diff options
author | Paul Selkirk <paul@psgd.org> | 2015-10-26 15:18:58 -0400 |
---|---|---|
committer | Paul Selkirk <paul@psgd.org> | 2015-10-26 15:18:58 -0400 |
commit | 26f12903dab2fafeaaefb02349763618ce96d070 (patch) | |
tree | b37cceea7014770ea2ae039928e57b6f02c0aaa2 /Drivers/STM32F4xx_HAL_Driver/Src |
Based on user/ft/stm32-dev-bridge, without the project-specific build
directories (and duplicated code).
Diffstat (limited to 'Drivers/STM32F4xx_HAL_Driver/Src')
64 files changed, 84208 insertions, 0 deletions
diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal.c new file mode 100644 index 0000000..2649228 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal.c @@ -0,0 +1,531 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief HAL module driver. + * This is the common part of the HAL initialization + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The common HAL driver contains a set of generic and common APIs that can be + used by the PPP peripheral drivers and the user to start using the HAL. + [..] + The HAL contains two APIs' categories: + (+) Common HAL APIs + (+) Services HAL APIs + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup HAL HAL + * @brief HAL module driver. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup HAL_Private_Constants + * @{ + */ +/** + * @brief STM32F4xx HAL Driver version number V1.3.2 + */ +#define __STM32F4xx_HAL_VERSION_MAIN (0x01) /*!< [31:24] main version */ +#define __STM32F4xx_HAL_VERSION_SUB1 (0x03) /*!< [23:16] sub1 version */ +#define __STM32F4xx_HAL_VERSION_SUB2 (0x02) /*!< [15:8] sub2 version */ +#define __STM32F4xx_HAL_VERSION_RC (0x00) /*!< [7:0] release candidate */ +#define __STM32F4xx_HAL_VERSION ((__STM32F4xx_HAL_VERSION_MAIN << 24)\ + |(__STM32F4xx_HAL_VERSION_SUB1 << 16)\ + |(__STM32F4xx_HAL_VERSION_SUB2 << 8 )\ + |(__STM32F4xx_HAL_VERSION_RC)) + +#define IDCODE_DEVID_MASK ((uint32_t)0x00000FFF) + +/* ------------ RCC registers bit address in the alias region ----------- */ +#define SYSCFG_OFFSET (SYSCFG_BASE - PERIPH_BASE) +/* --- MEMRMP Register ---*/ +/* Alias word address of UFB_MODE bit */ +#define MEMRMP_OFFSET SYSCFG_OFFSET +#define UFB_MODE_BIT_NUMBER POSITION_VAL(SYSCFG_MEMRMP_UFB_MODE) +#define UFB_MODE_BB (uint32_t)(PERIPH_BB_BASE + (MEMRMP_OFFSET * 32) + (UFB_MODE_BIT_NUMBER * 4)) + +/* --- CMPCR Register ---*/ +/* Alias word address of CMP_PD bit */ +#define CMPCR_OFFSET (SYSCFG_OFFSET + 0x20) +#define CMP_PD_BIT_NUMBER POSITION_VAL(SYSCFG_CMPCR_CMP_PD) +#define CMPCR_CMP_PD_BB (uint32_t)(PERIPH_BB_BASE + (CMPCR_OFFSET * 32) + (CMP_PD_BIT_NUMBER * 4)) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup HAL_Private_Variables + * @{ + */ +static __IO uint32_t uwTick; +/** + * @} + */ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup HAL_Exported_Functions HAL Exported Functions + * @{ + */ + +/** @defgroup HAL_Exported_Functions_Group1 Initialization and de-initialization Functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initializes the Flash interface the NVIC allocation and initial clock + configuration. It initializes the systick also when timeout is needed + and the backup domain when enabled. + (+) de-Initializes common part of the HAL + (+) Configure The time base source to have 1ms time base with a dedicated + Tick interrupt priority. + (++) Systick timer is used by default as source of time base, but user + can eventually implement his proper time base source (a general purpose + timer for example or other time source), keeping in mind that Time base + duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and + handled in milliseconds basis. + (++) Time base configuration function (HAL_InitTick ()) is called automatically + at the beginning of the program after reset by HAL_Init() or at any time + when clock is configured, by HAL_RCC_ClockConfig(). + (++) Source of time base is configured to generate interrupts at regular + time intervals. Care must be taken if HAL_Delay() is called from a + peripheral ISR process, the Tick interrupt line must have higher priority + (numerically lower) than the peripheral interrupt. Otherwise the caller + ISR process will be blocked. + (++) functions affecting time base configurations are declared as __weak + to make override possible in case of other implementations in user file. +@endverbatim + * @{ + */ + +/** + * @brief This function is used to initialize the HAL Library; it must be the first + * instruction to be executed in the main program (before to call any other + * HAL function), it performs the following: + * Configure the Flash prefetch, instruction and Data caches. + * Configures the SysTick to generate an interrupt each 1 millisecond, + * which is clocked by the HSI (at this stage, the clock is not yet + * configured and thus the system is running from the internal HSI at 16 MHz). + * Set NVIC Group Priority to 4. + * Calls the HAL_MspInit() callback function defined in user file + * "stm32f4xx_hal_msp.c" to do the global low level hardware initialization + * + * @note SysTick is used as time base for the HAL_Delay() function, the application + * need to ensure that the SysTick time base is always set to 1 millisecond + * to have correct HAL operation. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_Init(void) +{ + /* Configure Flash prefetch, Instruction cache, Data cache */ +#if (INSTRUCTION_CACHE_ENABLE != 0) + __HAL_FLASH_INSTRUCTION_CACHE_ENABLE(); +#endif /* INSTRUCTION_CACHE_ENABLE */ + +#if (DATA_CACHE_ENABLE != 0) + __HAL_FLASH_DATA_CACHE_ENABLE(); +#endif /* DATA_CACHE_ENABLE */ + +#if (PREFETCH_ENABLE != 0) + __HAL_FLASH_PREFETCH_BUFFER_ENABLE(); +#endif /* PREFETCH_ENABLE */ + + /* Set Interrupt Group Priority */ + HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4); + + /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */ + HAL_InitTick(TICK_INT_PRIORITY); + + /* Init the low level hardware */ + HAL_MspInit(); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief This function de-Initializes common part of the HAL and stops the systick. + * This function is optional. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DeInit(void) +{ + /* Reset of all peripherals */ + __HAL_RCC_APB1_FORCE_RESET(); + __HAL_RCC_APB1_RELEASE_RESET(); + + __HAL_RCC_APB2_FORCE_RESET(); + __HAL_RCC_APB2_RELEASE_RESET(); + + __HAL_RCC_AHB1_FORCE_RESET(); + __HAL_RCC_AHB1_RELEASE_RESET(); + + __HAL_RCC_AHB2_FORCE_RESET(); + __HAL_RCC_AHB2_RELEASE_RESET(); + + __HAL_RCC_AHB3_FORCE_RESET(); + __HAL_RCC_AHB3_RELEASE_RESET(); + + /* De-Init the low level hardware */ + HAL_MspDeInit(); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the MSP. + * @retval None + */ +__weak void HAL_MspInit(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the MSP. + * @retval None + */ +__weak void HAL_MspDeInit(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief This function configures the source of the time base. + * The time source is configured to have 1ms time base with a dedicated + * Tick interrupt priority. + * @note This function is called automatically at the beginning of program after + * reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig(). + * @note In the default implementation, SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals. + * Care must be taken if HAL_Delay() is called from a peripheral ISR process, + * The the SysTick interrupt must have higher priority (numerically lower) + * than the peripheral interrupt. Otherwise the caller ISR process will be blocked. + * The function is declared as __weak to be overwritten in case of other + * implementation in user file. + * @param TickPriority: Tick interrupt priority. + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority) +{ + /*Configure the SysTick to have interrupt in 1ms time basis*/ + HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000); + + /*Configure the SysTick IRQ priority */ + HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority ,0); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HAL_Exported_Functions_Group2 HAL Control functions + * @brief HAL Control functions + * +@verbatim + =============================================================================== + ##### HAL Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Provide a tick value in millisecond + (+) Provide a blocking delay in millisecond + (+) Suspend the time base source interrupt + (+) Resume the time base source interrupt + (+) Get the HAL API driver version + (+) Get the device identifier + (+) Get the device revision identifier + (+) Enable/Disable Debug module during SLEEP mode + (+) Enable/Disable Debug module during STOP mode + (+) Enable/Disable Debug module during STANDBY mode + +@endverbatim + * @{ + */ + +/** + * @brief This function is called to increment a global variable "uwTick" + * used as application time base. + * @note In the default implementation, this variable is incremented each 1ms + * in Systick ISR. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_IncTick(void) +{ + uwTick++; +} + +/** + * @brief Provides a tick value in millisecond. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval tick value + */ +__weak uint32_t HAL_GetTick(void) +{ + return uwTick; +} + +/** + * @brief This function provides accurate delay (in milliseconds) based + * on variable incremented. + * @note In the default implementation , SysTick timer is the source of time base. + * It is used to generate interrupts at regular time intervals where uwTick + * is incremented. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @param Delay: specifies the delay time length, in milliseconds. + * @retval None + */ +__weak void HAL_Delay(__IO uint32_t Delay) +{ + uint32_t tickstart = 0; + tickstart = HAL_GetTick(); + while((HAL_GetTick() - tickstart) < Delay) + { + } +} + +/** + * @brief Suspend Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_SuspendTick() + * is called, the SysTick interrupt will be disabled and so Tick increment + * is suspended. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_SuspendTick(void) +{ + /* Disable SysTick Interrupt */ + SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk; +} + +/** + * @brief Resume Tick increment. + * @note In the default implementation , SysTick timer is the source of time base. It is + * used to generate interrupts at regular time intervals. Once HAL_ResumeTick() + * is called, the SysTick interrupt will be enabled and so Tick increment + * is resumed. + * @note This function is declared as __weak to be overwritten in case of other + * implementations in user file. + * @retval None + */ +__weak void HAL_ResumeTick(void) +{ + /* Enable SysTick Interrupt */ + SysTick->CTRL |= SysTick_CTRL_TICKINT_Msk; +} + +/** + * @brief Returns the HAL revision + * @retval version : 0xXYZR (8bits for each decimal, R for RC) + */ +uint32_t HAL_GetHalVersion(void) +{ + return __STM32F4xx_HAL_VERSION; +} + +/** + * @brief Returns the device revision identifier. + * @retval Device revision identifier + */ +uint32_t HAL_GetREVID(void) +{ + return((DBGMCU->IDCODE) >> 16); +} + +/** + * @brief Returns the device identifier. + * @retval Device identifier + */ +uint32_t HAL_GetDEVID(void) +{ + return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK); +} + +/** + * @brief Enable the Debug Module during SLEEP mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGSleepMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP); +} + +/** + * @brief Disable the Debug Module during SLEEP mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGSleepMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEP); +} + +/** + * @brief Enable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStopMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); +} + +/** + * @brief Disable the Debug Module during STOP mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStopMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOP); +} + +/** + * @brief Enable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_EnableDBGStandbyMode(void) +{ + SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); +} + +/** + * @brief Disable the Debug Module during STANDBY mode + * @retval None + */ +void HAL_DBGMCU_DisableDBGStandbyMode(void) +{ + CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBY); +} + +/** + * @brief Enables the I/O Compensation Cell. + * @note The I/O compensation cell can be used only when the device supply + * voltage ranges from 2.4 to 3.6 V. + * @retval None + */ +void HAL_EnableCompensationCell(void) +{ + *(__IO uint32_t *)CMPCR_CMP_PD_BB = (uint32_t)ENABLE; +} + +/** + * @brief Power-down the I/O Compensation Cell. + * @note The I/O compensation cell can be used only when the device supply + * voltage ranges from 2.4 to 3.6 V. + * @retval None + */ +void HAL_DisableCompensationCell(void) +{ + *(__IO uint32_t *)CMPCR_CMP_PD_BB = (uint32_t)DISABLE; +} + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) +/** + * @brief Enables the Internal FLASH Bank Swapping. + * + * @note This function can be used only for STM32F42xxx/43xxx devices. + * + * @note Flash Bank2 mapped at 0x08000000 (and aliased @0x00000000) + * and Flash Bank1 mapped at 0x08100000 (and aliased at 0x00100000) + * + * @retval None + */ +void HAL_EnableMemorySwappingBank(void) +{ + *(__IO uint32_t *)UFB_MODE_BB = (uint32_t)ENABLE; +} + +/** + * @brief Disables the Internal FLASH Bank Swapping. + * + * @note This function can be used only for STM32F42xxx/43xxx devices. + * + * @note The default state : Flash Bank1 mapped at 0x08000000 (and aliased @0x0000 0000) + * and Flash Bank2 mapped at 0x08100000 (and aliased at 0x00100000) + * + * @retval None + */ +void HAL_DisableMemorySwappingBank(void) +{ + + *(__IO uint32_t *)UFB_MODE_BB = (uint32_t)DISABLE; +} +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc.c new file mode 100644 index 0000000..00900e7 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc.c @@ -0,0 +1,1412 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_adc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief This file provides firmware functions to manage the following + * functionalities of the Analog to Digital Convertor (ADC) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + State and errors functions + * + @verbatim + ============================================================================== + ##### ADC Peripheral features ##### + ============================================================================== + [..] + (#) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution. + (#) Interrupt generation at the end of conversion, end of injected conversion, + and in case of analog watchdog or overrun events + (#) Single and continuous conversion modes. + (#) Scan mode for automatic conversion of channel 0 to channel x. + (#) Data alignment with in-built data coherency. + (#) Channel-wise programmable sampling time. + (#) External trigger option with configurable polarity for both regular and + injected conversion. + (#) Dual/Triple mode (on devices with 2 ADCs or more). + (#) Configurable DMA data storage in Dual/Triple ADC mode. + (#) Configurable delay between conversions in Dual/Triple interleaved mode. + (#) ADC conversion type (refer to the datasheets). + (#) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at + slower speed. + (#) ADC input range: VREF(minus) = VIN = VREF(plus). + (#) DMA request generation during regular channel conversion. + + + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit(): + (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE() + (##) ADC pins configuration + (+++) Enable the clock for the ADC GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE() + (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init() + (##) In case of using interrupts (e.g. HAL_ADC_Start_IT()) + (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA()) + (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream. + + *** Configuration of ADC, groups regular/injected, channels parameters *** + ============================================================================== + [..] + (#) Configure the ADC parameters (resolution, data alignment, ...) + and regular group parameters (conversion trigger, sequencer, ...) + using function HAL_ADC_Init(). + + (#) Configure the channels for regular group parameters (channel number, + channel rank into sequencer, ..., into regular group) + using function HAL_ADC_ConfigChannel(). + + (#) Optionally, configure the injected group parameters (conversion trigger, + sequencer, ..., of injected group) + and the channels for injected group parameters (channel number, + channel rank into sequencer, ..., into injected group) + using function HAL_ADCEx_InjectedConfigChannel(). + + (#) Optionally, configure the analog watchdog parameters (channels + monitored, thresholds, ...) using function HAL_ADC_AnalogWDGConfig(). + + (#) Optionally, for devices with several ADC instances: configure the + multimode parameters using function HAL_ADCEx_MultiModeConfigChannel(). + + *** Execution of ADC conversions *** + ============================================================================== + [..] + (#) ADC driver can be used among three modes: polling, interruption, + transfer by DMA. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the ADC peripheral using HAL_ADC_Start() + (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage + user can specify the value of timeout according to his end application + (+) To read the ADC converted values, use the HAL_ADC_GetValue() function. + (+) Stop the ADC peripheral using HAL_ADC_Stop() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Start the ADC peripheral using HAL_ADC_Start_IT() + (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine + (+) At ADC end of conversion HAL_ADC_ConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ConvCpltCallback + (+) In case of ADC Error, HAL_ADC_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ErrorCallback + (+) Stop the ADC peripheral using HAL_ADC_Stop_IT() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Start the ADC peripheral using HAL_ADC_Start_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) At The end of data transfer by HAL_ADC_ConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ConvCpltCallback + (+) In case of transfer Error, HAL_ADC_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADC_ErrorCallback + (+) Stop the ADC peripheral using HAL_ADC_Stop_DMA() + + *** ADC HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in ADC HAL driver. + + (+) __HAL_ADC_ENABLE : Enable the ADC peripheral + (+) __HAL_ADC_DISABLE : Disable the ADC peripheral + (+) __HAL_ADC_ENABLE_IT: Enable the ADC end of conversion interrupt + (+) __HAL_ADC_DISABLE_IT: Disable the ADC end of conversion interrupt + (+) __HAL_ADC_GET_IT_SOURCE: Check if the specified ADC interrupt source is enabled or disabled + (+) __HAL_ADC_CLEAR_FLAG: Clear the ADC's pending flags + (+) __HAL_ADC_GET_FLAG: Get the selected ADC's flag status + (+) ADC_GET_RESOLUTION: Return resolution bits in CR1 register + + [..] + (@) You can refer to the ADC HAL driver header file for more useful macros + + *** Deinitialization of ADC *** + ============================================================================== + [..] + (#) Disable the ADC interface + (++) ADC clock can be hard reset and disabled at RCC top level. + (++) Hard reset of ADC peripherals + using macro __HAL_RCC_ADC_FORCE_RESET(), __HAL_RCC_ADC_RELEASE_RESET(). + (++) ADC clock disable using the equivalent macro/functions as configuration step. + (+++) Example: + Into HAL_ADC_MspDeInit() (recommended code location) or with + other device clock parameters configuration: + (+++) HAL_RCC_GetOscConfig(&RCC_OscInitStructure); + (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI; + (+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock) + (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); + + (#) ADC pins configuration + (++) Disable the clock for the ADC GPIOs using macro __HAL_RCC_GPIOx_CLK_DISABLE() + + (#) Optionally, in case of usage of ADC with interruptions: + (++) Disable the NVIC for ADC using function HAL_NVIC_DisableIRQ(ADCx_IRQn) + + (#) Optionally, in case of usage of DMA: + (++) Deinitialize the DMA using function HAL_DMA_DeInit(). + (++) Disable the NVIC for DMA using function HAL_NVIC_DisableIRQ(DMAx_Channelx_IRQn) + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup ADC ADC + * @brief ADC driver modules + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup ADC_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void ADC_Init(ADC_HandleTypeDef* hadc); +static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); +static void ADC_DMAError(DMA_HandleTypeDef *hdma); +static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup ADC_Exported_Functions ADC Exported Functions + * @{ + */ + +/** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the ADC. + (+) De-initialize the ADC. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the ADCx peripheral according to the specified parameters + * in the ADC_InitStruct and initializes the ADC MSP. + * + * @note This function is used to configure the global features of the ADC ( + * ClockPrescaler, Resolution, Data Alignment and number of conversion), however, + * the rest of the configuration parameters are specific to the regular + * channels group (scan mode activation, continuous mode activation, + * External trigger source and edge, DMA continuous request after the + * last transfer and End of conversion selection). + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc) +{ + /* Check ADC handle */ + if(hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); + assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ScanConvMode)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG(hadc->Init.ExternalTrigConv)); + assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); + assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); + assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); + + if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) + { + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + } + + if(hadc->State == HAL_ADC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hadc->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_ADC_MspInit(hadc); + } + + /* Initialize the ADC state */ + hadc->State = HAL_ADC_STATE_BUSY; + + /* Set ADC parameters */ + ADC_Init(hadc); + + /* Set ADC error code to none */ + hadc->ErrorCode = HAL_ADC_ERROR_NONE; + + /* Initialize the ADC state */ + hadc->State = HAL_ADC_STATE_READY; + + /* Release Lock */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Deinitializes the ADCx peripheral registers to their default reset values. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc) +{ + /* Check ADC handle */ + if(hadc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_ADC_MspDeInit(hadc); + + /* Set ADC error code to none */ + hadc->ErrorCode = HAL_ADC_ERROR_NONE; + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_RESET; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the ADC MSP. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the ADC MSP. