1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
//------------------------------------------------------------------------------
// main.c
//------------------------------------------------------------------------------
/*
This requires a special bitstream with a special test register.
See core/platform/alpha/rtl/alpha_fmc_test.v:
//----------------------------------------------------------------
// Dummy Register
//
// General-purpose register to test FMC interface using STM32
// demo program instead of core selector logic.
//
// This register is a bit tricky, but it allows testing of both
// data and address buses. Reading from FPGA will always return
// value, which is currently stored in the test register,
// regardless of read transaction address. Writing to FPGA has
// two variants: a) writing to address 0 will store output data
// data value in the test register, b) writing to any non-zero
// address will store _address_ of write transaction in the test
// register.
//
// To test data bus, write some different patterns to address 0,
// then readback from any address and compare.
//
// To test address bus, write anything to some different non-zero
// addresses, then readback from any address and compare returned
// value with previously written address.
//
//----------------------------------------------------------------
*/
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
#include "stm-uart.h"
#include "stm-fpgacfg.h"
//------------------------------------------------------------------------------
// Defines
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Macros
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Variables
//------------------------------------------------------------------------------
RNG_HandleTypeDef rng_inst;
// FT: "I changed some interesting-to-look-at-in-the-debugger values to be
// volatile, so that my compiler wouldn't optimize/obscure them."
volatile uint32_t data_diff = 0;
volatile uint32_t addr_diff = 0;
//------------------------------------------------------------------------------
// Prototypes
//------------------------------------------------------------------------------
/* XXX move this to stm-rng.[ch] */
static void MX_RNG_Init(void);
int test_fpga_data_bus(void);
int test_fpga_address_bus(void);
//------------------------------------------------------------------------------
// Defines
//------------------------------------------------------------------------------
#define TEST_NUM_ROUNDS 100000
#define VERBOSE 0
//------------------------------------------------------------------------------
int main(void)
//------------------------------------------------------------------------------
{
int i;
stm_init();
uart_send_string("Keep calm for FPGA bitstream loading...\r\n");
// Blink blue LED until the FPGA reports it has loaded its bitstream
led_on(LED_BLUE);
while (! fpgacfg_check_done()) {
for (i = 0; i < 4; i++) {
HAL_Delay(500);
led_toggle(LED_BLUE);
}
}
// initialize rng
MX_RNG_Init();
// turn on green led, turn off other leds
led_on(LED_GREEN);
led_off(LED_YELLOW);
led_off(LED_RED);
led_off(LED_BLUE);
// vars
volatile int data_test_ok = 0, addr_test_ok = 0, successful_runs = 0, failed_runs = 0, sleep = 0;
// main loop (test, until an error is detected)
while (1)
{
// test data bus
data_test_ok = test_fpga_data_bus();
// test address bus
addr_test_ok = test_fpga_address_bus();
if (VERBOSE ||
(data_test_ok != TEST_NUM_ROUNDS ||
addr_test_ok != TEST_NUM_ROUNDS)) {
uart_send_string("Data: ");
uart_send_integer(data_test_ok, 6);
uart_send_string(", addr: ");
uart_send_integer(addr_test_ok, 6);
uart_send_string("\r\n");
}
if (data_test_ok == TEST_NUM_ROUNDS &&
addr_test_ok == TEST_NUM_ROUNDS) {
// toggle yellow led to indicate, that we are alive
led_toggle(LED_YELLOW);
successful_runs++;
sleep = 0;
} else {
led_on(LED_RED);
failed_runs++;
sleep = 2000;
}
uart_send_string("Success ");
uart_send_integer(successful_runs, 1);
uart_send_string(", fail ");
uart_send_integer(failed_runs, 1);
uart_send_string("\r\n");
if (VERBOSE)
uart_send_string("\r\n");
HAL_Delay(sleep);
}
// should never reach this line
}
//------------------------------------------------------------------------------
int test_fpga_data_bus(void)
//------------------------------------------------------------------------------
{
int c, ok;
uint32_t rnd, buf;
HAL_StatusTypeDef hal_result;
// run some rounds of data bus test
for (c=0; c<TEST_NUM_ROUNDS; c++)
{
data_diff = 0;
// try to generate "random" number
hal_result = HAL_RNG_GenerateRandomNumber(&rng_inst, &rnd);
if (hal_result != HAL_OK) break;
// write value to fpga at address 0
ok = fmc_write_32(0, rnd);
if (ok != 0) break;
// read value from fpga
ok = fmc_read_32(0, &buf);
if (ok != 0) break;
// compare (abort testing in case of error)
if (buf != rnd)
{
data_diff = buf;
data_diff ^= rnd;
uart_send_string("Data bus fail: expected ");
uart_send_binary(rnd, 32);
uart_send_string(", got ");
uart_send_binary(buf, 32);
uart_send_string(", diff ");
uart_send_binary(data_diff, 32);
uart_send_string("\r\n");
break;
}
}
data_diff = buf;
data_diff ^= rnd;
if (VERBOSE || data_diff) {
uart_send_string("Sample of data bus test data: expected ");
uart_send_binary(rnd, 32);
uart_send_string(", got ");
uart_send_binary(buf, 32);
uart_send_string(", diff ");
uart_send_binary(data_diff, 32);
uart_send_string("\r\n");
}
// return number of successful tests
return c;
}
//------------------------------------------------------------------------------
int test_fpga_address_bus(void)
//------------------------------------------------------------------------------
{
int c, ok;
uint32_t rnd, buf;
HAL_StatusTypeDef hal_result;
// run some rounds of address bus test
for (c=0; c<TEST_NUM_ROUNDS; c++)
{
addr_diff = 0;
// try to generate "random" number
hal_result = HAL_RNG_GenerateRandomNumber(&rng_inst, &rnd);
if (hal_result != HAL_OK) break;
// there are 26 physicaly connected address lines on the alpha,
// but "only" 24 usable for now (the top two ones are used by FMC
// to choose bank, and we only have one bank set up currently)
rnd &= 0x3fffffc;
// don't test zero addresses (fpga will store data, not address)
if (rnd == 0) continue;
// write dummy value to fpga at some non-zero address
ok = fmc_write_32(rnd, buf);
if (ok != 0) break;
// read value from fpga
ok = fmc_read_32(0, &buf);
if (ok != 0) break;
// fpga receives address of 32-bit word, while we need
// byte address here to compare
buf <<= 2;
// compare (abort testing in case of error)
if (buf != rnd)
{
addr_diff = buf;
addr_diff ^= rnd;
uart_send_string("Addr bus fail: expected ");
uart_send_binary(rnd, 32);
uart_send_string(", got ");
uart_send_binary(buf, 32);
uart_send_string(", diff ");
uart_send_binary(addr_diff, 32);
uart_send_string("\r\n");
break;
}
}
addr_diff = buf;
addr_diff ^= rnd;
if (VERBOSE || addr_diff) {
uart_send_string("Sample of addr bus test data: expected ");
uart_send_binary(rnd, 32);
uart_send_string(", got ");
uart_send_binary(buf, 32);
uart_send_string(", diff ");
uart_send_binary(addr_diff, 32);
uart_send_string("\r\n");
}
return c;
}
//------------------------------------------------------------------------------
static void MX_RNG_Init(void)
//------------------------------------------------------------------------------
{
rng_inst.Instance = RNG;
HAL_RNG_Init(&rng_inst);
}
//------------------------------------------------------------------------------
// EOF
//------------------------------------------------------------------------------
|