aboutsummaryrefslogtreecommitdiff
path: root/projects/board-test/keystore-perf.c
blob: c2aa4fb447d7a1c04eec009b56b38d1b465cdbca (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/*
 * Test read/write/erase performance of the flash keystore.
 */

#include "string.h"

#include "stm-init.h"
#include "stm-led.h"
#include "stm-uart.h"
#include "stm-keystore.h"

/*
 * 1. Read the entire flash by subsectors, ignoring data.
 */
static void test_read_data(void)
{
    uint8_t read_buf[KEYSTORE_SUBSECTOR_SIZE];
    uint32_t i;
    HAL_StatusTypeDef err;

    for (i = 0; i < KEYSTORE_NUM_SUBSECTORS; ++i) {
        err = keystore_read_data(i * KEYSTORE_SUBSECTOR_SIZE, read_buf, KEYSTORE_SUBSECTOR_SIZE);
        if (err != HAL_OK) {
            uart_send_string("ERROR: keystore_read_data returned ");
            uart_send_integer(err, 1);
            uart_send_string("\r\n");
            break;
        }
    }
}

/*
 * Read the flash data and verify it against a known pattern.
 */
static void _read_verify(uint8_t *vrfy_buf)
{
    uint8_t read_buf[KEYSTORE_SUBSECTOR_SIZE];
    uint32_t i;
    HAL_StatusTypeDef err;

    for (i = 0; i < KEYSTORE_NUM_SUBSECTORS; ++i) {
        err = keystore_read_data(i * KEYSTORE_SUBSECTOR_SIZE, read_buf, KEYSTORE_SUBSECTOR_SIZE);
        if (err != HAL_OK) {
            uart_send_string("ERROR: keystore_read_data returned ");
            uart_send_integer(err, 1);
            uart_send_string("\r\n");
            break;
        }
        if (memcmp(read_buf, vrfy_buf, KEYSTORE_SUBSECTOR_SIZE) != 0) {
            uart_send_string("ERROR: verify failed in subsector ");
            uart_send_integer(i, 1);
            uart_send_string("\r\n");
            break;
        }
    }
}

/*
 * 2a. Erase the entire flash by sectors.
 */
static void test_erase_sector(void)
{
    uint32_t i;
    HAL_StatusTypeDef err;

    for (i = 0; i < KEYSTORE_NUM_SECTORS; ++i) {
        err = keystore_erase_sector(i);
        if (err != HAL_OK) {
            uart_send_string("ERROR: keystore_erase_sector returned ");
            uart_send_integer(err, 1);
            uart_send_string("\r\n");
            break;
        }
    }
}

/*
 * 2b. Erase the entire flash by subsectors.
 */
static void test_erase_subsector(void)
{
    uint32_t i;
    HAL_StatusTypeDef err;

    for (i = 0; i < KEYSTORE_NUM_SUBSECTORS; ++i) {
        err = keystore_erase_subsector(i);
        if (err != HAL_OK) {
            uart_send_string("ERROR: keystore_erase_subsector returned ");
            uart_send_integer(err, 1);
            uart_send_string("\r\n");
            break;
        }
    }
}

/*
 * 2c. Read the entire flash, verify erasure.
 */
static void test_verify_erase(void)
{
    uint8_t vrfy_buf[KEYSTORE_SUBSECTOR_SIZE];
    uint32_t i;

    for (i = 0; i < sizeof(vrfy_buf); ++i)
        vrfy_buf[i] = 0xFF;

    _read_verify(vrfy_buf);
}

/*
 * 3a. Write the entire flash with a pattern.
 */
static void test_write_data(void)
{
    uint8_t write_buf[KEYSTORE_SUBSECTOR_SIZE];
    uint32_t i;
    HAL_StatusTypeDef err;

    for (i = 0; i < sizeof(write_buf); ++i)
        write_buf[i] = i & 0xFF;

    for (i = 0; i < KEYSTORE_NUM_SUBSECTORS; ++i) {
        err = keystore_write_data(i * KEYSTORE_SUBSECTOR_SIZE, write_buf, KEYSTORE_SUBSECTOR_SIZE);
        if (err != HAL_OK) {
            uart_send_string("ERROR: keystore_write_data returned ");
            uart_send_integer(err, 1);
            uart_send_string(" for subsector ");
            uart_send_integer(i, 1);
            uart_send_string("\r\n");
            break;
        }
    }
}

/*
 * 3b. Read the entire flash, verify data.
 */
static void test_verify_write(void)
{
    uint8_t vrfy_buf[KEYSTORE_SUBSECTOR_SIZE];
    uint32_t i;

    for (i = 0; i < sizeof(vrfy_buf); ++i)
        vrfy_buf[i] = i & 0xFF;

    _read_verify(vrfy_buf);
}

static void _time_check(char *label, const uint32_t t0, uint32_t n_rounds)
{
    uint32_t t = HAL_GetTick() - t0;

    uart_send_string(label);
    uart_send_integer(t / 1000, 1);
    uart_send_char('.');
    uart_send_integer(t % 1000, 3);
    uart_send_string(" sec");
    if (n_rounds > 1) {
        uart_send_string(" for ");
        uart_send_integer(n_rounds, 1);
        uart_send_string(" rounds, ");
        uart_send_integer(t / n_rounds, 1);
        uart_send_char('.');
        uart_send_integer(((t % n_rounds) * 100) / n_rounds, 2);
        uart_send_string(" ms each");
    }
    uart_send_string("\r\n");
}

#define time_check(_label_, _expr_, _n_)	\
    do {					\
	uint32_t _t = HAL_GetTick();		\
	(_expr_);				\
	_time_check(_label_, _t, _n_);		\
    } while (0)

int main(void)
{
    stm_init();

    if (keystore_check_id() != HAL_OK) {
        uart_send_string("ERROR: keystore_check_id failed\r\n");
        return 0;
    }

    uart_send_string("Starting...\r\n");

    time_check("read data       ", test_read_data(),       KEYSTORE_NUM_SUBSECTORS);
    time_check("erase subsector ", test_erase_subsector(), KEYSTORE_NUM_SUBSECTORS);
    time_check("erase sector    ", test_erase_sector(),    KEYSTORE_NUM_SECTORS);
    time_check("verify erase    ", test_verify_erase(),    KEYSTORE_NUM_SUBSECTORS);
    time_check("write data      ", test_write_data(),      KEYSTORE_NUM_SUBSECTORS);
    time_check("verify write    ", test_verify_write(),    KEYSTORE_NUM_SUBSECTORS);

    uart_send_string("Done.\r\n\r\n");
    return 0;
}