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion of regular channel. + (+) Stop conversion of regular channel. + (+) Start conversion of regular channel and enable interrupt. + (+) Stop conversion of regular channel and disable interrupt. + (+) Start conversion of regular channel and enable DMA transfer. + (+) Stop conversion of regular channel and disable DMA transfer. + (+) Handle ADC interrupt request. + +@endverbatim + * @{ + */ + +/** + * @brief Enables ADC and starts conversion of the regular channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Check if an injected conversion is ongoing */ + if(hadc->State == HAL_ADC_STATE_BUSY_INJ) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_REG; + } + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + else + { + /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ + if((hadc->Instance == ADC1) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables ADC and stop conversion of regular channels. + * + * @note Caution: This function will stop also injected channels. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc) +{ + /* Disable the Peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Poll for regular conversion complete + * @note ADC conversion flags EOS (end of sequence) and EOC (end of + * conversion) are cleared by this function. + * @note This function cannot be used in a particular setup: ADC configured + * in DMA mode and polling for end of each conversion (ADC init + * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). + * In this case, DMA resets the flag EOC and polling cannot be + * performed on each conversion. Nevertheless, polling can still + * be performed on the complete sequence. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param Timeout: Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Verification that ADC configuration is compliant with polling for */ + /* each conversion: */ + /* Particular case is ADC configured in DMA mode and ADC sequencer with */ + /* several ranks and polling for end of each conversion. */ + /* For code simplicity sake, this particular case is generalized to */ + /* ADC configured in DMA mode and polling for end of each conversion. */ + if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_EOCS) && + HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA) ) + { + /* Update ADC state machine to error */ + hadc->State = HAL_ADC_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + return HAL_ERROR; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check End of conversion flag */ + while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC))) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hadc->State= HAL_ADC_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hadc); + return HAL_TIMEOUT; + } + } + } + + /* Check if an injected conversion is ready */ + if(hadc->State == HAL_ADC_STATE_EOC_INJ) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_REG; + } + + /* Return ADC state */ + return HAL_OK; +} + +/** + * @brief Poll for conversion event + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param EventType: the ADC event type. + * This parameter can be one of the following values: + * @arg ADC_AWD_EVENT: ADC Analog watch Dog event. + * @arg ADC_OVR_EVENT: ADC Overrun event. + * @param Timeout: Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_ADC_EVENT_TYPE(EventType)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check selected event flag */ + while(!(__HAL_ADC_GET_FLAG(hadc,EventType))) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hadc->State= HAL_ADC_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hadc); + return HAL_TIMEOUT; + } + } + } + + /* Check analog watchdog flag */ + if(EventType == ADC_AWD_EVENT) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_AWD; + + /* Clear the ADCx's analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_ERROR; + + /* Clear the ADCx's Overrun flag */ + __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); + } + + /* Return ADC state */ + return HAL_OK; +} + + +/** + * @brief Enables the interrupt and starts ADC conversion of regular channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Check if an injected conversion is ongoing */ + if(hadc->State == HAL_ADC_STATE_BUSY_INJ) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_REG; + } + + /* Set ADC error code to none */ + hadc->ErrorCode = HAL_ADC_ERROR_NONE; + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Enable the ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + /* Enable the ADC end of conversion interrupt for regular group */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + else + { + /* if instance of handle correspond to ADC1 and no external trigger present enable software conversion of regular channels */ + if((hadc->Instance == (ADC_TypeDef*)0x40012000) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables the interrupt and stop ADC conversion of regular channels. + * + * @note Caution: This function will stop also injected channels. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc) +{ + /* Disable the ADC end of conversion interrupt for regular group */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); + + /* Disable the ADC end of conversion interrupt for injected group */ + __HAL_ADC_DISABLE_IT(hadc, ADC_CR1_JEOCIE); + + /* Enable the Peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles ADC interrupt request + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_REGULAR_LENGTH(hadc->Init.NbrOfConversion)); + assert_param(IS_ADC_EOCSelection(hadc->Init.EOCSelection)); + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC); + /* Check End of conversion flag for regular channels */ + if(tmp1 && tmp2) + { + /* Check if an injected conversion is ready */ + if(hadc->State == HAL_ADC_STATE_EOC_INJ) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_REG; + } + + if((hadc->Init.ContinuousConvMode == DISABLE) && ((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET)) + { + if(hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) + { + /* DISABLE the ADC end of conversion interrupt for regular group */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); + + /* DISABLE the ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + } + else + { + if (hadc->NbrOfCurrentConversionRank == 0) + { + hadc->NbrOfCurrentConversionRank = hadc->Init.NbrOfConversion; + } + + /* Decrement the number of conversion when an interrupt occurs */ + hadc->NbrOfCurrentConversionRank--; + + /* Check if all conversions are finished */ + if(hadc->NbrOfCurrentConversionRank == 0) + { + /* DISABLE the ADC end of conversion interrupt for regular group */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); + + /* DISABLE the ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + } + } + } + + /* Conversion complete callback */ + HAL_ADC_ConvCpltCallback(hadc); + + /* Clear the ADCx flag for regular end of conversion */ + __HAL_ADC_CLEAR_FLAG(hadc,ADC_FLAG_EOC); + } + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC); + /* Check End of conversion flag for injected channels */ + if(tmp1 && tmp2) + { + /* Check if a regular conversion is ready */ + if(hadc->State == HAL_ADC_STATE_EOC_REG) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ; + } + + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + if(((hadc->Init.ContinuousConvMode == DISABLE) || tmp1) && tmp2) + { + /* DISABLE the ADC end of conversion interrupt for injected group */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC); + } + + /* Conversion complete callback */ + HAL_ADCEx_InjectedConvCpltCallback(hadc); + + /* Clear the ADCx flag for injected end of conversion */ + __HAL_ADC_CLEAR_FLAG(hadc,ADC_FLAG_JEOC); + } + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD); + /* Check Analog watchdog flag */ + if(tmp1 && tmp2) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_AWD; + + /* Clear the ADCx's Analog watchdog flag */ + __HAL_ADC_CLEAR_FLAG(hadc,ADC_FLAG_AWD); + + /* Level out of window callback */ + HAL_ADC_LevelOutOfWindowCallback(hadc); + } + + tmp1 = __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR); + tmp2 = __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR); + /* Check Overrun flag */ + if(tmp1 && tmp2) + { + /* Change ADC state to overrun state */ + hadc->State = HAL_ADC_STATE_ERROR; + + /* Set ADC error code to overrun */ + hadc->ErrorCode |= HAL_ADC_ERROR_OVR; + + /* Clear the Overrun flag */ + __HAL_ADC_CLEAR_FLAG(hadc,ADC_FLAG_OVR); + + /* Error callback */ + HAL_ADC_ErrorCallback(hadc); + } +} + +/** + * @brief Enables ADC DMA request after last transfer (Single-ADC mode) and enables ADC peripheral + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param pData: The destination Buffer address. + * @param Length: The length of data to be transferred from ADC peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + /* Enable ADC DMA mode */ + hadc->Instance->CR2 |= ADC_CR2_DMA; + + /* Set the DMA transfer complete callback */ + hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; + + /* Set the DMA half transfer complete callback */ + hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; + + /* Set the DMA error callback */ + hadc->DMA_Handle->XferErrorCallback = ADC_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_REG; + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for ADC stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= ADC_CR2_SWSTART; + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables ADC DMA (Single-ADC mode) and disables ADC peripheral + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc) +{ + /* Disable the Peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* Disable the selected ADC DMA mode */ + hadc->Instance->CR2 &= ~ADC_CR2_DMA; + + /* Disable the ADC DMA Stream */ + HAL_DMA_Abort(hadc->DMA_Handle); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Gets the converted value from data register of regular channel. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval Converted value + */ +uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc) +{ + /* Return the selected ADC converted value */ + return hadc->Instance->DR; +} + +/** + * @brief Regular conversion complete callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_ConvCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Regular conversion half DMA transfer callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_ConvHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Analog watchdog callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_LevelOoutOfWindowCallback could be implemented in the user file + */ +} + +/** + * @brief Error ADC callback. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure regular channels. + (+) Configure injected channels. + (+) Configure multimode. + (+) Configure the analog watch dog. + +@endverbatim + * @{ + */ + + /** + * @brief Configures for the selected ADC regular channel its corresponding + * rank in the sequencer and its sample time. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param sConfig: ADC configuration structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_ADC_CHANNEL(sConfig->Channel)); + assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank)); + assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* if ADC_Channel_10 ... ADC_Channel_18 is selected */ + if (sConfig->Channel > ADC_CHANNEL_9) + { + /* Clear the old sample time */ + hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel); + + /* Set the new sample time */ + hadc->Instance->SMPR1 |= ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel); + } + else /* ADC_Channel include in ADC_Channel_[0..9] */ + { + /* Clear the old sample time */ + hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel); + + /* Set the new sample time */ + hadc->Instance->SMPR2 |= ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel); + } + + /* For Rank 1 to 6 */ + if (sConfig->Rank < 7) + { + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->SQR3 &= ~ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->SQR3 |= ADC_SQR3_RK(sConfig->Channel, sConfig->Rank); + } + /* For Rank 7 to 12 */ + else if (sConfig->Rank < 13) + { + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->SQR2 &= ~ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->SQR2 |= ADC_SQR2_RK(sConfig->Channel, sConfig->Rank); + } + /* For Rank 13 to 16 */ + else + { + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->SQR1 &= ~ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->SQR1 |= ADC_SQR1_RK(sConfig->Channel, sConfig->Rank); + } + + /* if ADC1 Channel_18 is selected enable VBAT Channel */ + if ((hadc->Instance == ADC1) && (sConfig->Channel == ADC_CHANNEL_VBAT)) + { + /* Enable the VBAT channel*/ + ADC->CCR |= ADC_CCR_VBATE; + } + + /* if ADC1 Channel_16 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */ + if ((hadc->Instance == ADC1) && ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) || (sConfig->Channel == ADC_CHANNEL_VREFINT))) + { + /* Enable the TSVREFE channel*/ + ADC->CCR |= ADC_CCR_TSVREFE; + + if((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)) + { + /* Delay for temperature sensor stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the analog watchdog. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param AnalogWDGConfig : pointer to an ADC_AnalogWDGConfTypeDef structure + * that contains the configuration information of ADC analog watchdog. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig) +{ +#ifdef USE_FULL_ASSERT + uint32_t tmp = 0; +#endif /* USE_FULL_ASSERT */ + + /* Check the parameters */ + assert_param(IS_ADC_ANALOG_WATCHDOG(AnalogWDGConfig->WatchdogMode)); + assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); + assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); + +#ifdef USE_FULL_ASSERT + tmp = ADC_GET_RESOLUTION(hadc); + assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->HighThreshold)); + assert_param(IS_ADC_RANGE(tmp, AnalogWDGConfig->LowThreshold)); +#endif /* USE_FULL_ASSERT */ + + /* Process locked */ + __HAL_LOCK(hadc); + + if(AnalogWDGConfig->ITMode == ENABLE) + { + /* Enable the ADC Analog watchdog interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); + } + else + { + /* Disable the ADC Analog watchdog interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); + } + + /* Clear AWDEN, JAWDEN and AWDSGL bits */ + hadc->Instance->CR1 &= ~(ADC_CR1_AWDSGL | ADC_CR1_JAWDEN | ADC_CR1_AWDEN); + + /* Set the analog watchdog enable mode */ + hadc->Instance->CR1 |= AnalogWDGConfig->WatchdogMode; + + /* Set the high threshold */ + hadc->Instance->HTR = AnalogWDGConfig->HighThreshold; + + /* Set the low threshold */ + hadc->Instance->LTR = AnalogWDGConfig->LowThreshold; + + /* Clear the Analog watchdog channel select bits */ + hadc->Instance->CR1 &= ~ADC_CR1_AWDCH; + + /* Set the Analog watchdog channel */ + hadc->Instance->CR1 |= (uint32_t)((uint16_t)(AnalogWDGConfig->Channel)); + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ADC_Exported_Functions_Group4 ADC Peripheral State functions + * @brief ADC Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the ADC state + (+) Check the ADC Error + +@endverbatim + * @{ + */ + +/** + * @brief return the ADC state + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL state + */ +HAL_ADC_StateTypeDef HAL_ADC_GetState(ADC_HandleTypeDef* hadc) +{ + /* Return ADC state */ + return hadc->State; +} + +/** + * @brief Return the ADC error code + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval ADC Error Code + */ +uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) +{ + return hadc->ErrorCode; +} + +/** + * @} + */ + +/** @addtogroup ADC_Private_Functions + * @{ + */ + +/** + * @brief Initializes the ADCx peripheral according to the specified parameters + * in the ADC_InitStruct without initializing the ADC MSP. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +static void ADC_Init(ADC_HandleTypeDef* hadc) +{ + /* Set ADC parameters */ + /* Set the ADC clock prescaler */ + ADC->CCR &= ~(ADC_CCR_ADCPRE); + ADC->CCR |= hadc->Init.ClockPrescaler; + + /* Set ADC scan mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_SCAN); + hadc->Instance->CR1 |= ADC_CR1_SCANCONV(hadc->Init.ScanConvMode); + + /* Set ADC resolution */ + hadc->Instance->CR1 &= ~(ADC_CR1_RES); + hadc->Instance->CR1 |= hadc->Init.Resolution; + + /* Set ADC data alignment */ + hadc->Instance->CR2 &= ~(ADC_CR2_ALIGN); + hadc->Instance->CR2 |= hadc->Init.DataAlign; + + /* Enable external trigger if trigger selection is different of software */ + /* start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if(hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) + { + /* Select external trigger to start conversion */ + hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL); + hadc->Instance->CR2 |= hadc->Init.ExternalTrigConv; + + /* Select external trigger polarity */ + hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN); + hadc->Instance->CR2 |= hadc->Init.ExternalTrigConvEdge; + } + else + { + /* Reset the external trigger */ + hadc->Instance->CR2 &= ~(ADC_CR2_EXTSEL); + hadc->Instance->CR2 &= ~(ADC_CR2_EXTEN); + } + + /* Enable or disable ADC continuous conversion mode */ + hadc->Instance->CR2 &= ~(ADC_CR2_CONT); + hadc->Instance->CR2 |= ADC_CR2_CONTINUOUS(hadc->Init.ContinuousConvMode); + + if(hadc->Init.DiscontinuousConvMode != DISABLE) + { + assert_param(IS_ADC_REGULAR_DISC_NUMBER(hadc->Init.NbrOfDiscConversion)); + + /* Enable the selected ADC regular discontinuous mode */ + hadc->Instance->CR1 |= (uint32_t)ADC_CR1_DISCEN; + + /* Set the number of channels to be converted in discontinuous mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_DISCNUM); + hadc->Instance->CR1 |= ADC_CR1_DISCONTINUOUS(hadc->Init.NbrOfDiscConversion); + } + else + { + /* Disable the selected ADC regular discontinuous mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_DISCEN); + } + + /* Set ADC number of conversion */ + hadc->Instance->SQR1 &= ~(ADC_SQR1_L); + hadc->Instance->SQR1 |= ADC_SQR1(hadc->Init.NbrOfConversion); + + /* Enable or disable ADC DMA continuous request */ + hadc->Instance->CR2 &= ~(ADC_CR2_DDS); + hadc->Instance->CR2 |= ADC_CR2_DMAContReq(hadc->Init.DMAContinuousRequests); + + /* Enable or disable ADC end of conversion selection */ + hadc->Instance->CR2 &= ~(ADC_CR2_EOCS); + hadc->Instance->CR2 |= ADC_CR2_EOCSelection(hadc->Init.EOCSelection); +} + +/** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Check if an injected conversion is ready */ + if(hadc->State == HAL_ADC_STATE_EOC_INJ) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_REG; + } + + HAL_ADC_ConvCpltCallback(hadc); +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_ADC_ConvHalfCpltCallback(hadc); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_DMAError(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hadc->State= HAL_ADC_STATE_ERROR; + /* Set ADC error code to DMA error */ + hadc->ErrorCode |= HAL_ADC_ERROR_DMA; + HAL_ADC_ErrorCallback(hadc); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc_ex.c new file mode 100644 index 0000000..37a9c4c --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_adc_ex.c @@ -0,0 +1,872 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_adc_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief This file provides firmware functions to manage the following + * functionalities of the ADC extension peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Initialize the ADC low level resources by implementing the HAL_ADC_MspInit(): + (##) Enable the ADC interface clock using __HAL_RCC_ADC_CLK_ENABLE() + (##) ADC pins configuration + (+++) Enable the clock for the ADC GPIOs using the following function: + __HAL_RCC_GPIOx_CLK_ENABLE() + (+++) Configure these ADC pins in analog mode using HAL_GPIO_Init() + (##) In case of using interrupts (e.g. HAL_ADC_Start_IT()) + (+++) Configure the ADC interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the ADC IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In ADC IRQ handler, call HAL_ADC_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_ADC_Start_DMA()) + (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the ADC DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream. + (#) Configure the ADC Prescaler, conversion resolution and data alignment + using the HAL_ADC_Init() function. + + (#) Configure the ADC Injected channels group features, use HAL_ADC_Init() + and HAL_ADC_ConfigChannel() functions. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the ADC peripheral using HAL_ADCEx_InjectedStart() + (+) Wait for end of conversion using HAL_ADC_PollForConversion(), at this stage + user can specify the value of timeout according to his end application + (+) To read the ADC converted values, use the HAL_ADCEx_InjectedGetValue() function. + (+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Start the ADC peripheral using HAL_ADCEx_InjectedStart_IT() + (+) Use HAL_ADC_IRQHandler() called under ADC_IRQHandler() Interrupt subroutine + (+) At ADC end of conversion HAL_ADCEx_InjectedConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedConvCpltCallback + (+) In case of ADC Error, HAL_ADCEx_InjectedErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedErrorCallback + (+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop_IT() + + + *** DMA mode IO operation *** + ============================== + [..] + (+) Start the ADC peripheral using HAL_ADCEx_InjectedStart_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) At The end of data transfer ba HAL_ADCEx_InjectedConvCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedConvCpltCallback + (+) In case of transfer Error, HAL_ADCEx_InjectedErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_ADCEx_InjectedErrorCallback + (+) Stop the ADC peripheral using HAL_ADCEx_InjectedStop_DMA() + + *** Multi mode ADCs Regular channels configuration *** + ====================================================== + [..] + (+) Select the Multi mode ADC regular channels features (dual or triple mode) + and configure the DMA mode using HAL_ADCEx_MultiModeConfigChannel() functions. + (+) Start the ADC peripheral using HAL_ADCEx_MultiModeStart_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) Read the ADCs converted values using the HAL_ADCEx_MultiModeGetValue() function. + + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup ADCEx ADCEx + * @brief ADC Extended driver modules + * @{ + */ + +#ifdef HAL_ADC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup ADCEx_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void ADC_MultiModeDMAConvCplt(DMA_HandleTypeDef *hdma); +static void ADC_MultiModeDMAError(DMA_HandleTypeDef *hdma); +static void ADC_MultiModeDMAHalfConvCplt(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup ADCEx_Exported_Functions ADC Exported Functions + * @{ + */ + +/** @defgroup ADCEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion of injected channel. + (+) Stop conversion of injected channel. + (+) Start multimode and enable DMA transfer. + (+) Stop multimode and disable DMA transfer. + (+) Get result of injected channel conversion. + (+) Get result of multimode conversion. + (+) Configure injected channels. + (+) Configure multimode. + +@endverbatim + * @{ + */ + +/** + * @brief Enables the selected ADC software start conversion of the injected channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + uint32_t tmp1 = 0, tmp2 = 0; + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Check if a regular conversion is ongoing */ + if(hadc->State == HAL_ADC_STATE_BUSY_REG) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_INJ; + } + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for temperature sensor stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if(tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + else + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if((hadc->Instance == ADC1) && tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enables the interrupt and starts ADC conversion of injected channels. