aboutsummaryrefslogtreecommitdiff
path: root/projects/board-test/fmc-perf.c
blob: e87f282f84b859bf9b99f7d27d4dd3f589d80681 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/*
 * Test read/write performance of the fmc bus
 */
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
#include "stm-uart.h"

#define TEST_NUM_ROUNDS		2000000

RNG_HandleTypeDef rng_inst;

static void MX_RNG_Init(void)
{
    rng_inst.Instance = RNG;
    HAL_RNG_Init(&rng_inst);
}

static uint32_t random(void)
{
    uint32_t rnd;
    if (HAL_RNG_GenerateRandomNumber(&rng_inst, &rnd) != HAL_OK) {
	uart_send_string("HAL_RNG_GenerateRandomNumber failed\r\n");
	Error_Handler();
    }
    return rnd;
}

static void sanity(void)
{
    uint32_t rnd, data;
  
    rnd = random();  
    if (fmc_write_32(0, &rnd) != 0) {
	uart_send_string("fmc_write_32 failed\r\n");
	Error_Handler();
    }
    if (fmc_read_32(0, &data) != 0) {
	uart_send_string("fmc_read_32 failed\r\n");
	Error_Handler();
    }
    if (data != rnd) {
	uart_send_string("Data bus fail: expected ");
	uart_send_hex(rnd, 8);
	uart_send_string(", got ");
	uart_send_hex(data, 8);
	uart_send_string(", diff ");
	uart_send_hex(data ^ rnd, 8);
	uart_send_string("\r\n");
	Error_Handler();
    }
}

static void _time_check(char *label, const uint32_t t0)
{
    uint32_t t = HAL_GetTick() - t0;

    uart_send_string(label);
    uart_send_integer(t / 1000, 1);
    uart_send_char('.');
    uart_send_integer(t % 1000, 3);
    uart_send_string(" seconds, ");
    uart_send_integer(((1000 * TEST_NUM_ROUNDS) / t), 1);
    uart_send_string("/sec\r\n");
}

#define time_check(_label_, _expr_)		\
    do {					\
	uint32_t _t = HAL_GetTick();		\
	(_expr_);				\
	_time_check(_label_, _t);		\
    } while (0)

static void test_read(void)
{
    uint32_t i, data;
    
    for (i = 0; i < TEST_NUM_ROUNDS; ++i) {
	if (fmc_read_32(0, &data) != 0) {
	    uart_send_string("fmc_read_32 failed\r\n");
	    Error_Handler();
	}
    }
}

static void test_write(void)
{
    uint32_t i;
    
    for (i = 0; i < TEST_NUM_ROUNDS; ++i) {
	if (fmc_write_32(0, &i) != 0) {
	    uart_send_string("fmc_write_32 failed\r\n");
	    Error_Handler();
	}
    }
}

int main(void)
{
    stm_init();
    // initialize rng
    MX_RNG_Init();

    sanity();

    time_check("read  ", test_read());
    time_check("write ", test_write());

    uart_send_string("Done.\r\n\r\n");
    return 0;
}
uint8_t * derived_key, size_t derived_key_length, unsigned iterations_desired) { uint8_t result[HAL_MAX_HASH_DIGEST_LENGTH], mac[HAL_MAX_HASH_DIGEST_LENGTH]; uint8_t statebuf[1024]; unsigned iteration; hal_error_t err; uint32_t block; if (descriptor == NULL || password == NULL || salt == NULL || derived_key == NULL || derived_key_length == 0 || iterations_desired == 0) return HAL_ERROR_BAD_ARGUMENTS; assert(sizeof(statebuf) >= descriptor->hmac_state_length); assert(sizeof(result) >= descriptor->digest_length); assert(sizeof(mac) >= descriptor->digest_length); /* Output length check per RFC 2989 5.2. */ if ((uint64_t) derived_key_length > ((uint64_t) 0xFFFFFFFF) * descriptor->block_length) return HAL_ERROR_UNSUPPORTED_KEY; memset(result, 0, sizeof(result)); memset(mac, 0, sizeof(mac)); /* * We probably should check here to see whether the password is * longer than the HMAC block size, and, if so, we should hash the * password here to avoid having recomputing that every time through * the loops below. There are other optimizations we'd like to * make, but this one doesn't require being able to save and restore * the hash state. */ /* * Generate output blocks until we reach the requested length. */ for (block = 1; ; block++) { /* * Initial HMAC is of the salt concatenated with the block count. * This seeds the result, and constitutes iteration one. */ if ((err = do_hmac(core, descriptor, password, password_length, salt, salt_length, block, mac, sizeof(mac))) != HAL_OK) return err; memcpy(result, mac, descriptor->digest_length); /* * Now iterate however many times the caller requested, XORing the * HMAC back into the result on each iteration. */ for (iteration = 2; iteration <= iterations_desired; iteration++) { if ((err = do_hmac(core, descriptor, password, password_length, mac, descriptor->digest_length, 0, mac, sizeof(mac))) != HAL_OK) return err; for (size_t i = 0; i < descriptor->digest_length; i++) result[i] ^= mac[i]; } /* * Save result block, then exit or loop for another block. */ if (derived_key_length > descriptor->digest_length) { memcpy(derived_key, result, descriptor->digest_length); derived_key += descriptor->digest_length; derived_key_length -= descriptor->digest_length; } else { memcpy(derived_key, result, derived_key_length); return HAL_OK; } } } /* * Local variables: * indent-tabs-mode: nil * End: */