHAL_OK)
Error_Handler();
/* Initialize the ibuf queues. */
memset(&ibuf_waiting, 0, sizeof(ibuf_waiting));
memset(&ibuf_ready, 0, sizeof(ibuf_ready));
for (int i = 0; i < sizeof(ibufs)/sizeof(ibufs[0]); ++i)
ibuf_put(&ibuf_waiting, &ibufs[i]);
/* Create the rpc dispatch worker tasks. */
static char label[NUM_RPC_TASK][sizeof("dispatch0")];
for (int i = 0; i < NUM_RPC_TASK; ++i) {
sprintf(label[i], "dispatch%d", i);
void *stack = (void *)sdram_malloc(TASK_STACK_SIZE);
if (stack == NULL)
Error_Handler();
if (task_add(label[i], dispatch_task, &ibufs[i], stack, TASK_STACK_SIZE) == NULL)
Error_Handler();
}
/* Create the busy task. */
busy_tcb = task_add("busy", busy_task, NULL, busy_stack, sizeof(busy_stack));
if (busy_tcb == NULL)
Error_Handler();
/* Start the UART receiver. */
if (HAL_UART_Receive_DMA(&huart_user, uart_rx, 2) != CMSIS_HAL_OK)
Error_Handler();
/* Launch other tasks (csprng warm-up task?)
* Wait for FPGA_DONE interrupt.
*/
/* Create the CLI task. */
if (task_add("cli", (funcp_t)cli_main, NULL, cli_stack, sizeof(cli_stack)) == NULL)
Error_Handler();
/* Start the tasker */
task_yield();
}
|