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef* hadc) +{ + __IO uint32_t counter = 0; + uint32_t tmp1 = 0, tmp2 =0; + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Check if a regular conversion is ongoing */ + if(hadc->State == HAL_ADC_STATE_BUSY_REG) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_INJ; + } + + /* Set ADC error code to none */ + hadc->ErrorCode = HAL_ADC_ERROR_NONE; + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for temperature sensor stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* Enable the ADC end of conversion interrupt for injected group */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC); + + /* Enable the ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + /* Check if Multimode enabled */ + if(HAL_IS_BIT_CLR(ADC->CCR, ADC_CCR_MULTI)) + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if(tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + else + { + tmp1 = HAL_IS_BIT_CLR(hadc->Instance->CR2, ADC_CR2_JEXTEN); + tmp2 = HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO); + if((hadc->Instance == ADC1) && tmp1 && tmp2) + { + /* Enable the selected ADC software conversion for injected group */ + hadc->Instance->CR2 |= ADC_CR2_JSWSTART; + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables ADC and stop conversion of injected channels. + * + * @note Caution: This function will stop also regular channels. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef* hadc) +{ + /* Disable the Peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Poll for injected conversion complete + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param Timeout: Timeout value in millisecond. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check End of conversion flag */ + while(!(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC))) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hadc->State= HAL_ADC_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hadc); + return HAL_TIMEOUT; + } + } + } + + /* Check if a regular conversion is ready */ + if(hadc->State == HAL_ADC_STATE_EOC_REG) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ; + } + + /* Return ADC state */ + return HAL_OK; +} + +/** + * @brief Disables the interrupt and stop ADC conversion of injected channels. + * + * @note Caution: This function will stop also regular channels. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef* hadc) +{ + /* Disable the ADC end of conversion interrupt for regular group */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); + + /* Disable the ADC end of conversion interrupt for injected group */ + __HAL_ADC_DISABLE_IT(hadc, ADC_CR1_JEOCIE); + + /* Enable the Peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Gets the converted value from data register of injected channel. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param InjectedRank: the ADC injected rank. + * This parameter can be one of the following values: + * @arg ADC_INJECTED_RANK_1: Injected Channel1 selected + * @arg ADC_INJECTED_RANK_2: Injected Channel2 selected + * @arg ADC_INJECTED_RANK_3: Injected Channel3 selected + * @arg ADC_INJECTED_RANK_4: Injected Channel4 selected + * @retval None + */ +uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef* hadc, uint32_t InjectedRank) +{ + __IO uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_ADC_INJECTED_RANK(InjectedRank)); + + /* Clear the ADCx's flag for injected end of conversion */ + __HAL_ADC_CLEAR_FLAG(hadc,ADC_FLAG_JEOC); + + /* Return the selected ADC converted value */ + switch(InjectedRank) + { + case ADC_INJECTED_RANK_4: + { + tmp = hadc->Instance->JDR4; + } + break; + case ADC_INJECTED_RANK_3: + { + tmp = hadc->Instance->JDR3; + } + break; + case ADC_INJECTED_RANK_2: + { + tmp = hadc->Instance->JDR2; + } + break; + case ADC_INJECTED_RANK_1: + { + tmp = hadc->Instance->JDR1; + } + break; + default: + break; + } + return tmp; +} + +/** + * @brief Enables ADC DMA request after last transfer (Multi-ADC mode) and enables ADC peripheral + * + * @note Caution: This function must be used only with the ADC master. + * + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param pData: Pointer to buffer in which transferred from ADC peripheral to memory will be stored. + * @param Length: The length of data to be transferred from ADC peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length) +{ + __IO uint32_t counter = 0; + + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); + assert_param(IS_ADC_EXT_TRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); + assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable ADC overrun interrupt */ + __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); + + if (hadc->Init.DMAContinuousRequests != DISABLE) + { + /* Enable the selected ADC DMA request after last transfer */ + ADC->CCR |= ADC_CCR_DDS; + } + else + { + /* Disable the selected ADC EOC rising on each regular channel conversion */ + ADC->CCR &= ~ADC_CCR_DDS; + } + + /* Set the DMA transfer complete callback */ + hadc->DMA_Handle->XferCpltCallback = ADC_MultiModeDMAConvCplt; + + /* Set the DMA half transfer complete callback */ + hadc->DMA_Handle->XferHalfCpltCallback = ADC_MultiModeDMAHalfConvCplt; + + /* Set the DMA error callback */ + hadc->DMA_Handle->XferErrorCallback = ADC_MultiModeDMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&ADC->CDR, (uint32_t)pData, Length); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_BUSY_REG; + + /* Check if ADC peripheral is disabled in order to enable it and wait during + Tstab time the ADC's stabilization */ + if((hadc->Instance->CR2 & ADC_CR2_ADON) != ADC_CR2_ADON) + { + /* Enable the Peripheral */ + __HAL_ADC_ENABLE(hadc); + + /* Delay for temperature sensor stabilization time */ + /* Compute number of CPU cycles to wait for */ + counter = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000)); + while(counter != 0) + { + counter--; + } + } + + /* if no external trigger present enable software conversion of regular channels */ + if((hadc->Instance->CR2 & ADC_CR2_EXTEN) == RESET) + { + /* Enable the selected ADC software conversion for regular group */ + hadc->Instance->CR2 |= (uint32_t)ADC_CR2_SWSTART; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables ADC DMA (multi-ADC mode) and disables ADC peripheral + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef* hadc) +{ + /* Process locked */ + __HAL_LOCK(hadc); + + /* Enable the Peripheral */ + __HAL_ADC_DISABLE(hadc); + + /* Disable ADC overrun interrupt */ + __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); + + /* Disable the selected ADC DMA request after last transfer */ + ADC->CCR &= ~ADC_CCR_DDS; + + /* Disable the ADC DMA Stream */ + HAL_DMA_Abort(hadc->DMA_Handle); + + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the last ADC1, ADC2 and ADC3 regular conversions results + * data in the selected multi mode. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval The converted data value. + */ +uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef* hadc) +{ + /* Return the multi mode conversion value */ + return ADC->CDR; +} + +/** + * @brief Injected conversion complete callback in non blocking mode + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @retval None + */ +__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ADC_InjectedConvCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Configures for the selected ADC injected channel its corresponding + * rank in the sequencer and its sample time. + * @param hadc: pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param sConfigInjected: ADC configuration structure for injected channel. + * @retval None + */ +HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef* hadc, ADC_InjectionConfTypeDef* sConfigInjected) +{ + +#ifdef USE_FULL_ASSERT + uint32_t tmp = 0; +#endif /* USE_FULL_ASSERT */ + + /* Check the parameters */ + assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel)); + assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank)); + assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime)); + assert_param(IS_ADC_EXT_INJEC_TRIG(sConfigInjected->ExternalTrigInjecConv)); + assert_param(IS_ADC_INJECTED_LENGTH(sConfigInjected->InjectedNbrOfConversion)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv)); + assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode)); + +#ifdef USE_FULL_ASSERT + tmp = ADC_GET_RESOLUTION(hadc); + assert_param(IS_ADC_RANGE(tmp, sConfigInjected->InjectedOffset)); +#endif /* USE_FULL_ASSERT */ + + if(sConfigInjected->ExternalTrigInjecConvEdge != ADC_INJECTED_SOFTWARE_START) + { + assert_param(IS_ADC_EXT_INJEC_TRIG_EDGE(sConfigInjected->ExternalTrigInjecConvEdge)); + } + + /* Process locked */ + __HAL_LOCK(hadc); + + /* if ADC_Channel_10 ... ADC_Channel_18 is selected */ + if (sConfigInjected->InjectedChannel > ADC_CHANNEL_9) + { + /* Clear the old sample time */ + hadc->Instance->SMPR1 &= ~ADC_SMPR1(ADC_SMPR1_SMP10, sConfigInjected->InjectedChannel); + + /* Set the new sample time */ + hadc->Instance->SMPR1 |= ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel); + } + else /* ADC_Channel include in ADC_Channel_[0..9] */ + { + /* Clear the old sample time */ + hadc->Instance->SMPR2 &= ~ADC_SMPR2(ADC_SMPR2_SMP0, sConfigInjected->InjectedChannel); + + /* Set the new sample time */ + hadc->Instance->SMPR2 |= ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel); + } + + /*---------------------------- ADCx JSQR Configuration -----------------*/ + hadc->Instance->JSQR &= ~(ADC_JSQR_JL); + hadc->Instance->JSQR |= ADC_SQR1(sConfigInjected->InjectedNbrOfConversion); + + /* Rank configuration */ + + /* Clear the old SQx bits for the selected rank */ + hadc->Instance->JSQR &= ~ADC_JSQR(ADC_JSQR_JSQ1, sConfigInjected->InjectedRank,sConfigInjected->InjectedNbrOfConversion); + + /* Set the SQx bits for the selected rank */ + hadc->Instance->JSQR |= ADC_JSQR(sConfigInjected->InjectedChannel, sConfigInjected->InjectedRank,sConfigInjected->InjectedNbrOfConversion); + + /* Enable external trigger if trigger selection is different of software */ + /* start. */ + /* Note: This configuration keeps the hardware feature of parameter */ + /* ExternalTrigConvEdge "trigger edge none" equivalent to */ + /* software start. */ + if(sConfigInjected->ExternalTrigInjecConv != ADC_INJECTED_SOFTWARE_START) + { + /* Select external trigger to start conversion */ + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTSEL); + hadc->Instance->CR2 |= sConfigInjected->ExternalTrigInjecConv; + + /* Select external trigger polarity */ + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTEN); + hadc->Instance->CR2 |= sConfigInjected->ExternalTrigInjecConvEdge; + } + else + { + /* Reset the external trigger */ + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTSEL); + hadc->Instance->CR2 &= ~(ADC_CR2_JEXTEN); + } + + if (sConfigInjected->AutoInjectedConv != DISABLE) + { + /* Enable the selected ADC automatic injected group conversion */ + hadc->Instance->CR1 |= ADC_CR1_JAUTO; + } + else + { + /* Disable the selected ADC automatic injected group conversion */ + hadc->Instance->CR1 &= ~(ADC_CR1_JAUTO); + } + + if (sConfigInjected->InjectedDiscontinuousConvMode != DISABLE) + { + /* Enable the selected ADC injected discontinuous mode */ + hadc->Instance->CR1 |= ADC_CR1_JDISCEN; + } + else + { + /* Disable the selected ADC injected discontinuous mode */ + hadc->Instance->CR1 &= ~(ADC_CR1_JDISCEN); + } + + switch(sConfigInjected->InjectedRank) + { + case 1: + /* Set injected channel 1 offset */ + hadc->Instance->JOFR1 &= ~(ADC_JOFR1_JOFFSET1); + hadc->Instance->JOFR1 |= sConfigInjected->InjectedOffset; + break; + case 2: + /* Set injected channel 2 offset */ + hadc->Instance->JOFR2 &= ~(ADC_JOFR2_JOFFSET2); + hadc->Instance->JOFR2 |= sConfigInjected->InjectedOffset; + break; + case 3: + /* Set injected channel 3 offset */ + hadc->Instance->JOFR3 &= ~(ADC_JOFR3_JOFFSET3); + hadc->Instance->JOFR3 |= sConfigInjected->InjectedOffset; + break; + default: + /* Set injected channel 4 offset */ + hadc->Instance->JOFR4 &= ~(ADC_JOFR4_JOFFSET4); + hadc->Instance->JOFR4 |= sConfigInjected->InjectedOffset; + break; + } + + /* if ADC1 Channel_18 is selected enable VBAT Channel */ + if ((hadc->Instance == ADC1) && (sConfigInjected->InjectedChannel == ADC_CHANNEL_VBAT)) + { + /* Enable the VBAT channel*/ + ADC->CCR |= ADC_CCR_VBATE; + } + + /* if ADC1 Channel_16 or Channel_17 is selected enable TSVREFE Channel(Temperature sensor and VREFINT) */ + if ((hadc->Instance == ADC1) && ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) || (sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT))) + { + /* Enable the TSVREFE channel*/ + ADC->CCR |= ADC_CCR_TSVREFE; + } + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the ADC multi-mode + * @param hadc : pointer to a ADC_HandleTypeDef structure that contains + * the configuration information for the specified ADC. + * @param multimode : pointer to an ADC_MultiModeTypeDef structure that contains + * the configuration information for multimode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef* hadc, ADC_MultiModeTypeDef* multimode) +{ + /* Check the parameters */ + assert_param(IS_ADC_MODE(multimode->Mode)); + assert_param(IS_ADC_DMA_ACCESS_MODE(multimode->DMAAccessMode)); + assert_param(IS_ADC_SAMPLING_DELAY(multimode->TwoSamplingDelay)); + + /* Process locked */ + __HAL_LOCK(hadc); + + /* Set ADC mode */ + ADC->CCR &= ~(ADC_CCR_MULTI); + ADC->CCR |= multimode->Mode; + + /* Set the ADC DMA access mode */ + ADC->CCR &= ~(ADC_CCR_DMA); + ADC->CCR |= multimode->DMAAccessMode; + + /* Set delay between two sampling phases */ + ADC->CCR &= ~(ADC_CCR_DELAY); + ADC->CCR |= multimode->TwoSamplingDelay; + + /* Process unlocked */ + __HAL_UNLOCK(hadc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + + /** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_MultiModeDMAConvCplt(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Check if an injected conversion is ready */ + if(hadc->State == HAL_ADC_STATE_EOC_INJ) + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_INJ_REG; + } + else + { + /* Change ADC state */ + hadc->State = HAL_ADC_STATE_EOC_REG; + } + + HAL_ADC_ConvCpltCallback(hadc); +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_MultiModeDMAHalfConvCplt(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_ADC_ConvHalfCpltCallback(hadc); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void ADC_MultiModeDMAError(DMA_HandleTypeDef *hdma) +{ + ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hadc->State= HAL_ADC_STATE_ERROR; + /* Set ADC error code to DMA error */ + hadc->ErrorCode |= HAL_ADC_ERROR_DMA; + HAL_ADC_ErrorCallback(hadc); +} + +/** + * @} + */ + +#endif /* HAL_ADC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_can.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_can.c new file mode 100644 index 0000000..bea728a --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_can.c @@ -0,0 +1,1438 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_can.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief This file provides firmware functions to manage the following + * functionalities of the Controller Area Network (CAN) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Error functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable the CAN controller interface clock using + __HAL_RCC_CAN1_CLK_ENABLE() for CAN1 and __HAL_RCC_CAN2_CLK_ENABLE() for CAN2 + -@- In case you are using CAN2 only, you have to enable the CAN1 clock. + + (#) CAN pins configuration + (++) Enable the clock for the CAN GPIOs using the following function: + __GPIOx_CLK_ENABLE() + (++) Connect and configure the involved CAN pins to AF9 using the + following function HAL_GPIO_Init() + + (#) Initialize and configure the CAN using CAN_Init() function. + + (#) Transmit the desired CAN frame using HAL_CAN_Transmit() function. + + (#) Receive a CAN frame using HAL_CAN_Receive() function. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the CAN peripheral transmission and wait the end of this operation + using HAL_CAN_Transmit(), at this stage user can specify the value of timeout + according to his end application + (+) Start the CAN peripheral reception and wait the end of this operation + using HAL_CAN_Receive(), at this stage user can specify the value of timeout + according to his end application + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Start the CAN peripheral transmission using HAL_CAN_Transmit_IT() + (+) Start the CAN peripheral reception using HAL_CAN_Receive_IT() + (+) Use HAL_CAN_IRQHandler() called under the used CAN Interrupt subroutine + (+) At CAN end of transmission HAL_CAN_TxCpltCallback() function is executed and user can + add his own code by customization of function pointer HAL_CAN_TxCpltCallback + (+) In case of CAN Error, HAL_CAN_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_CAN_ErrorCallback + + *** CAN HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in CAN HAL driver. + + (+) __HAL_CAN_ENABLE_IT: Enable the specified CAN interrupts + (+) __HAL_CAN_DISABLE_IT: Disable the specified CAN interrupts + (+) __HAL_CAN_GET_IT_SOURCE: Check if the specified CAN interrupt source is enabled or disabled + (+) __HAL_CAN_CLEAR_FLAG: Clear the CAN's pending flags + (+) __HAL_CAN_GET_FLAG: Get the selected CAN's flag status + + [..] + (@) You can refer to the CAN HAL driver header file for more useful macros + + @endverbatim + + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup CAN CAN + * @brief CAN driver modules + * @{ + */ + +#ifdef HAL_CAN_MODULE_ENABLED + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CAN_Private_Constants + * @{ + */ +#define CAN_TIMEOUT_VALUE 10 +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup CAN_Private_Functions + * @{ + */ +static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber); +static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup CAN_Exported_Functions CAN Exported Functions + * @{ + */ + +/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the CAN. + (+) De-initialize the CAN. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CAN peripheral according to the specified + * parameters in the CAN_InitStruct. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef* hcan) +{ + uint32_t InitStatus = 3; + uint32_t tickstart = 0; + + /* Check CAN handle */ + if(hcan == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TTCM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ABOM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AWUM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.NART)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.RFLM)); + assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TXFP)); + assert_param(IS_CAN_MODE(hcan->Init.Mode)); + assert_param(IS_CAN_SJW(hcan->Init.SJW)); + assert_param(IS_CAN_BS1(hcan->Init.BS1)); + assert_param(IS_CAN_BS2(hcan->Init.BS2)); + assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler)); + + + if(hcan->State == HAL_CAN_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcan->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_CAN_MspInit(hcan); + } + + /* Initialize the CAN state*/ + hcan->State = HAL_CAN_STATE_BUSY; + + /* Exit from sleep mode */ + hcan->Instance->MCR &= (~(uint32_t)CAN_MCR_SLEEP); + + /* Request initialisation */ + hcan->Instance->MCR |= CAN_MCR_INRQ ; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the acknowledge */ + while((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) + { + if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE) + { + hcan->State= HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + + /* Check acknowledge */ + if ((hcan->Instance->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) + { + InitStatus = CAN_INITSTATUS_FAILED; + } + else + { + /* Set the time triggered communication mode */ + if (hcan->Init.TTCM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_TTCM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TTCM; + } + + /* Set the automatic bus-off management */ + if (hcan->Init.ABOM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_ABOM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_ABOM; + } + + /* Set the automatic wake-up mode */ + if (hcan->Init.AWUM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_AWUM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_AWUM; + } + + /* Set the no automatic retransmission */ + if (hcan->Init.NART == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_NART; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_NART; + } + + /* Set the receive FIFO locked mode */ + if (hcan->Init.RFLM == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_RFLM; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_RFLM; + } + + /* Set the transmit FIFO priority */ + if (hcan->Init.TXFP == ENABLE) + { + hcan->Instance->MCR |= CAN_MCR_TXFP; + } + else + { + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_TXFP; + } + + /* Set the bit timing register */ + hcan->Instance->BTR = (uint32_t)((uint32_t)hcan->Init.Mode) | \ + ((uint32_t)hcan->Init.SJW) | \ + ((uint32_t)hcan->Init.BS1) | \ + ((uint32_t)hcan->Init.BS2) | \ + ((uint32_t)hcan->Init.Prescaler - 1); + + /* Request leave initialisation */ + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_INRQ; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the acknowledge */ + while((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) + { + if((HAL_GetTick() - tickstart ) > CAN_TIMEOUT_VALUE) + { + hcan->State= HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + + /* Check acknowledged */ + if ((hcan->Instance->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) + { + InitStatus = CAN_INITSTATUS_FAILED; + } + else + { + InitStatus = CAN_INITSTATUS_SUCCESS; + } + } + + if(InitStatus == CAN_INITSTATUS_SUCCESS) + { + /* Set CAN error code to none */ + hcan->ErrorCode = HAL_CAN_ERROR_NONE; + + /* Initialize the CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Return function status */ + return HAL_OK; + } + else + { + /* Initialize the CAN state */ + hcan->State = HAL_CAN_STATE_ERROR; + + /* Return function status */ + return HAL_ERROR; + } +} + +/** + * @brief Configures the CAN reception filter according to the specified + * parameters in the CAN_FilterInitStruct. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param sFilterConfig: pointer to a CAN_FilterConfTypeDef structure that + * contains the filter configuration information. + * @retval None + */ +HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef* hcan, CAN_FilterConfTypeDef* sFilterConfig) +{ + uint32_t filternbrbitpos = 0; + + /* Check the parameters */ + assert_param(IS_CAN_FILTER_NUMBER(sFilterConfig->FilterNumber)); + assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode)); + assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale)); + assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment)); + assert_param(IS_FUNCTIONAL_STATE(sFilterConfig->FilterActivation)); + assert_param(IS_CAN_BANKNUMBER(sFilterConfig->BankNumber)); + + filternbrbitpos = ((uint32_t)1) << sFilterConfig->FilterNumber; + + /* Initialisation mode for the filter */ + CAN1->FMR |= (uint32_t)CAN_FMR_FINIT; + + /* Select the start slave bank */ + CAN1->FMR &= ~((uint32_t)CAN_FMR_CAN2SB); + CAN1->FMR |= (uint32_t)(sFilterConfig->BankNumber << 8); + + /* Filter Deactivation */ + CAN1->FA1R &= ~(uint32_t)filternbrbitpos; + + /* Filter Scale */ + if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT) + { + /* 16-bit scale for the filter */ + CAN1->FS1R &= ~(uint32_t)filternbrbitpos; + + /* First 16-bit identifier and First 16-bit mask */ + /* Or First 16-bit identifier and Second 16-bit identifier */ + CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR1 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow); + + /* Second 16-bit identifier and Second 16-bit mask */ + /* Or Third 16-bit identifier and Fourth 16-bit identifier */ + CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR2 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh); + } + + if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT) + { + /* 32-bit scale for the filter */ + CAN1->FS1R |= filternbrbitpos; + /* 32-bit identifier or First 32-bit identifier */ + CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR1 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterIdHigh) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterIdLow); + /* 32-bit mask or Second 32-bit identifier */ + CAN1->sFilterRegister[sFilterConfig->FilterNumber].FR2 = + ((0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16) | + (0x0000FFFF & (uint32_t)sFilterConfig->FilterMaskIdLow); + } + + /* Filter Mode */ + if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK) + { + /*Id/Mask mode for the filter*/ + CAN1->FM1R &= ~(uint32_t)filternbrbitpos; + } + else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */ + { + /*Identifier list mode for the filter*/ + CAN1->FM1R |= (uint32_t)filternbrbitpos; + } + + /* Filter FIFO assignment */ + if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0) + { + /* FIFO 0 assignation for the filter */ + CAN1->FFA1R &= ~(uint32_t)filternbrbitpos; + } + + if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO1) + { + /* FIFO 1 assignation for the filter */ + CAN1->FFA1R |= (uint32_t)filternbrbitpos; + } + + /* Filter activation */ + if (sFilterConfig->FilterActivation == ENABLE) + { + CAN1->FA1R |= filternbrbitpos; + } + + /* Leave the initialisation mode for the filter */ + CAN1->FMR &= ~((uint32_t)CAN_FMR_FINIT); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Deinitializes the CANx peripheral registers to their default reset values. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef* hcan) +{ + /* Check CAN handle */ + if(hcan == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance)); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_CAN_MspDeInit(hcan); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CAN MSP. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_MspInit(CAN_HandleTypeDef* hcan) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the CAN MSP. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef* hcan) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CAN_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Transmit a CAN frame message. + (+) Receive a CAN frame message. + (+) Enter CAN peripheral in sleep mode. + (+) Wake up the CAN peripheral from sleep mode. + +@endverbatim + * @{ + */ + +/** + * @brief Initiates and transmits a CAN frame message. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Transmit(CAN_HandleTypeDef* hcan, uint32_t Timeout) +{ + uint32_t transmitmailbox = 5; + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE)); + assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR)); + assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC)); + + /* Process locked */ + __HAL_LOCK(hcan); + + if(hcan->State == HAL_CAN_STATE_BUSY_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + } + + /* Select one empty transmit mailbox */ + if ((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) + { + transmitmailbox = 0; + } + else if ((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) + { + transmitmailbox = 1; + } + else if ((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2) + { + transmitmailbox = 2; + } + else + { + transmitmailbox = CAN_TXSTATUS_NOMAILBOX; + } + + if (transmitmailbox != CAN_TXSTATUS_NOMAILBOX) + { + /* Set up the Id */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ; + if (hcan->pTxMsg->IDE == CAN_ID_STD) + { + assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \ + hcan->pTxMsg->RTR); + } + else + { + assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \ + hcan->pTxMsg->IDE | \ + hcan->pTxMsg->RTR); + } + + /* Set up the DLC */ + hcan->pTxMsg->DLC &= (uint8_t)0x0000000F; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC; + + /* Set up the data field */ + hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) | + ((uint32_t)hcan->pTxMsg->Data[2] << 16) | + ((uint32_t)hcan->pTxMsg->Data[1] << 8) | + ((uint32_t)hcan->pTxMsg->Data[0])); + hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) | + ((uint32_t)hcan->pTxMsg->Data[6] << 16) | + ((uint32_t)hcan->pTxMsg->Data[5] << 8) | + ((uint32_t)hcan->pTxMsg->Data[4])); + /* Request transmission */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check End of transmission flag */ + while(!(__HAL_CAN_TRANSMIT_STATUS(hcan, transmitmailbox))) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hcan->State = HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + } + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + } + + /* Return function status */ + return HAL_OK; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_ERROR; + } +} + +/** + * @brief Initiates and transmits a CAN frame message. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Transmit_IT(CAN_HandleTypeDef* hcan) +{ + uint32_t transmitmailbox = 5; + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_CAN_IDTYPE(hcan->pTxMsg->IDE)); + assert_param(IS_CAN_RTR(hcan->pTxMsg->RTR)); + assert_param(IS_CAN_DLC(hcan->pTxMsg->DLC)); + + tmp = hcan->State; + if((tmp == HAL_CAN_STATE_READY) || (tmp == HAL_CAN_STATE_BUSY_RX)) + { + /* Process Locked */ + __HAL_LOCK(hcan); + + /* Select one empty transmit mailbox */ + if((hcan->Instance->TSR&CAN_TSR_TME0) == CAN_TSR_TME0) + { + transmitmailbox = 0; + } + else if((hcan->Instance->TSR&CAN_TSR_TME1) == CAN_TSR_TME1) + { + transmitmailbox = 1; + } + else if((hcan->Instance->TSR&CAN_TSR_TME2) == CAN_TSR_TME2) + { + transmitmailbox = 2; + } + else + { + transmitmailbox = CAN_TXSTATUS_NOMAILBOX; + } + + if(transmitmailbox != CAN_TXSTATUS_NOMAILBOX) + { + /* Set up the Id */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ; + if(hcan->pTxMsg->IDE == CAN_ID_STD) + { + assert_param(IS_CAN_STDID(hcan->pTxMsg->StdId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->StdId << 21) | \ + hcan->pTxMsg->RTR); + } + else + { + assert_param(IS_CAN_EXTID(hcan->pTxMsg->ExtId)); + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= ((hcan->pTxMsg->ExtId << 3) | \ + hcan->pTxMsg->IDE | \ + hcan->pTxMsg->RTR); + } + + /* Set up the DLC */ + hcan->pTxMsg->DLC &= (uint8_t)0x0000000F; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0; + hcan->Instance->sTxMailBox[transmitmailbox].TDTR |= hcan->pTxMsg->DLC; + + /* Set up the data field */ + hcan->Instance->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)hcan->pTxMsg->Data[3] << 24) | + ((uint32_t)hcan->pTxMsg->Data[2] << 16) | + ((uint32_t)hcan->pTxMsg->Data[1] << 8) | + ((uint32_t)hcan->pTxMsg->Data[0])); + hcan->Instance->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)hcan->pTxMsg->Data[7] << 24) | + ((uint32_t)hcan->pTxMsg->Data[6] << 16) | + ((uint32_t)hcan->pTxMsg->Data[5] << 8) | + ((uint32_t)hcan->pTxMsg->Data[4])); + + if(hcan->State == HAL_CAN_STATE_BUSY_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + } + + /* Set CAN error code to none */ + hcan->ErrorCode = HAL_CAN_ERROR_NONE; + + /* Process Unlocked */ + __HAL_UNLOCK(hcan); + + /* Enable Error warning Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG); + + /* Enable Error passive Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV); + + /* Enable Bus-off Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF); + + /* Enable Last error code Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC); + + /* Enable Error Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR); + + /* Enable Transmit mailbox empty Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_TME); + + /* Request transmission */ + hcan->Instance->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ; + } + } + else + { + return HAL_BUSY; + } + + return HAL_OK; +} + +/** + * @brief Receives a correct CAN frame. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param FIFONumber: FIFO Number value + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Receive(CAN_HandleTypeDef* hcan, uint8_t FIFONumber, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_CAN_FIFO(FIFONumber)); + + /* Process locked */ + __HAL_LOCK(hcan); + + if(hcan->State == HAL_CAN_STATE_BUSY_TX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check pending message */ + while(__HAL_CAN_MSG_PENDING(hcan, FIFONumber) == 0) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hcan->State = HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + } + + /* Get the Id */ + hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + if (hcan->pRxMsg->IDE == CAN_ID_STD) + { + hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21); + } + else + { + hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3); + } + + hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + /* Get the DLC */ + hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR; + /* Get the FMI */ + hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8); + /* Get the data field */ + hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR; + hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8); + hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16); + hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24); + hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR; + hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8); + hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16); + hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24); + + /* Release the FIFO */ + if(FIFONumber == CAN_FIFO0) + { + /* Release FIFO0 */ + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0); + } + else /* FIFONumber == CAN_FIFO1 */ + { + /* Release FIFO1 */ + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Receives a correct CAN frame. + * @param hcan: Pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param FIFONumber: Specify the FIFO number + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_CAN_FIFO(FIFONumber)); + + tmp = hcan->State; + if((tmp == HAL_CAN_STATE_READY) || (tmp == HAL_CAN_STATE_BUSY_TX)) + { + /* Process locked */ + __HAL_LOCK(hcan); + + if(hcan->State == HAL_CAN_STATE_BUSY_TX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + } + + /* Set CAN error code to none */ + hcan->ErrorCode = HAL_CAN_ERROR_NONE; + + /* Enable Error warning Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EWG); + + /* Enable Error passive Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_EPV); + + /* Enable Bus-off Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_BOF); + + /* Enable Last error code Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_LEC); + + /* Enable Error Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_ERR); + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + if(FIFONumber == CAN_FIFO0) + { + /* Enable FIFO 0 message pending Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP0); + } + else + { + /* Enable FIFO 1 message pending Interrupt */ + __HAL_CAN_ENABLE_IT(hcan, CAN_IT_FMP1); + } + + } + else + { + return HAL_BUSY; + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enters the Sleep (low power) mode. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_CAN_Sleep(CAN_HandleTypeDef* hcan) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hcan); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY; + + /* Request Sleep mode */ + hcan->Instance->MCR = (((hcan->Instance->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP); + + /* Sleep mode status */ + if ((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK) + { + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_ERROR; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the acknowledge */ + while((hcan->Instance->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) != CAN_MSR_SLAK) + { + if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) + { + hcan->State = HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Wakes up the CAN peripheral from sleep mode, after that the CAN peripheral + * is in the normal mode. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status. + */ +HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef* hcan) +{ + uint32_t tickstart = 0; + + /* Process locked */ + __HAL_LOCK(hcan); + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY; + + /* Wake up request */ + hcan->Instance->MCR &= ~(uint32_t)CAN_MCR_SLEEP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Sleep mode status */ + while((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK) + { + if((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE) + { + hcan->State= HAL_CAN_STATE_TIMEOUT; + /* Process unlocked */ + __HAL_UNLOCK(hcan); + return HAL_TIMEOUT; + } + } + if((hcan->Instance->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK) + { + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_ERROR; + } + + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles CAN interrupt request + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +void HAL_CAN_IRQHandler(CAN_HandleTypeDef* hcan) +{ + uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0; + + /* Check End of transmission flag */ + if(__HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_TME)) + { + tmp1 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_0); + tmp2 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_1); + tmp3 = __HAL_CAN_TRANSMIT_STATUS(hcan, CAN_TXMAILBOX_2); + if(tmp1 || tmp2 || tmp3) + { + /* Call transmit function */ + CAN_Transmit_IT(hcan); + } + } + + tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO0); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP0); + /* Check End of reception flag for FIFO0 */ + if((tmp1 != 0) && tmp2) + { + /* Call receive function */ + CAN_Receive_IT(hcan, CAN_FIFO0); + } + + tmp1 = __HAL_CAN_MSG_PENDING(hcan, CAN_FIFO1); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_FMP1); + /* Check End of reception flag for FIFO1 */ + if((tmp1 != 0) && tmp2) + { + /* Call receive function */ + CAN_Receive_IT(hcan, CAN_FIFO1); + } + + tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EWG); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EWG); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Error Warning Flag */ + if(tmp1 && tmp2 && tmp3) + { + /* Set CAN error code to EWG error */ + hcan->ErrorCode |= HAL_CAN_ERROR_EWG; + /* Clear Error Warning Flag */ + __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_EWG); + } + + tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_EPV); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_EPV); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Error Passive Flag */ + if(tmp1 && tmp2 && tmp3) + { + /* Set CAN error code to EPV error */ + hcan->ErrorCode |= HAL_CAN_ERROR_EPV; + /* Clear Error Passive Flag */ + __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_EPV); + } + + tmp1 = __HAL_CAN_GET_FLAG(hcan, CAN_FLAG_BOF); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_BOF); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Bus-Off Flag */ + if(tmp1 && tmp2 && tmp3) + { + /* Set CAN error code to BOF error */ + hcan->ErrorCode |= HAL_CAN_ERROR_BOF; + /* Clear Bus-Off Flag */ + __HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_BOF); + } + + tmp1 = HAL_IS_BIT_CLR(hcan->Instance->ESR, CAN_ESR_LEC); + tmp2 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_LEC); + tmp3 = __HAL_CAN_GET_IT_SOURCE(hcan, CAN_IT_ERR); + /* Check Last error code Flag */ + if((!tmp1) && tmp2 && tmp3) + { + tmp1 = (hcan->Instance->ESR) & CAN_ESR_LEC; + switch(tmp1) + { + case(CAN_ESR_LEC_0): + /* Set CAN error code to STF error */ + hcan->ErrorCode |= HAL_CAN_ERROR_STF; + break; + case(CAN_ESR_LEC_1): + /* Set CAN error code to FOR error */ + hcan->ErrorCode |= HAL_CAN_ERROR_FOR; + break; + case(CAN_ESR_LEC_1 | CAN_ESR_LEC_0): + /* Set CAN error code to ACK error */ + hcan->ErrorCode |= HAL_CAN_ERROR_ACK; + break; + case(CAN_ESR_LEC_2): + /* Set CAN error code to BR error */ + hcan->ErrorCode |= HAL_CAN_ERROR_BR; + break; + case(CAN_ESR_LEC_2 | CAN_ESR_LEC_0): + /* Set CAN error code to BD error */ + hcan->ErrorCode |= HAL_CAN_ERROR_BD; + break; + case(CAN_ESR_LEC_2 | CAN_ESR_LEC_1): + /* Set CAN error code to CRC error */ + hcan->ErrorCode |= HAL_CAN_ERROR_CRC; + break; + default: + break; + } + + /* Clear Last error code Flag */ + hcan->Instance->ESR &= ~(CAN_ESR_LEC); + } + + /* Call the Error call Back in case of Errors */ + if(hcan->ErrorCode != HAL_CAN_ERROR_NONE) + { + /* Set the CAN state ready to be able to start again the process */ + hcan->State = HAL_CAN_STATE_READY; + /* Call Error callback function */ + HAL_CAN_ErrorCallback(hcan); + } +} + +/** + * @brief Transmission complete callback in non blocking mode + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_TxCpltCallback(CAN_HandleTypeDef* hcan) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Transmission complete callback in non blocking mode + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_RxCpltCallback(CAN_HandleTypeDef* hcan) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Error CAN callback. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval None + */ +__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CAN_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CAN_Exported_Functions_Group3 Peripheral State and Error functions + * @brief CAN Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Error functions ##### + ============================================================================== + [..] + This subsection provides functions allowing to : + (+) Check the CAN state. + (+) Check CAN Errors detected during interrupt process + +@endverbatim + * @{ + */ + +/** + * @brief return the CAN state + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL state + */ +HAL_CAN_StateTypeDef HAL_CAN_GetState(CAN_HandleTypeDef* hcan) +{ + /* Return CAN state */ + return hcan->State; +} + +/** + * @brief Return the CAN error code + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval CAN Error Code + */ +uint32_t HAL_CAN_GetError(CAN_HandleTypeDef *hcan) +{ + return hcan->ErrorCode; +} + +/** + * @} + */ +/** + * @brief Initiates and transmits a CAN frame message. + * @param hcan: pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @retval HAL status + */ +static HAL_StatusTypeDef CAN_Transmit_IT(CAN_HandleTypeDef* hcan) +{ + /* Disable Transmit mailbox empty Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_TME); + + if(hcan->State == HAL_CAN_STATE_BUSY_TX) + { + /* Disable Error warning Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG); + + /* Disable Error passive Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV); + + /* Disable Bus-off Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF); + + /* Disable Last error code Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC); + + /* Disable Error Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_RX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + } + + /* Transmission complete callback */ + HAL_CAN_TxCpltCallback(hcan); + + return HAL_OK; +} + +/** + * @brief Receives a correct CAN frame. + * @param hcan: Pointer to a CAN_HandleTypeDef structure that contains + * the configuration information for the specified CAN. + * @param FIFONumber: Specify the FIFO number + * @retval HAL status + * @retval None + */ +static HAL_StatusTypeDef CAN_Receive_IT(CAN_HandleTypeDef* hcan, uint8_t FIFONumber) +{ + /* Get the Id */ + hcan->pRxMsg->IDE = (uint8_t)0x04 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + if (hcan->pRxMsg->IDE == CAN_ID_STD) + { + hcan->pRxMsg->StdId = (uint32_t)0x000007FF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 21); + } + else + { + hcan->pRxMsg->ExtId = (uint32_t)0x1FFFFFFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RIR >> 3); + } + + hcan->pRxMsg->RTR = (uint8_t)0x02 & hcan->Instance->sFIFOMailBox[FIFONumber].RIR; + /* Get the DLC */ + hcan->pRxMsg->DLC = (uint8_t)0x0F & hcan->Instance->sFIFOMailBox[FIFONumber].RDTR; + /* Get the FMI */ + hcan->pRxMsg->FMI = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDTR >> 8); + /* Get the data field */ + hcan->pRxMsg->Data[0] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDLR; + hcan->pRxMsg->Data[1] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 8); + hcan->pRxMsg->Data[2] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 16); + hcan->pRxMsg->Data[3] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDLR >> 24); + hcan->pRxMsg->Data[4] = (uint8_t)0xFF & hcan->Instance->sFIFOMailBox[FIFONumber].RDHR; + hcan->pRxMsg->Data[5] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 8); + hcan->pRxMsg->Data[6] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 16); + hcan->pRxMsg->Data[7] = (uint8_t)0xFF & (hcan->Instance->sFIFOMailBox[FIFONumber].RDHR >> 24); + /* Release the FIFO */ + /* Release FIFO0 */ + if (FIFONumber == CAN_FIFO0) + { + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO0); + + /* Disable FIFO 0 message pending Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP0); + } + /* Release FIFO1 */ + else /* FIFONumber == CAN_FIFO1 */ + { + __HAL_CAN_FIFO_RELEASE(hcan, CAN_FIFO1); + + /* Disable FIFO 1 message pending Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_FMP1); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_RX) + { + /* Disable Error warning Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EWG); + + /* Disable Error passive Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_EPV); + + /* Disable Bus-off Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_BOF); + + /* Disable Last error code Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_LEC); + + /* Disable Error Interrupt */ + __HAL_CAN_DISABLE_IT(hcan, CAN_IT_ERR); + } + + if(hcan->State == HAL_CAN_STATE_BUSY_TX_RX) + { + /* Disable CAN state */ + hcan->State = HAL_CAN_STATE_BUSY_TX; + } + else + { + /* Change CAN state */ + hcan->State = HAL_CAN_STATE_READY; + } + + /* Receive complete callback */ + HAL_CAN_RxCpltCallback(hcan); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ + +#endif /* HAL_CAN_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cec.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cec.c new file mode 100644 index 0000000..005cd00 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cec.c @@ -0,0 +1,1112 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_cec.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief CEC HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the High Definition Multimedia Interface + * Consumer Electronics Control Peripheral (CEC). + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + * + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The CEC HAL driver can be used as follow: + + (#) Declare a CEC_HandleTypeDef handle structure. + (#) Initialize the CEC low level resources by implementing the HAL_CEC_MspInit ()API: + (##) Enable the CEC interface clock. + (##) CEC pins configuration: + (+) Enable the clock for the CEC GPIOs. + (+) Configure these CEC pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_CEC_Transmit_IT() + and HAL_CEC_Receive_IT() APIs): + (+) Configure the CEC interrupt priority. + (+) Enable the NVIC CEC IRQ handle. + (@) The specific CEC interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_CEC_ENABLE_IT() and __HAL_CEC_DISABLE_IT() inside the transmit + and receive process. + + (#) Program the Signal Free Time (SFT) and SFT option, Tolerance, reception stop in + in case of Bit Rising Error, Error-Bit generation conditions, device logical + address and Listen mode in the hcec Init structure. + + (#) Initialize the CEC registers by calling the HAL_CEC_Init() API. + + (@) This API (HAL_CEC_Init()) configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customed HAL_CEC_MspInit() API. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup CEC CEC + * @brief HAL CEC module driver + * @{ + */ +#ifdef HAL_CEC_MODULE_ENABLED + +#if defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup CEC_Private_Constants CEC Private Constants + * @{ + */ +#define CEC_CFGR_FIELDS (CEC_CFGR_SFT | CEC_CFGR_RXTOL | CEC_CFGR_BRESTP \ + | CEC_CFGR_BREGEN | CEC_CFGR_LBPEGEN | CEC_CFGR_SFTOPT \ + | CEC_CFGR_BRDNOGEN | CEC_CFGR_OAR | CEC_CFGR_LSTN) +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup CEC_Private_Functions CEC Private Functions + * @{ + */ +static HAL_StatusTypeDef CEC_Transmit_IT(CEC_HandleTypeDef *hcec); +static HAL_StatusTypeDef CEC_Receive_IT(CEC_HandleTypeDef *hcec); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ +/** @defgroup CEC_Exported_Functions CEC Exported Functions + * @{ + */ + +/** @defgroup CEC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the CEC + (+) The following parameters need to be configured: + (++) SignalFreeTime + (++) Tolerance + (++) BRERxStop (RX stopped or not upon Bit Rising Error) + (++) BREErrorBitGen (Error-Bit generation in case of Bit Rising Error) + (++) LBPEErrorBitGen (Error-Bit generation in case of Long Bit Period Error) + (++) BroadcastMsgNoErrorBitGen (Error-bit generation in case of broadcast message error) + (++) SignalFreeTimeOption (SFT Timer start definition) + (++) OwnAddress (CEC device address) + (++) ListenMode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CEC mode according to the specified + * parameters in the CEC_InitTypeDef and creates the associated handle . + * @param hcec: CEC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_Init(CEC_HandleTypeDef *hcec) +{ + uint32_t tmpreg = 0x0; + + /* Check the CEC handle allocation */ + if(hcec == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CEC_ALL_INSTANCE(hcec->Instance)); + assert_param(IS_CEC_SIGNALFREETIME(hcec->Init.SignalFreeTime)); + assert_param(IS_CEC_TOLERANCE(hcec->Init.Tolerance)); + assert_param(IS_CEC_BRERXSTOP(hcec->Init.BRERxStop)); + assert_param(IS_CEC_BREERRORBITGEN(hcec->Init.BREErrorBitGen)); + assert_param(IS_CEC_LBPEERRORBITGEN(hcec->Init.LBPEErrorBitGen)); + assert_param(IS_CEC_BROADCASTERROR_NO_ERRORBIT_GENERATION(hcec->Init.BroadcastMsgNoErrorBitGen)); + assert_param(IS_CEC_SFTOP(hcec->Init.SignalFreeTimeOption)); + assert_param(IS_CEC_OAR_ADDRESS(hcec->Init.OwnAddress)); + assert_param(IS_CEC_LISTENING_MODE(hcec->Init.ListenMode)); + assert_param(IS_CEC_ADDRESS(hcec->Init.InitiatorAddress)); + + + if(hcec->State == HAL_CEC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcec->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK */ + HAL_CEC_MspInit(hcec); + } + + hcec->State = HAL_CEC_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_CEC_DISABLE(hcec); + + tmpreg = hcec->Init.SignalFreeTime; + tmpreg |= hcec->Init.Tolerance; + tmpreg |= hcec->Init.BRERxStop; + tmpreg |= hcec->Init.BREErrorBitGen; + tmpreg |= hcec->Init.LBPEErrorBitGen; + tmpreg |= hcec->Init.BroadcastMsgNoErrorBitGen; + tmpreg |= hcec->Init.SignalFreeTimeOption; + tmpreg |= (hcec->Init.OwnAddress << CEC_CFGR_OAR_LSB_POS); + tmpreg |= hcec->Init.ListenMode; + + /* Write to CEC Control Register */ + MODIFY_REG(hcec->Instance->CFGR, CEC_CFGR_FIELDS, tmpreg); + + /* Enable the Peripheral */ + __HAL_CEC_ENABLE(hcec); + + hcec->State = HAL_CEC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the CEC peripheral + * @param hcec: CEC handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_DeInit(CEC_HandleTypeDef *hcec) +{ + /* Check the CEC handle allocation */ + if(hcec == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CEC_ALL_INSTANCE(hcec->Instance)); + + hcec->State = HAL_CEC_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_CEC_MspDeInit(hcec); + /* Disable the Peripheral */ + __HAL_CEC_DISABLE(hcec); + + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + hcec->State = HAL_CEC_STATE_RESET; + + /* Process Unlock */ + __HAL_UNLOCK(hcec); + + return HAL_OK; +} + +/** + * @brief CEC MSP Init + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_MspInit(CEC_HandleTypeDef *hcec) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_MspInit can be implemented in the user file + */ +} + +/** + * @brief CEC MSP DeInit + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_MspDeInit(CEC_HandleTypeDef *hcec) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_MspDeInit can be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup CEC_Exported_Functions_Group2 Input and Output operation functions + * @brief CEC Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### I/O operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the CEC data transfers. + + (#) The CEC handle must contain the initiator (TX side) and the destination (RX side) + logical addresses (4-bit long addresses, 0xF for broadcast messages destination) + + (#) There are two mode of transfer: + (+) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (+) No-Blocking mode: The communication is performed using Interrupts. + These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated CEC IRQ when using Interrupt mode. + The HAL_CEC_TxCpltCallback(), HAL_CEC_RxCpltCallback() user callbacks + will be executed respectivelly at the end of the transmit or Receive process + The HAL_CEC_ErrorCallback()user callback will be executed when a communication + error is detected + + (#) Blocking mode API's are : + (+) HAL_CEC_Transmit() + (+) HAL_CEC_Receive() + + (#) Non-Blocking mode API's with Interrupt are : + (+) HAL_CEC_Transmit_IT() + (+) HAL_CEC_Receive_IT() + (+) HAL_CEC_IRQHandler() + + (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: + (+) HAL_CEC_TxCpltCallback() + (+) HAL_CEC_RxCpltCallback() + (+) HAL_CEC_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Send data in blocking mode + * @param hcec: CEC handle + * @param DestinationAddress: destination logical address + * @param pData: pointer to input byte data buffer + * @param Size: amount of data to be sent in bytes (without counting the header). + * 0 means only the header is sent (ping operation). + * Maximum TX size is 15 bytes (1 opcode and up to 14 operands). + * @param Timeout: Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_Transmit(CEC_HandleTypeDef *hcec, uint8_t DestinationAddress, uint8_t *pData, uint32_t Size, uint32_t Timeout) +{ + uint8_t temp = 0; + uint32_t tempisr = 0; + uint32_t tickstart = 0; + + if((hcec->State == HAL_CEC_STATE_READY) && (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) == RESET)) + { + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + if((pData == NULL ) && (Size > 0)) + { + hcec->State = HAL_CEC_STATE_ERROR; + return HAL_ERROR; + } + + assert_param(IS_CEC_ADDRESS(DestinationAddress)); + assert_param(IS_CEC_MSGSIZE(Size)); + + /* Process Locked */ + __HAL_LOCK(hcec); + + hcec->State = HAL_CEC_STATE_BUSY_TX; + + hcec->TxXferCount = Size; + + /* case no data to be sent, sender is only pinging the system */ + if (Size == 0) + { + /* Set TX End of Message (TXEOM) bit, must be set before writing data to TXDR */ + __HAL_CEC_LAST_BYTE_TX_SET(hcec); + } + + /* send header block */ + temp = ((uint32_t)hcec->Init.InitiatorAddress << CEC_INITIATOR_LSB_POS) | DestinationAddress; + hcec->Instance->TXDR = temp; + /* Set TX Start of Message (TXSOM) bit */ + __HAL_CEC_FIRST_BYTE_TX_SET(hcec); + + while (hcec->TxXferCount > 0) + { + hcec->TxXferCount--; + + tickstart = HAL_GetTick(); + while(HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_FLAG_TXBR)) + { + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart) > Timeout) + { + hcec->State = HAL_CEC_STATE_TIMEOUT; + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + return HAL_TIMEOUT; + } + } + + /* check whether error occured while waiting for TXBR to be set: + * has Tx underrun occurred ? + * has Tx error occurred ? + * has Tx Missing Acknowledge error occurred ? + * has Arbitration Loss error occurred ? */ + tempisr = hcec->Instance->ISR; + if ((tempisr & (CEC_FLAG_TXUDR|CEC_FLAG_TXERR|CEC_FLAG_TXACKE|CEC_FLAG_ARBLST)) != 0) + { + /* copy ISR for error handling purposes */ + hcec->ErrorCode = tempisr; + /* clear all error flags by default */ + __HAL_CEC_CLEAR_FLAG(hcec, (CEC_FLAG_TXUDR|CEC_FLAG_TXERR|CEC_FLAG_TXACKE|CEC_FLAG_ARBLST)); + hcec->State = HAL_CEC_STATE_ERROR; + __HAL_UNLOCK(hcec); + return HAL_ERROR; + } + } + /* TXBR to clear BEFORE writing TXDR register */ + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXBR); + if (hcec->TxXferCount == 0) + { + /* if last byte transmission, set TX End of Message (TXEOM) bit */ + __HAL_CEC_LAST_BYTE_TX_SET(hcec); + } + hcec->Instance->TXDR = *pData++; + + /* error check after TX byte write up */ + tempisr = hcec->Instance->ISR; + if ((tempisr & (CEC_FLAG_TXUDR|CEC_FLAG_TXERR|CEC_FLAG_TXACKE|CEC_FLAG_ARBLST)) != 0) + { + /* copy ISR for error handling purposes */ + hcec->ErrorCode = tempisr; + /* clear all error flags by default */ + __HAL_CEC_CLEAR_FLAG(hcec, (CEC_FLAG_TXUDR|CEC_FLAG_TXERR|CEC_FLAG_TXACKE|CEC_FLAG_ARBLST)); + hcec->State = HAL_CEC_STATE_ERROR; + __HAL_UNLOCK(hcec); + return HAL_ERROR; + } + } /* end while (while (hcec->TxXferCount > 0)) */ + + + /* if no error up to this point, check that transmission is + * complete, that is wait until TXEOM is reset */ + tickstart = HAL_GetTick(); + + while (HAL_IS_BIT_SET(hcec->Instance->CR, CEC_CR_TXEOM)) + { + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart) > Timeout) + { + hcec->State = HAL_CEC_STATE_ERROR; + __HAL_UNLOCK(hcec); + return HAL_TIMEOUT; + } + } + } + + /* Final error check once all bytes have been transmitted */ + tempisr = hcec->Instance->ISR; + if ((tempisr & (CEC_FLAG_TXUDR|CEC_FLAG_TXERR|CEC_FLAG_TXACKE)) != 0) + { + /* copy ISR for error handling purposes */ + hcec->ErrorCode = tempisr; + /* clear all error flags by default */ + __HAL_CEC_CLEAR_FLAG(hcec, (CEC_FLAG_TXUDR|CEC_FLAG_TXERR|CEC_FLAG_TXACKE)); + hcec->State = HAL_CEC_STATE_ERROR; + __HAL_UNLOCK(hcec); + return HAL_ERROR; + } + + hcec->State = HAL_CEC_STATE_READY; + __HAL_UNLOCK(hcec); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive data in blocking mode. Must be invoked when RXBR has been set. + * @param hcec: CEC handle + * @param pData: pointer to received data buffer. + * @param Timeout: Timeout duration. + * Note that the received data size is not known beforehand, the latter is known + * when the reception is complete and is stored in hcec->RxXferSize. + * hcec->RxXferSize is the sum of opcodes + operands (0 to 14 operands max). + * If only a header is received, hcec->RxXferSize = 0 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_Receive(CEC_HandleTypeDef *hcec, uint8_t *pData, uint32_t Timeout) +{ + uint32_t temp; + uint32_t tickstart = 0; + + if (hcec->State == HAL_CEC_STATE_READY) + { + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + if (pData == NULL ) + { + hcec->State = HAL_CEC_STATE_ERROR; + return HAL_ERROR; + } + + hcec->RxXferSize = 0; + /* Process Locked */ + __HAL_LOCK(hcec); + + + /* Rx loop until CEC_ISR_RXEND is set */ + while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_FLAG_RXEND)) + { + tickstart = HAL_GetTick(); + /* Wait for next byte to be received */ + while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_FLAG_RXBR)) + { + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart) > Timeout) + { + hcec->State = HAL_CEC_STATE_TIMEOUT; + __HAL_UNLOCK(hcec); + return HAL_TIMEOUT; + } + } + /* any error so far ? + * has Rx Missing Acknowledge occurred ? + * has Rx Long Bit Period error occurred ? + * has Rx Short Bit Period error occurred ? + * has Rx Bit Rising error occurred ? + * has Rx Overrun error occurred ? */ + temp = (uint32_t) (hcec->Instance->ISR); + if ((temp & (CEC_FLAG_RXACKE|CEC_FLAG_LBPE|CEC_FLAG_SBPE|CEC_FLAG_BRE|CEC_FLAG_RXOVR)) != 0) + { + /* copy ISR for error handling purposes */ + hcec->ErrorCode = temp; + /* clear all error flags by default */ + __HAL_CEC_CLEAR_FLAG(hcec,(CEC_FLAG_RXACKE|CEC_FLAG_LBPE|CEC_FLAG_SBPE|CEC_FLAG_BRE|CEC_FLAG_RXOVR)); + hcec->State = HAL_CEC_STATE_ERROR; + __HAL_UNLOCK(hcec); + return HAL_ERROR; + } + } /* while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXBR)) */ + + + /* read received data */ + *pData++ = hcec->Instance->RXDR; + temp = (uint32_t) (hcec->Instance->ISR); + /* end of message ? */ + if ((temp & CEC_ISR_RXEND) != 0) + { + assert_param(IS_CEC_MSGSIZE(hcec->RxXferSize)); + __HAL_CEC_CLEAR_FLAG(hcec,CEC_FLAG_RXEND); + hcec->State = HAL_CEC_STATE_READY; + __HAL_UNLOCK(hcec); + return HAL_OK; + } + + /* clear Rx-Byte Received flag */ + __HAL_CEC_CLEAR_FLAG(hcec,CEC_FLAG_RXBR); + /* increment payload byte counter */ + hcec->RxXferSize++; + } /* while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXEND)) */ + + /* if the instructions below are executed, it means RXEND was set when RXBR was + * set for the first time: + * the code within the "while (HAL_IS_BIT_CLR(hcec->Instance->ISR, CEC_ISR_RXEND))" + * loop has not been executed and this means a single byte has been sent */ + *pData++ = hcec->Instance->RXDR; + /* only one header is received: RxXferSize is set to 0 (no operand, no opcode) */ + hcec->RxXferSize = 0; + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXEND); + + hcec->State = HAL_CEC_STATE_READY; + __HAL_UNLOCK(hcec); + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send data in interrupt mode + * @param hcec: CEC handle + * @param DestinationAddress: destination logical address + * @param pData: pointer to input byte data buffer + * @param Size: amount of data to be sent in bytes (without counting the header). + * 0 means only the header is sent (ping operation). + * Maximum TX size is 15 bytes (1 opcode and up to 14 operands). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_Transmit_IT(CEC_HandleTypeDef *hcec, uint8_t DestinationAddress, uint8_t *pData, uint32_t Size) +{ + uint8_t temp = 0; + /* if the IP isn't already busy and if there is no previous transmission + already pending due to arbitration lost */ + if (((hcec->State == HAL_CEC_STATE_READY) || (hcec->State == HAL_CEC_STATE_STANDBY_RX)) + && (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) == RESET)) + { + if((pData == NULL) && (Size > 0)) + { + hcec->State = HAL_CEC_STATE_ERROR; + return HAL_ERROR; + } + + assert_param(IS_CEC_ADDRESS(DestinationAddress)); + assert_param(IS_CEC_MSGSIZE(Size)); + + /* Process Locked */ + __HAL_LOCK(hcec); + hcec->pTxBuffPtr = pData; + hcec->State = HAL_CEC_STATE_BUSY_TX; + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + + /* Disable Peripheral to write CEC_IER register */ + __HAL_CEC_DISABLE(hcec); + + /* Enable the following two CEC Transmission interrupts as + * well as the following CEC Transmission Errors interrupts: + * Tx Byte Request IT + * End of Transmission IT + * Tx Missing Acknowledge IT + * Tx-Error IT + * Tx-Buffer Underrun IT + * Tx arbitration lost */ + __HAL_CEC_ENABLE_IT(hcec, CEC_IT_TXBR|CEC_IT_TXEND|CEC_IER_TX_ALL_ERR); + + /* Enable the Peripheral */ + __HAL_CEC_ENABLE(hcec); + + /* initialize the number of bytes to send, + * 0 means only one header is sent (ping operation) */ + hcec->TxXferCount = Size; + + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + + /* in case of no payload (Size = 0), sender is only pinging the system; + * Set TX End of Message (TXEOM) bit, must be set before writing data to TXDR */ + if (Size == 0) + { + __HAL_CEC_LAST_BYTE_TX_SET(hcec); + } + + /* send header block */ + temp = (uint8_t)((uint32_t)(hcec->Init.InitiatorAddress) << CEC_INITIATOR_LSB_POS) | DestinationAddress; + hcec->Instance->TXDR = temp; + /* Set TX Start of Message (TXSOM) bit */ + __HAL_CEC_FIRST_BYTE_TX_SET(hcec); + + return HAL_OK; + } + /* if the IP is already busy or if there is a previous transmission + already pending due to arbitration loss */ + else if ((hcec->State == HAL_CEC_STATE_BUSY_TX) + || (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) != RESET)) + { + __HAL_LOCK(hcec); + /* set state to BUSY TX, in case it wasn't set already (case + * of transmission new attempt after arbitration loss) */ + if (hcec->State != HAL_CEC_STATE_BUSY_TX) + { + hcec->State = HAL_CEC_STATE_BUSY_TX; + } + + /* if all data have been sent */ + if(hcec->TxXferCount == 0) + { + /* Disable Peripheral to write CEC_IER register */ + __HAL_CEC_DISABLE(hcec); + + /* Disable the CEC Transmission Interrupts */ + __HAL_CEC_DISABLE_IT(hcec, CEC_IT_TXBR|CEC_IT_TXEND); + /* Disable the CEC Transmission Error Interrupts */ + __HAL_CEC_DISABLE_IT(hcec, CEC_IER_TX_ALL_ERR); + + /* Enable the Peripheral */ + __HAL_CEC_ENABLE(hcec); + + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXBR|CEC_FLAG_TXEND); + + hcec->State = HAL_CEC_STATE_READY; + /* Call the Process Unlocked before calling the Tx call back API to give the possibility to + start again the Transmission under the Tx call back API */ + __HAL_UNLOCK(hcec); + + HAL_CEC_TxCpltCallback(hcec); + + return HAL_OK; + } + else + { + if (hcec->TxXferCount == 1) + { + /* if this is the last byte transmission, set TX End of Message (TXEOM) bit */ + __HAL_CEC_LAST_BYTE_TX_SET(hcec); + } + /* clear Tx-Byte request flag */ + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXBR); + hcec->Instance->TXDR = *hcec->pTxBuffPtr++; + hcec->TxXferCount--; + + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + + return HAL_OK; + } + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive data in interrupt mode. + * @param hcec: CEC handle + * @param pData: pointer to received data buffer. + * Note that the received data size is not known beforehand, the latter is known + * when the reception is complete and is stored in hcec->RxXferSize. + * hcec->RxXferSize is the sum of opcodes + operands (0 to 14 operands max). + * If only a header is received, hcec->RxXferSize = 0 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CEC_Receive_IT(CEC_HandleTypeDef *hcec, uint8_t *pData) +{ + if(hcec->State == HAL_CEC_STATE_READY) + { + if(pData == NULL) + { + hcec->State = HAL_CEC_STATE_ERROR; + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hcec); + hcec->RxXferSize = 0; + hcec->pRxBuffPtr = pData; + hcec->ErrorCode = HAL_CEC_ERROR_NONE; + /* the IP is moving to a ready to receive state */ + hcec->State = HAL_CEC_STATE_STANDBY_RX; + + /* Disable Peripheral to write CEC_IER register */ + __HAL_CEC_DISABLE(hcec); + + /* Enable the following CEC Reception Error Interrupts: + * Rx overrun + * Rx bit rising error + * Rx short bit period error + * Rx long bit period error + * Rx missing acknowledge */ + __HAL_CEC_ENABLE_IT(hcec, CEC_IER_RX_ALL_ERR); + + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + + /* Enable the following two CEC Reception interrupts: + * Rx Byte Received IT + * End of Reception IT */ + __HAL_CEC_ENABLE_IT(hcec, CEC_IT_RXBR|CEC_IT_RXEND); + + __HAL_CEC_ENABLE(hcec); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Get size of the received frame. + * @param hcec: CEC handle + * @retval Frame size + */ +uint32_t HAL_CEC_GetReceivedFrameSize(CEC_HandleTypeDef *hcec) +{ + return hcec->RxXferSize; +} + +/** + * @brief This function handles CEC interrupt requests. + * @param hcec: CEC handle + * @retval None + */ +void HAL_CEC_IRQHandler(CEC_HandleTypeDef *hcec) +{ + /* save interrupts register for further error or interrupts handling purposes */ + hcec->ErrorCode = hcec->Instance->ISR; + /* CEC TX missing acknowledge error interrupt occurred -------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_TXACKE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_TXACKE) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXACKE); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC transmit error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_TXERR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_TXERR) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXERR); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC TX underrun error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_TXUDR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_TXUDR) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_TXUDR); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC TX arbitration error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_ARBLST) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_ARBLST) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_ARBLST); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC RX overrun error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_RXOVR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_RXOVR) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXOVR); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC RX bit rising error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_BRE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_BRE) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_BRE); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC RX short bit period error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_SBPE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_SBPE) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_SBPE); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC RX long bit period error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_LBPE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_LBPE) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_LBPE); + hcec->State = HAL_CEC_STATE_ERROR; + } + + /* CEC RX missing acknowledge error interrupt occured --------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_RXACKE) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_RXACKE) != RESET)) + { + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXACKE); + hcec->State = HAL_CEC_STATE_ERROR; + } + + if ((hcec->ErrorCode & CEC_ISR_ALL_ERROR) != 0) + { + HAL_CEC_ErrorCallback(hcec); + } + + /* CEC RX byte received interrupt ---------------------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_RXBR) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_RXBR) != RESET)) + { + /* RXBR IT is cleared during HAL_CEC_Transmit_IT processing */ + CEC_Receive_IT(hcec); + } + + /* CEC RX end received interrupt ---------------------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_RXEND) != RESET) && (__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_RXEND) != RESET)) + { + /* RXBR IT is cleared during HAL_CEC_Transmit_IT processing */ + CEC_Receive_IT(hcec); + } + + + /* CEC TX byte request interrupt ------------------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_TXBR) != RESET) &&(__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_TXBR) != RESET)) + { + /* TXBR IT is cleared during HAL_CEC_Transmit_IT processing */ + CEC_Transmit_IT(hcec); + } + + /* CEC TX end interrupt ------------------------------------------------*/ + if((__HAL_CEC_GET_FLAG(hcec, CEC_FLAG_TXEND) != RESET) &&(__HAL_CEC_GET_IT_SOURCE(hcec, CEC_IT_TXEND) != RESET)) + { + /* TXEND IT is cleared during HAL_CEC_Transmit_IT processing */ + CEC_Transmit_IT(hcec); + } +} + +/** + * @brief Tx Transfer completed callback + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_TxCpltCallback(CEC_HandleTypeDef *hcec) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_TxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callback + * @param hcec: CEC handle + * @retval None + */ +__weak void HAL_CEC_RxCpltCallback(CEC_HandleTypeDef *hcec) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_TxCpltCallback can be implemented in the user file + */ +} + +/** + * @brief CEC error callbacks + * @param hcec: CEC handle + * @retval None + */ + __weak void HAL_CEC_ErrorCallback(CEC_HandleTypeDef *hcec) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_CEC_ErrorCallback can be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup CEC_Exported_Functions_Group3 Peripheral Control function + * @brief CEC control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control function ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the CEC. + (+) HAL_CEC_GetState() API can be helpful to check in run-time the state of the CEC peripheral. +@endverbatim + * @{ + */ +/** + * @brief return the CEC state + * @param hcec: CEC handle + * @retval HAL state + */ +HAL_CEC_StateTypeDef HAL_CEC_GetState(CEC_HandleTypeDef *hcec) +{ + return hcec->State; +} + +/** +* @brief Return the CEC error code +* @param hcec : pointer to a CEC_HandleTypeDef structure that contains + * the configuration information for the specified CEC. +* @retval CEC Error Code +*/ +uint32_t HAL_CEC_GetError(CEC_HandleTypeDef *hcec) +{ + return hcec->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Send data in interrupt mode + * @param hcec: CEC handle. + * Function called under interruption only, once + * interruptions have been enabled by HAL_CEC_Transmit_IT() + * @retval HAL status + */ +static HAL_StatusTypeDef CEC_Transmit_IT(CEC_HandleTypeDef *hcec) +{ + /* if the IP is already busy or if there is a previous transmission + already pending due to arbitration loss */ + if ((hcec->State == HAL_CEC_STATE_BUSY_TX) + || (__HAL_CEC_GET_TRANSMISSION_START_FLAG(hcec) != RESET)) + { + __HAL_LOCK(hcec); + /* set state to BUSY TX, in case it wasn't set already (case + * of transmission new attempt after arbitration loss) */ + if (hcec->State != HAL_CEC_STATE_BUSY_TX) + { + hcec->State = HAL_CEC_STATE_BUSY_TX; + } + + /* if all data have been sent */ + if(hcec->TxXferCount == 0) + { + /* Disable Peripheral to write CEC_IER register */ + __HAL_CEC_DISABLE(hcec); + + /* Disable the CEC Transmission Interrupts */ + __HAL_CEC_DISABLE_IT(hcec, CEC_IT_TXBR|CEC_IT_TXEND); + /* Disable the CEC Transmission Error Interrupts */ + __HAL_CEC_DISABLE_IT(hcec, CEC_IER_TX_ALL_ERR); + + /* Enable the Peripheral */ + __HAL_CEC_ENABLE(hcec); + + __HAL_CEC_CLEAR_FLAG(hcec,CEC_FLAG_TXBR|CEC_FLAG_TXEND); + + hcec->State = HAL_CEC_STATE_READY; + /* Call the Process Unlocked before calling the Tx call back API to give the possibility to + start again the Transmission under the Tx call back API */ + __HAL_UNLOCK(hcec); + + HAL_CEC_TxCpltCallback(hcec); + + return HAL_OK; + } + else + { + if (hcec->TxXferCount == 1) + { + /* if this is the last byte transmission, set TX End of Message (TXEOM) bit */ + __HAL_CEC_LAST_BYTE_TX_SET(hcec); + } + /* clear Tx-Byte request flag */ + __HAL_CEC_CLEAR_FLAG(hcec,CEC_FLAG_TXBR); + hcec->Instance->TXDR = *hcec->pTxBuffPtr++; + hcec->TxXferCount--; + + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + + return HAL_OK; + } + } + else + { + return HAL_BUSY; + } +} + + +/** + * @brief Receive data in interrupt mode. + * @param hcec: CEC handle. + * Function called under interruption only, once + * interruptions have been enabled by HAL_CEC_Receive_IT() + * @retval HAL status + */ +static HAL_StatusTypeDef CEC_Receive_IT(CEC_HandleTypeDef *hcec) +{ + uint32_t tempisr; + + /* Three different conditions are tested to carry out the RX IT processing: + * - the IP is in reception stand-by (the IP state is HAL_CEC_STATE_STANDBY_RX) and + * the reception of the first byte is starting + * - a message reception is already on-going (the IP state is HAL_CEC_STATE_BUSY_RX) + * and a new byte is being received + * - a transmission has just been started (the IP state is HAL_CEC_STATE_BUSY_TX) + * but has been interrupted by a new message reception or discarded due to + * arbitration loss: the reception of the first or higher priority message + * (the arbitration winner) is starting */ + if ((hcec->State == HAL_CEC_STATE_STANDBY_RX) + || (hcec->State == HAL_CEC_STATE_BUSY_RX) + || (hcec->State == HAL_CEC_STATE_BUSY_TX)) + { + /* reception is starting */ + hcec->State = HAL_CEC_STATE_BUSY_RX; + tempisr = (uint32_t) (hcec->Instance->ISR); + if ((tempisr & CEC_FLAG_RXBR) != 0) + { + /* Process Locked */ + __HAL_LOCK(hcec); + /* read received byte */ + *hcec->pRxBuffPtr++ = hcec->Instance->RXDR; + /* if last byte has been received */ + if ((tempisr & CEC_FLAG_RXEND) != 0) + { + /* clear IT */ + __HAL_CEC_CLEAR_FLAG(hcec,CEC_FLAG_RXBR|CEC_FLAG_RXEND); + /* RX interrupts are not disabled at this point. + * Indeed, to disable the IT, the IP must be disabled first + * which resets the TXSOM flag. In case of arbitration loss, + * this leads to a transmission abort. + * Therefore, RX interruptions disabling if so required, + * is done in HAL_CEC_RxCpltCallback */ + + /* IP state is moved to READY. + * If the IP must remain in standby mode to listen + * any new message, it is up to HAL_CEC_RxCpltCallback + * to move it again to HAL_CEC_STATE_STANDBY_RX */ + hcec->State = HAL_CEC_STATE_READY; + + /* Call the Process Unlocked before calling the Rx call back API */ + __HAL_UNLOCK(hcec); + HAL_CEC_RxCpltCallback(hcec); + + return HAL_OK; + } + __HAL_CEC_CLEAR_FLAG(hcec, CEC_FLAG_RXBR); + + hcec->RxXferSize++; + /* Process Unlocked */ + __HAL_UNLOCK(hcec); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } + } + else + { + return HAL_BUSY; + } +} +/** + * @} + */ + +#endif /* STM32F446xx */ + +#endif /* HAL_CEC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cortex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cortex.c new file mode 100644 index 0000000..b796be8 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cortex.c @@ -0,0 +1,436 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_cortex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief CORTEX HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the CORTEX: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + + [..] + *** How to configure Interrupts using CORTEX HAL driver *** + =========================================================== + [..] + This section provides functions allowing to configure the NVIC interrupts (IRQ). + The Cortex-M4 exceptions are managed by CMSIS functions. + + (#) Configure the NVIC Priority Grouping using HAL_NVIC_SetPriorityGrouping() + function according to the following table. + (#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority(). + (#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ(). + (#) please refer to programing manual for details in how to configure priority. + + -@- When the NVIC_PRIORITYGROUP_0 is selected, IRQ preemption is no more possible. + The pending IRQ priority will be managed only by the sub priority. + + -@- IRQ priority order (sorted by highest to lowest priority): + (+@) Lowest preemption priority + (+@) Lowest sub priority + (+@) Lowest hardware priority (IRQ number) + + [..] + *** How to configure Systick using CORTEX HAL driver *** + ======================================================== + [..] + Setup SysTick Timer for time base. + + (+) The HAL_SYSTICK_Config() function calls the SysTick_Config() function which + is a CMSIS function that: + (++) Configures the SysTick Reload register with value passed as function parameter. + (++) Configures the SysTick IRQ priority to the lowest value (0x0F). + (++) Resets the SysTick Counter register. + (++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK). + (++) Enables the SysTick Interrupt. + (++) Starts the SysTick Counter. + + (+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro + __HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the + HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined + inside the stm32f4xx_hal_cortex.h file. + + (+) You can change the SysTick IRQ priority by calling the + HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function + call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function. + + (+) To adjust the SysTick time base, use the following formula: + + Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s) + (++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function + (++) Reload Value should not exceed 0xFFFFFF + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup CORTEX CORTEX + * @brief CORTEX HAL module driver + * @{ + */ + +#ifdef HAL_CORTEX_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup CORTEX_Exported_Functions CORTEX Exported Functions + * @{ + */ + + +/** @defgroup CORTEX_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides the CORTEX HAL driver functions allowing to configure Interrupts + Systick functionalities + +@endverbatim + * @{ + */ + + +/** + * @brief Sets the priority grouping field (preemption priority and subpriority) + * using the required unlock sequence. + * @param PriorityGroup: The priority grouping bits length. + * This parameter can be one of the following values: + * @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority + * 4 bits for subpriority + * @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority + * 3 bits for subpriority + * @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority + * 2 bits for subpriority + * @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority + * 1 bits for subpriority + * @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority + * 0 bits for subpriority + * @note When the NVIC_PriorityGroup_0 is selected, IRQ preemption is no more possible. + * The pending IRQ priority will be managed only by the subpriority. + * @retval None + */ +void HAL_NVIC_SetPriorityGrouping(uint32_t PriorityGroup) +{ + /* Check the parameters */ + assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup)); + + /* Set the PRIGROUP[10:8] bits according to the PriorityGroup parameter value */ + NVIC_SetPriorityGrouping(PriorityGroup); +} + +/** + * @brief Sets the priority of an interrupt. + * @param IRQn: External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @param PreemptPriority: The preemption priority for the IRQn channel. + * This parameter can be a value between 0 and 15 + * A lower priority value indicates a higher priority + * @param SubPriority: the subpriority level for the IRQ channel. + * This parameter can be a value between 0 and 15 + * A lower priority value indicates a higher priority. + * @retval None + */ +void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority) +{ + uint32_t prioritygroup = 0x00; + + /* Check the parameters */ + assert_param(IS_NVIC_SUB_PRIORITY(SubPriority)); + assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority)); + + prioritygroup = NVIC_GetPriorityGrouping(); + + NVIC_SetPriority(IRQn, NVIC_EncodePriority(prioritygroup, PreemptPriority, SubPriority)); +} + +/** + * @brief Enables a device specific interrupt in the NVIC interrupt controller. + * @note To configure interrupts priority correctly, the NVIC_PriorityGroupConfig() + * function should be called before. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @retval None + */ +void HAL_NVIC_EnableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Enable interrupt */ + NVIC_EnableIRQ(IRQn); +} + +/** + * @brief Disables a device specific interrupt in the NVIC interrupt controller. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @retval None + */ +void HAL_NVIC_DisableIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Disable interrupt */ + NVIC_DisableIRQ(IRQn); +} + +/** + * @brief Initiates a system reset request to reset the MCU. + * @retval None + */ +void HAL_NVIC_SystemReset(void) +{ + /* System Reset */ + NVIC_SystemReset(); +} + +/** + * @brief Initializes the System Timer and its interrupt, and starts the System Tick Timer. + * Counter is in free running mode to generate periodic interrupts. + * @param TicksNumb: Specifies the ticks Number of ticks between two interrupts. + * @retval status: - 0 Function succeeded. + * - 1 Function failed. + */ +uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb) +{ + return SysTick_Config(TicksNumb); +} +/** + * @} + */ + +/** @defgroup CORTEX_Exported_Functions_Group2 Peripheral Control functions + * @brief Cortex control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the CORTEX + (NVIC, SYSTICK) functionalities. + + +@endverbatim + * @{ + */ + +/** + * @brief Gets the priority grouping field from the NVIC Interrupt Controller. + * @retval Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field) + */ +uint32_t HAL_NVIC_GetPriorityGrouping(void) +{ + /* Get the PRIGROUP[10:8] field value */ + return NVIC_GetPriorityGrouping(); +} + +/** + * @brief Gets the priority of an interrupt. + * @param IRQn: External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @param PriorityGroup: the priority grouping bits length. + * This parameter can be one of the following values: + * @arg NVIC_PRIORITYGROUP_0: 0 bits for preemption priority + * 4 bits for subpriority + * @arg NVIC_PRIORITYGROUP_1: 1 bits for preemption priority + * 3 bits for subpriority + * @arg NVIC_PRIORITYGROUP_2: 2 bits for preemption priority + * 2 bits for subpriority + * @arg NVIC_PRIORITYGROUP_3: 3 bits for preemption priority + * 1 bits for subpriority + * @arg NVIC_PRIORITYGROUP_4: 4 bits for preemption priority + * 0 bits for subpriority + * @param pPreemptPriority: Pointer on the Preemptive priority value (starting from 0). + * @param pSubPriority: Pointer on the Subpriority value (starting from 0). + * @retval None + */ +void HAL_NVIC_GetPriority(IRQn_Type IRQn, uint32_t PriorityGroup, uint32_t *pPreemptPriority, uint32_t *pSubPriority) +{ + /* Check the parameters */ + assert_param(IS_NVIC_PRIORITY_GROUP(PriorityGroup)); + /* Get priority for Cortex-M system or device specific interrupts */ + NVIC_DecodePriority(NVIC_GetPriority(IRQn), PriorityGroup, pPreemptPriority, pSubPriority); +} + +/** + * @brief Sets Pending bit of an external interrupt. + * @param IRQn External interrupt number + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @retval None + */ +void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Set interrupt pending */ + NVIC_SetPendingIRQ(IRQn); +} + +/** + * @brief Gets Pending Interrupt (reads the pending register in the NVIC + * and returns the pending bit for the specified interrupt). + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @retval status: - 0 Interrupt status is not pending. + * - 1 Interrupt status is pending. + */ +uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Return 1 if pending else 0 */ + return NVIC_GetPendingIRQ(IRQn); +} + +/** + * @brief Clears the pending bit of an external interrupt. + * @param IRQn External interrupt number. + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @retval None + */ +void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Clear pending interrupt */ + NVIC_ClearPendingIRQ(IRQn); +} + +/** + * @brief Gets active interrupt ( reads the active register in NVIC and returns the active bit). + * @param IRQn External interrupt number + * This parameter can be an enumerator of IRQn_Type enumeration + * (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32f4xxxx.h)) + * @retval status: - 0 Interrupt status is not pending. + * - 1 Interrupt status is pending. + */ +uint32_t HAL_NVIC_GetActive(IRQn_Type IRQn) +{ + /* Check the parameters */ + assert_param(IS_NVIC_DEVICE_IRQ(IRQn)); + + /* Return 1 if active else 0 */ + return NVIC_GetActive(IRQn); +} + +/** + * @brief Configures the SysTick clock source. + * @param CLKSource: specifies the SysTick clock source. + * This parameter can be one of the following values: + * @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source. + * @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source. + * @retval None + */ +void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource) +{ + /* Check the parameters */ + assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource)); + if (CLKSource == SYSTICK_CLKSOURCE_HCLK) + { + SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK; + } + else + { + SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK; + } +} + +/** + * @brief This function handles SYSTICK interrupt request. + * @retval None + */ +void HAL_SYSTICK_IRQHandler(void) +{ + HAL_SYSTICK_Callback(); +} + +/** + * @brief SYSTICK callback. + * @retval None + */ +__weak void HAL_SYSTICK_Callback(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SYSTICK_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CORTEX_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_crc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_crc.c new file mode 100644 index 0000000..b1a65c4 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_crc.c @@ -0,0 +1,342 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_crc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief CRC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Cyclic Redundancy Check (CRC) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The CRC HAL driver can be used as follows: + + (#) Enable CRC AHB clock using __HAL_RCC_CRC_CLK_ENABLE(); + + (#) Use HAL_CRC_Accumulate() function to compute the CRC value of + a 32-bit data buffer using combination of the previous CRC value + and the new one. + + (#) Use HAL_CRC_Calculate() function to compute the CRC Value of + a new 32-bit data buffer. This function resets the CRC computation + unit before starting the computation to avoid getting wrong CRC values. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @addtogroup CRC + * @{ + */ + +#ifdef HAL_CRC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup CRC_Exported_Functions + * @{ + */ + +/** @addtogroup CRC_Exported_Functions_Group1 + * @brief Initialization and de-initialization functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the CRC according to the specified parameters + in the CRC_InitTypeDef and create the associated handle + (+) DeInitialize the CRC peripheral + (+) Initialize the CRC MSP + (+) DeInitialize CRC MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRC according to the specified + * parameters in the CRC_InitTypeDef and creates the associated handle. + * @param hcrc: pointer to a CRC_HandleTypeDef structure that contains + * the configuration information for CRC + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRC_Init(CRC_HandleTypeDef *hcrc) +{ + /* Check the CRC handle allocation */ + if(hcrc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); + + if(hcrc->State == HAL_CRC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcrc->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_CRC_MspInit(hcrc); + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the CRC peripheral. + * @param hcrc: pointer to a CRC_HandleTypeDef structure that contains + * the configuration information for CRC + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRC_DeInit(CRC_HandleTypeDef *hcrc) +{ + /* Check the CRC handle allocation */ + if(hcrc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRC_ALL_INSTANCE(hcrc->Instance)); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_CRC_MspDeInit(hcrc); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hcrc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRC MSP. + * @param hcrc: pointer to a CRC_HandleTypeDef structure that contains + * the configuration information for CRC + * @retval None + */ +__weak void HAL_CRC_MspInit(CRC_HandleTypeDef *hcrc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the CRC MSP. + * @param hcrc: pointer to a CRC_HandleTypeDef structure that contains + * the configuration information for CRC + * @retval None + */ +__weak void HAL_CRC_MspDeInit(CRC_HandleTypeDef *hcrc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup CRC_Exported_Functions_Group2 + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Compute the 32-bit CRC value of 32-bit data buffer, + using combination of the previous CRC value and the new one. + (+) Compute the 32-bit CRC value of 32-bit data buffer, + independently of the previous CRC value. + +@endverbatim + * @{ + */ + +/** + * @brief Computes the 32-bit CRC of 32-bit data buffer using combination + * of the previous CRC value and the new one. + * @param hcrc: pointer to a CRC_HandleTypeDef structure that contains + * the configuration information for CRC + * @param pBuffer: pointer to the buffer containing the data to be computed + * @param BufferLength: length of the buffer to be computed + * @retval 32-bit CRC + */ +uint32_t HAL_CRC_Accumulate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) +{ + uint32_t index = 0; + + /* Process Locked */ + __HAL_LOCK(hcrc); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* Enter Data to the CRC calculator */ + for(index = 0; index < BufferLength; index++) + { + hcrc->Instance->DR = pBuffer[index]; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcrc); + + /* Return the CRC computed value */ + return hcrc->Instance->DR; +} + +/** + * @brief Computes the 32-bit CRC of 32-bit data buffer independently + * of the previous CRC value. + * @param hcrc: pointer to a CRC_HandleTypeDef structure that contains + * the configuration information for CRC + * @param pBuffer: Pointer to the buffer containing the data to be computed + * @param BufferLength: Length of the buffer to be computed + * @retval 32-bit CRC + */ +uint32_t HAL_CRC_Calculate(CRC_HandleTypeDef *hcrc, uint32_t pBuffer[], uint32_t BufferLength) +{ + uint32_t index = 0; + + /* Process Locked */ + __HAL_LOCK(hcrc); + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_BUSY; + + /* Reset CRC Calculation Unit */ + __HAL_CRC_DR_RESET(hcrc); + + /* Enter Data to the CRC calculator */ + for(index = 0; index < BufferLength; index++) + { + hcrc->Instance->DR = pBuffer[index]; + } + + /* Change CRC peripheral state */ + hcrc->State = HAL_CRC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcrc); + + /* Return the CRC computed value */ + return hcrc->Instance->DR; +} + +/** + * @} + */ + + +/** @addtogroup CRC_Exported_Functions_Group3 + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the CRC state. + * @param hcrc: pointer to a CRC_HandleTypeDef structure that contains + * the configuration information for CRC + * @retval HAL state + */ +HAL_CRC_StateTypeDef HAL_CRC_GetState(CRC_HandleTypeDef *hcrc) +{ + return hcrc->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_CRC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp.c new file mode 100644 index 0000000..7458dfd --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp.c @@ -0,0 +1,3813 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_cryp.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief CRYP HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Cryptography (CRYP) peripheral: + * + Initialization and de-initialization functions + * + AES processing functions + * + DES processing functions + * + TDES processing functions + * + DMA callback functions + * + CRYP IRQ handler management + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The CRYP HAL driver can be used as follows: + + (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): + (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() + (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT()) + (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams one for managing data transfer from + memory to peripheral (input stream) and another stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + + (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit + (##) The key size: 128, 192 and 256. This parameter is relevant only for AES + (##) The encryption/decryption key. It's size depends on the algorithm + used for encryption/decryption + (##) The initialization vector (counter). It is not used ECB mode. + + (#)Three processing (encryption/decryption) functions are available: + (##) Polling mode: encryption and decryption APIs are blocking functions + i.e. they process the data and wait till the processing is finished, + e.g. HAL_CRYP_AESCBC_Encrypt() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt, + e.g. HAL_CRYP_AESCBC_Encrypt_IT() + (##) DMA mode: encryption and decryption APIs are not blocking functions + i.e. the data transfer is ensured by DMA, + e.g. HAL_CRYP_AESCBC_Encrypt_DMA() + + (#)When the processing function is called at first time after HAL_CRYP_Init() + the CRYP peripheral is initialized and processes the buffer in input. + At second call, the processing function performs an append of the already + processed buffer. + When a new data block is to be processed, call HAL_CRYP_Init() then the + processing function. + + (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup CRYP CRYP + * @brief CRYP HAL module driver. + * @{ + */ + +#ifdef HAL_CRYP_MODULE_ENABLED + +#if defined(STM32F415xx) || defined(STM32F417xx) || defined(STM32F437xx) || defined(STM32F439xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CRYP_Private_define + * @{ + */ +#define CRYP_TIMEOUT_VALUE 1 +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup CRYP_Private_Functions_prototypes + * @{ + */ +static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize); +static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); +static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); +static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout); +static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); +static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); +static void CRYP_DMAError(DMA_HandleTypeDef *hdma); +static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); +static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction); +/** + * @} + */ + + +/* Private functions ---------------------------------------------------------*/ + +/** @addtogroup CRYP_Private_Functions + * @{ + */ + + +/** + * @brief DMA CRYP Input Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable the DMA transfer for input FIFO request by resetting the DIEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); + + /* Call input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP Output Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable the DMA transfer for output FIFO request by resetting the DOEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change the CRYP state to ready */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Call output data transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYP_DMAError(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + hcryp->State= HAL_CRYP_STATE_READY; + HAL_CRYP_ErrorCallback(hcryp); +} + +/** + * @brief Writes the Key in Key registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Key: Pointer to Key buffer + * @param KeySize: Size of Key + * @retval None + */ +static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) +{ + uint32_t keyaddr = (uint32_t)Key; + + switch(KeySize) + { + case CRYP_KEYSIZE_256B: + /* Key Initialisation */ + hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_192B: + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_128B: + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + default: + break; + } +} + +/** + * @brief Writes the InitVector/InitCounter in IV registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param InitVector: Pointer to InitVector/InitCounter buffer + * @param IVSize: Size of the InitVector/InitCounter + * @retval None + */ +static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize) +{ + uint32_t ivaddr = (uint32_t)InitVector; + + switch(IVSize) + { + case CRYP_KEYSIZE_128B: + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr)); + break; + /* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */ + case CRYP_KEYSIZE_192B: + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + break; + case CRYP_KEYSIZE_256B: + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + break; + default: + break; + } +} + +/** + * @brief Process Data: Writes Input data in polling mode and read the output data + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer + * @param Ilength: Length of the Input buffer, must be a multiple of 16. + * @param Output: Pointer to the returned buffer + * @param Timeout: Timeout value + * * @retval None + */ +static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + uint32_t i = 0; + uint32_t inputaddr = (uint32_t)Input; + uint32_t outputaddr = (uint32_t)Output; + + for(i=0; (i < Ilength); i+=16) + { + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Process Data: Write Input data in polling mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer + * @param Ilength: Length of the Input buffer, must be a multiple of 8 + * @param Output: Pointer to the returned buffer + * @param Timeout: Specify Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYP_ProcessData2Words(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + uint32_t i = 0; + uint32_t inputaddr = (uint32_t)Input; + uint32_t outputaddr = (uint32_t)Output; + + for(i=0; (i < Ilength); i+=8) + { + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the DMA configuration and start the DMA transfer + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param inputaddr: address of the Input buffer + * @param Size: Size of the Input buffer, must be a multiple of 16. + * @param outputaddr: address of the Output buffer + * @retval None + */ +static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) +{ + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; + /* Set the DMA error callback */ + hcryp->hdmain->XferErrorCallback = CRYP_DMAError; + + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; + /* Set the DMA error callback */ + hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4); + + /* Enable In DMA request */ + hcryp->Instance->DMACR = (CRYP_DMACR_DIEN); + + /* Enable the DMA Out DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4); + + /* Enable Out DMA request */ + hcryp->Instance->DMACR |= CRYP_DMACR_DOEN; + +} + +/** + * @brief Sets the CRYP peripheral in DES ECB mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_ECB | Direction); + + /* Set the key */ + hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); + hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4)); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @brief Sets the CRYP peripheral in DES CBC mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_DES_CBC | Direction); + + /* Set the key */ + hcryp->Instance->K1LR = __REV(*(uint32_t*)(hcryp->Init.pKey)); + hcryp->Instance->K1RR = __REV(*(uint32_t*)(hcryp->Init.pKey+4)); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @brief Sets the CRYP peripheral in TDES ECB mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetTDESECBMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_ECB | Direction); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @brief Sets the CRYP peripheral in TDES CBC mode + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Direction: Encryption or decryption + * @retval None + */ +static void CRYP_SetTDESCBCMode(CRYP_HandleTypeDef *hcryp, uint32_t Direction) +{ + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the CRYP peripheral in AES CBC mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_TDES_CBC | Direction); + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, CRYP_KEYSIZE_192B); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_256B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } +} + +/** + * @} + */ + + /* Exported functions --------------------------------------------------------*/ +/** @addtogroup CRYP_Exported_Functions + * @{ + */ + +/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the CRYP according to the specified parameters + in the CRYP_InitTypeDef and creates the associated handle + (+) DeInitialize the CRYP peripheral + (+) Initialize the CRYP MSP + (+) DeInitialize CRYP MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP according to the specified + * parameters in the CRYP_InitTypeDef and creates the associated handle. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) +{ + /* Check the CRYP handle allocation */ + if(hcryp == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); + assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); + + if(hcryp->State == HAL_CRYP_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hcryp->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_CRYP_MspInit(hcryp); + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set the key size and data type*/ + CRYP->CR = (uint32_t) (hcryp->Init.KeySize | hcryp->Init.DataType); + + /* Reset CrypInCount and CrypOutCount */ + hcryp->CrypInCount = 0; + hcryp->CrypOutCount = 0; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Set the default CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the CRYP peripheral. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) +{ + /* Check the CRYP handle allocation */ + if(hcryp == NULL) + { + return HAL_ERROR; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set the default CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_READY; + + /* Reset CrypInCount and CrypOutCount */ + hcryp->CrypInCount = 0; + hcryp->CrypOutCount = 0; + + /* Disable the CRYP Peripheral Clock */ + __HAL_CRYP_DISABLE(hcryp); + + /* DeInit the low level hardware: CLOCK, NVIC.*/ + HAL_CRYP_MspDeInit(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP MSP. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes CRYP MSP. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group2 AES processing functions + * @brief processing functions. + * +@verbatim + ============================================================================== + ##### AES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using AES-128/192/256 using chaining modes + (+) Decrypt cyphertext using AES-128/192/256 using chaining modes + [..] Three processing functions are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP peripheral in AES ECB encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + + + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES ECB decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES CBC decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CBC mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES ECB decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES CBC decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16. + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES ECB mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES ECB decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB | CRYP_CR_ALGODIR); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 bytes + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES Key mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_KEY | CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(hcryp->Instance->SR, CRYP_FLAG_BUSY)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYP_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Reset the ALGOMODE bits*/ + CRYP->CR &= (uint32_t)(~CRYP_CR_ALGOMODE); + + /* Set the CRYP peripheral in AES CBC decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYP_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CTR mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR | CRYP_CR_ALGODIR); + + /* Set the Initialization Vector */ + CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group3 DES processing functions + * @brief processing functions. + * +@verbatim + ============================================================================== + ##### DES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using DES using ECB or CBC chaining modes + (+) Decrypt cyphertext using ECB or CBC chaining modes + [..] Three processing functions are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP peripheral in DES ECB encryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB encryption mode */ + CRYP_SetDESECBMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB decryption mode */ + CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES CBC encryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC encryption mode */ + CRYP_SetDESCBCMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC decryption mode */ + CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB encryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB encryption mode */ + CRYP_SetDESECBMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES CBC encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC encryption mode */ + CRYP_SetDESCBCMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB decryption mode */ + CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC decryption mode */ + CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB encryption mode */ + CRYP_SetDESECBMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in DES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC encryption mode */ + CRYP_SetDESCBCMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES ECB decryption mode */ + CRYP_SetDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in DES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_DESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in DES CBC decryption mode */ + CRYP_SetDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group4 TDES processing functions + * @brief processing functions. + * +@verbatim + ============================================================================== + ##### TDES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using TDES based on ECB or CBC chaining modes + (+) Decrypt cyphertext using TDES based on ECB or CBC chaining modes + [..] Three processing functions are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the CRYP peripheral in TDES ECB encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB encryption mode */ + CRYP_SetTDESECBMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB decryption mode */ + CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Cypher Data and Get Plain Data */ + if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC encryption mode + * then encrypt pPlainData. The cypher data are available in pCypherData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC encryption mode */ + CRYP_SetTDESCBCMode(hcryp, 0); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Plain Data and Get Cypher Data */ + if(CRYP_ProcessData2Words(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC decryption mode + * then decrypted pCypherData. The cypher data are available in pPlainData + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC decryption mode */ + CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write Cypher Data and Get Plain Data */ + if(CRYP_ProcessData2Words(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB encryption mode */ + CRYP_SetTDESECBMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + /* Disable IT */ + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call the Output data transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC encryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC encryption mode */ + CRYP_SetTDESCBCMode(hcryp, 0); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB decryption mode */ + CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC decryption mode. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC decryption mode */ + CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable CRYP */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + + hcryp->pCrypInBuffPtr += 8; + hcryp->CrypInCount -= 8; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if(__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + + hcryp->pCrypOutBuffPtr += 8; + hcryp->CrypOutCount -= 8; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Disable CRYP */ + __HAL_CRYP_DISABLE(hcryp); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB encryption mode */ + CRYP_SetTDESECBMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC encryption mode */ + CRYP_SetTDESCBCMode(hcryp, 0); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in TDES ECB decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES ECB decryption mode */ + CRYP_SetTDESECBMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in TDES CBC decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 8 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYP_TDESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Set CRYP peripheral in TDES CBC decryption mode */ + CRYP_SetTDESCBCMode(hcryp, CRYP_CR_ALGODIR); + + /* Set the input and output addresses and start DMA transfer */ + CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group5 DMA callback functions + * @brief DMA callback functions. + * +@verbatim + ============================================================================== + ##### DMA callback functions ##### + ============================================================================== + [..] This section provides DMA callback functions: + (+) DMA Input data transfer complete + (+) DMA Output data transfer complete + (+) DMA error + +@endverbatim + * @{ + */ + +/** + * @brief Input FIFO transfer completed callbacks. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_InCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Output FIFO transfer completed callbacks. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_OutCpltCallback could be implemented in the user file + */ +} + +/** + * @brief CRYP error callbacks. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ + __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_CRYP_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group6 CRYP IRQ handler management + * @brief CRYP IRQ handler. + * +@verbatim + ============================================================================== + ##### CRYP IRQ handler management ##### + ============================================================================== +[..] This section provides CRYP IRQ handler function. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles CRYP interrupt request. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ +void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) +{ + switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) + { + case CRYP_CR_ALGOMODE_TDES_ECB_ENCRYPT: + HAL_CRYP_TDESECB_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_TDES_ECB_DECRYPT: + HAL_CRYP_TDESECB_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_TDES_CBC_ENCRYPT: + HAL_CRYP_TDESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_TDES_CBC_DECRYPT: + HAL_CRYP_TDESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_ECB_ENCRYPT: + HAL_CRYP_DESECB_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_ECB_DECRYPT: + HAL_CRYP_DESECB_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_CBC_ENCRYPT: + HAL_CRYP_DESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_DES_CBC_DECRYPT: + HAL_CRYP_DESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT: + HAL_CRYP_AESECB_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_ECB_DECRYPT: + HAL_CRYP_AESECB_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT: + HAL_CRYP_AESCBC_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CBC_DECRYPT: + HAL_CRYP_AESCBC_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT: + HAL_CRYP_AESCTR_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CTR_DECRYPT: + HAL_CRYP_AESCTR_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** @defgroup CRYP_Exported_Functions_Group7 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the CRYP state. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval HAL state + */ +HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) +{ + return hcryp->State; +} + +/** + * @} + */ + + +/** + * @} + */ + +#endif /* STM32F415xx || STM32F417xx || STM32F437xx || STM32F439xx */ + +#endif /* HAL_CRYP_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c new file mode 100644 index 0000000..e957e9d --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_cryp_ex.c @@ -0,0 +1,3043 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_cryp_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief Extended CRYP HAL module driver + * This file provides firmware functions to manage the following + * functionalities of CRYP extension peripheral: + * + Extended AES processing functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The CRYP Extension HAL driver can be used as follows: + (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): + (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE() + (##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()) + (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() + (+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable two DMA streams one for managing data transfer from + memory to peripheral (input stream) and another stream for managing data + transfer from peripheral to memory (output stream) + (+++) Associate the initialized DMA handle to the CRYP DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the two DMA Streams. The output stream should have higher + priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit + (##) The key size: 128, 192 and 256. This parameter is relevant only for AES + (##) The encryption/decryption key. Its size depends on the algorithm + used for encryption/decryption + (##) The initialization vector (counter). It is not used ECB mode. + (#)Three processing (encryption/decryption) functions are available: + (##) Polling mode: encryption and decryption APIs are blocking functions + i.e. they process the data and wait till the processing is finished + e.g. HAL_CRYPEx_AESGCM_Encrypt() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt + e.g. HAL_CRYPEx_AESGCM_Encrypt_IT() + (##) DMA mode: encryption and decryption APIs are not blocking functions + i.e. the data transfer is ensured by DMA + e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA() + (#)When the processing function is called at first time after HAL_CRYP_Init() + the CRYP peripheral is initialized and processes the buffer in input. + At second call, the processing function performs an append of the already + processed buffer. + When a new data block is to be processed, call HAL_CRYP_Init() then the + processing function. + (#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms + which provide authentication messages. + HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those + authentication messages. + Call those functions after the processing ones (polling, interrupt or DMA). + e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data + then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message + @note: For CCM Encrypt/Decrypt API's, only DataType = 8-bit is supported by this version. + @note: The HAL_CRYPEx_AESGCM_xxxx() implementation is limited to 32bits inputs data length + (Plain/Cyphertext, Header) compared with GCM standards specifications (800-38D). + (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup CRYPEx CRYPEx + * @brief CRYP Extension HAL module driver. + * @{ + */ + +#ifdef HAL_CRYP_MODULE_ENABLED + +#if defined(STM32F437xx) || defined(STM32F439xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup CRYPEx_Private_define + * @{ + */ +#define CRYPEx_TIMEOUT_VALUE 1 +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup CRYPEx_Private_Functions_prototypes CRYP Private Functions Prototypes + * @{ + */ +static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector); +static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize); +static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout); +static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout); +static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma); +static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup CRYPEx_Private_Functions + * @{ + */ + +/** + * @brief DMA CRYP Input Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable the DMA transfer for input Fifo request by resetting the DIEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN); + + /* Call input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP Output Data process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable the DMA transfer for output Fifo request by resetting the DOEN bit + in the DMACR register */ + hcryp->Instance->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Call output data transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); +} + +/** + * @brief DMA CRYP communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma) +{ + CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hcryp->State= HAL_CRYP_STATE_READY; + HAL_CRYP_ErrorCallback(hcryp); +} + +/** + * @brief Writes the Key in Key registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Key: Pointer to Key buffer + * @param KeySize: Size of Key + * @retval None + */ +static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize) +{ + uint32_t keyaddr = (uint32_t)Key; + + switch(KeySize) + { + case CRYP_KEYSIZE_256B: + /* Key Initialisation */ + hcryp->Instance->K0LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K0RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_192B: + hcryp->Instance->K1LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K1RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + case CRYP_KEYSIZE_128B: + hcryp->Instance->K2LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K2RR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3LR = __REV(*(uint32_t*)(keyaddr)); + keyaddr+=4; + hcryp->Instance->K3RR = __REV(*(uint32_t*)(keyaddr)); + break; + default: + break; + } +} + +/** + * @brief Writes the InitVector/InitCounter in IV registers. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param InitVector: Pointer to InitVector/InitCounter buffer + * @retval None + */ +static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector) +{ + uint32_t ivaddr = (uint32_t)InitVector; + + hcryp->Instance->IV0LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV0RR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1LR = __REV(*(uint32_t*)(ivaddr)); + ivaddr+=4; + hcryp->Instance->IV1RR = __REV(*(uint32_t*)(ivaddr)); +} + +/** + * @brief Process Data: Writes Input data in polling mode and read the Output data. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer. + * @param Ilength: Length of the Input buffer, must be a multiple of 16 + * @param Output: Pointer to the returned buffer + * @param Timeout: Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t i = 0; + uint32_t inputaddr = (uint32_t)Input; + uint32_t outputaddr = (uint32_t)Output; + + for(i=0; (i < Ilength); i+=16) + { + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Read the Output block from the OUT FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the header phase + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Input: Pointer to the Input buffer. + * @param Ilength: Length of the Input buffer, must be a multiple of 16 + * @param Timeout: Timeout value + * @retval None + */ +static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t loopcounter = 0; + uint32_t headeraddr = (uint32_t)Input; + + /***************************** Header phase *********************************/ + if(hcryp->Init.HeaderSize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Wait until the complete message has been processed */ + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets the DMA configuration and start the DMA transfer. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param inputaddr: Address of the Input buffer + * @param Size: Size of the Input buffer, must be a multiple of 16 + * @param outputaddr: Address of the Output buffer + * @retval None + */ +static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) +{ + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt; + /* Set the DMA error callback */ + hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError; + + /* Set the CRYP DMA transfer complete callback */ + hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt; + /* Set the DMA error callback */ + hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError; + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DR, Size/4); + + /* Enable In DMA request */ + hcryp->Instance->DMACR = CRYP_DMACR_DIEN; + + /* Enable the DMA Out DMA Stream */ + HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUT, outputaddr, Size/4); + + /* Enable Out DMA request */ + hcryp->Instance->DMACR |= CRYP_DMACR_DOEN; +} + +/** + * @} + */ + +/* Exported functions---------------------------------------------------------*/ +/** @addtogroup CRYPEx_Exported_Functions + * @{ + */ + +/** @defgroup CRYPEx_Exported_Functions_Group1 Extended AES processing functions + * @brief Extended processing functions. + * +@verbatim + ============================================================================== + ##### Extended AES processing functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes + (+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes + (+) Finish the processing. This function is available only for GCM and CCM + [..] Three processing methods are available: + (+) Polling mode + (+) Interrupt mode + (+) DMA mode + +@endverbatim + * @{ + */ + + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode then + * encrypt pPlainData. The cypher data are available in pCypherData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *********************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 **************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter *****************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks + are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /***************************** Header phase *******************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode then + * encrypt pPlainData. The cypher data are available in pCypherData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode then + * decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Computes the authentication TAG. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param Size: Total length of the plain/cyphertext buffer + * @param AuthTag: Pointer to the authentication buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint32_t Size, uint8_t *AuthTag, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint64_t headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */ + uint64_t inputlength = Size * 8; /* input length in bits */ + uint32_t tagaddr = (uint32_t)AuthTag; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_FINAL; + + /* Disable CRYP to start the final phase */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select final phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write the number of bits in header (64 bits) followed by the number of bits + in the payload */ + if(hcryp->Init.DataType == CRYP_DATATYPE_1B) + { + hcryp->Instance->DR = __RBIT(headerlength >> 32); + hcryp->Instance->DR = __RBIT(headerlength); + hcryp->Instance->DR = __RBIT(inputlength >> 32); + hcryp->Instance->DR = __RBIT(inputlength); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_8B) + { + hcryp->Instance->DR = __REV(headerlength >> 32); + hcryp->Instance->DR = __REV(headerlength); + hcryp->Instance->DR = __REV(inputlength >> 32); + hcryp->Instance->DR = __REV(inputlength); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_16B) + { + hcryp->Instance->DR = __ROR((uint32_t)(headerlength >> 32), 16); + hcryp->Instance->DR = __ROR((uint32_t)headerlength, 16); + hcryp->Instance->DR = __ROR((uint32_t)(inputlength >> 32), 16); + hcryp->Instance->DR = __ROR((uint32_t)inputlength, 16); + } + else if(hcryp->Init.DataType == CRYP_DATATYPE_32B) + { + hcryp->Instance->DR = (uint32_t)(headerlength >> 32); + hcryp->Instance->DR = (uint32_t)(headerlength); + hcryp->Instance->DR = (uint32_t)(inputlength >> 32); + hcryp->Instance->DR = (uint32_t)(inputlength); + } + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Read the Auth TAG in the IN FIFO */ + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + tagaddr+=4; + *(uint32_t*)(tagaddr) = hcryp->Instance->DOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Computes the authentication TAG for AES CCM mode. + * @note This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt() + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param AuthTag: Pointer to the authentication buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t tagaddr = (uint32_t)AuthTag; + uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch; + uint32_t temptag[4] = {0}; /* Temporary TAG (MAC) */ + uint32_t loopcounter; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS) + { + /* Change the CRYP phase */ + hcryp->Phase = HAL_CRYP_PHASE_FINAL; + + /* Disable CRYP to start the final phase */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select final phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_FINAL); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Write the counter block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + hcryp->Instance->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + hcryp->Instance->DR = *(uint32_t*)ctraddr; + ctraddr+=4; + hcryp->Instance->DR = *(uint32_t*)ctraddr; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_OFNE)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + + /* Read the Auth TAG in the IN FIFO */ + temptag[0] = hcryp->Instance->DOUT; + temptag[1] = hcryp->Instance->DOUT; + temptag[2] = hcryp->Instance->DOUT; + temptag[3] = hcryp->Instance->DOUT; + } + + /* Copy temporary authentication TAG in user TAG buffer */ + for(loopcounter = 0; loopcounter < hcryp->Init.TagSize ; loopcounter++) + { + /* Set the authentication TAG buffer */ + *((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter); + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode then + * decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *********************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 **************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter *****************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /***************************** Header phase *******************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Write Plain Data and Get Cypher Data */ + if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + } + else + { + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + } + else + { + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call Input transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode using IT. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + /* Get the buffer addresses and sizes */ + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + if(Size != 0) + { + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + } + else + { + /* Process Locked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP state and phase */ + hcryp->State = HAL_CRYP_STATE_READY; + } + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode using interrupt + * then decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t tickstart = 0; + uint32_t headersize = hcryp->Init.HeaderSize; + uint32_t headeraddr = (uint32_t)hcryp->Init.Header; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if(hcryp->State == HAL_CRYP_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Enable Interrupts */ + __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_INI | CRYP_IT_OUTI); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Return function status */ + return HAL_OK; + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_INI)) + { + inputaddr = (uint32_t)hcryp->pCrypInBuffPtr; + /* Write the Input block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + inputaddr+=4; + hcryp->Instance->DR = *(uint32_t*)(inputaddr); + hcryp->pCrypInBuffPtr += 16; + hcryp->CrypInCount -= 16; + if(hcryp->CrypInCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_INI); + /* Call the Input data transfer complete callback */ + HAL_CRYP_InCpltCallback(hcryp); + } + } + else if (__HAL_CRYP_GET_IT(hcryp, CRYP_IT_OUTI)) + { + outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + outputaddr+=4; + *(uint32_t*)(outputaddr) = hcryp->Instance->DOUT; + hcryp->pCrypOutBuffPtr += 16; + hcryp->CrypOutCount -= 16; + if(hcryp->CrypOutCount == 0) + { + __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_OUTI); + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_READY; + /* Call Input transfer complete callback */ + HAL_CRYP_OutCpltCallback(hcryp); + } + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM encryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pPlainData: Pointer to the plaintext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pCypherData: Pointer to the cyphertext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t headersize; + uint32_t headeraddr; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pPlainData; + outputaddr = (uint32_t)pCypherData; + + headersize = hcryp->Init.HeaderSize; + headeraddr = (uint32_t)hcryp->Init.Header; + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pPlainData; + hcryp->pCrypOutBuffPtr = pCypherData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES GCM decryption mode using DMA. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer. + * @param Size: Length of the cyphertext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES GCM decryption mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_GCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect); + + /* Enable CRYP to start the init phase */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + + /* Set the header phase */ + if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Disable the CRYP peripheral */ + __HAL_CRYP_DISABLE(hcryp); + + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Initializes the CRYP peripheral in AES CCM decryption mode using DMA + * then decrypted pCypherData. The cypher data are available in pPlainData. + * @param hcryp: pointer to a CRYP_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @param pCypherData: Pointer to the cyphertext buffer + * @param Size: Length of the plaintext buffer, must be a multiple of 16 + * @param pPlainData: Pointer to the plaintext buffer + * @retval HAL status + */ +HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData) +{ + uint32_t tickstart = 0; + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t headersize; + uint32_t headeraddr; + uint32_t loopcounter = 0; + uint32_t bufferidx = 0; + uint8_t blockb0[16] = {0};/* Block B0 */ + uint8_t ctr[16] = {0}; /* Counter */ + uint32_t b0addr = (uint32_t)blockb0; + + if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS)) + { + /* Process Locked */ + __HAL_LOCK(hcryp); + + inputaddr = (uint32_t)pCypherData; + outputaddr = (uint32_t)pPlainData; + + headersize = hcryp->Init.HeaderSize; + headeraddr = (uint32_t)hcryp->Init.Header; + + hcryp->CrypInCount = Size; + hcryp->pCrypInBuffPtr = pCypherData; + hcryp->pCrypOutBuffPtr = pPlainData; + hcryp->CrypOutCount = Size; + + /* Change the CRYP peripheral state */ + hcryp->State = HAL_CRYP_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hcryp->Phase == HAL_CRYP_PHASE_READY) + { + /************************ Formatting the header block *******************/ + if(headersize != 0) + { + /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */ + if(headersize < 65280) + { + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); + hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF); + headersize += 2; + } + else + { + /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */ + hcryp->Init.pScratch[bufferidx++] = 0xFF; + hcryp->Init.pScratch[bufferidx++] = 0xFE; + hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00; + hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff; + headersize += 6; + } + /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */ + for(loopcounter = 0; loopcounter < headersize; loopcounter++) + { + hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter]; + } + /* Check if the header size is modulo 16 */ + if ((headersize % 16) != 0) + { + /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */ + for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = 0; + } + /* Set the header size to modulo 16 */ + headersize = ((headersize/16) + 1) * 16; + } + /* Set the pointer headeraddr to hcryp->Init.pScratch */ + headeraddr = (uint32_t)hcryp->Init.pScratch; + } + /*********************** Formatting the block B0 ************************/ + if(headersize != 0) + { + blockb0[0] = 0x40; + } + /* Flags byte */ + /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */ + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3); + blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07); + + for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++) + { + blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter]; + } + for ( ; loopcounter < 13; loopcounter++) + { + blockb0[loopcounter+1] = 0; + } + + blockb0[14] = (Size >> 8); + blockb0[15] = (Size & 0xFF); + + /************************* Formatting the initial counter ***************/ + /* Byte 0: + Bits 7 and 6 are reserved and shall be set to 0 + Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter + blocks are distinct from B0 + Bits 0, 1, and 2 contain the same encoding of q as in B0 + */ + ctr[0] = blockb0[0] & 0x07; + /* byte 1 to NonceSize is the IV (Nonce) */ + for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++) + { + ctr[loopcounter] = blockb0[loopcounter]; + } + /* Set the LSB to 1 */ + ctr[15] |= 0x01; + + /* Set the key */ + CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize); + + /* Set the CRYP peripheral in AES CCM mode */ + __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CCM_DECRYPT); + + /* Set the Initialization Vector */ + CRYPEx_GCMCCM_SetInitVector(hcryp, ctr); + + /* Select init phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); + + b0addr = (uint32_t)blockb0; + /* Write the blockb0 block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + b0addr+=4; + hcryp->Instance->DR = *(uint32_t*)(b0addr); + + /* Enable the CRYP peripheral */ + __HAL_CRYP_ENABLE(hcryp); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN) + { + /* Check for the Timeout */ + + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + + } + } + /***************************** Header phase *****************************/ + if(headersize != 0) + { + /* Select header phase */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); + + /* Enable Crypto processor */ + __HAL_CRYP_ENABLE(hcryp); + + for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(hcryp->Instance->SR, CRYP_FLAG_IFEM)) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + /* Write the header block in the IN FIFO */ + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + hcryp->Instance->DR = *(uint32_t*)(headeraddr); + headeraddr+=4; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((hcryp->Instance->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > CRYPEx_TIMEOUT_VALUE) + { + /* Change state */ + hcryp->State = HAL_CRYP_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hcryp); + + return HAL_TIMEOUT; + } + } + } + /* Save formatted counter into the scratch buffer pScratch */ + for(loopcounter = 0; (loopcounter < 16); loopcounter++) + { + hcryp->Init.pScratch[loopcounter] = ctr[loopcounter]; + } + /* Reset bit 0 */ + hcryp->Init.pScratch[15] &= 0xfe; + /* Select payload phase once the header phase is performed */ + __HAL_CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); + + /* Flush FIFO */ + __HAL_CRYP_FIFO_FLUSH(hcryp); + + /* Set the phase */ + hcryp->Phase = HAL_CRYP_PHASE_PROCESS; + } + /* Set the input and output addresses and start DMA transfer */ + CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr); + + /* Unlock process */ + __HAL_UNLOCK(hcryp); + + /* Return function status */ + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @} + */ + +/** @defgroup CRYPEx_Exported_Functions_Group2 CRYPEx IRQ handler management + * @brief CRYPEx IRQ handler. + * +@verbatim + ============================================================================== + ##### CRYPEx IRQ handler management ##### + ============================================================================== +[..] This section provides CRYPEx IRQ handler function. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles CRYPEx interrupt request. + * @param hcryp: pointer to a CRYPEx_HandleTypeDef structure that contains + * the configuration information for CRYP module + * @retval None + */ + +void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp) +{ + switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION) + { + case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT: + HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT: + HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT: + HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0, NULL); + break; + + case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT: + HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F437xx || STM32F439xx */ + +#endif /* HAL_CRYP_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dac.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dac.c new file mode 100644 index 0000000..552ca85 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dac.c @@ -0,0 +1,953 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_dac.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief DAC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Digital to Analog Converter (DAC) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + * + @verbatim + ============================================================================== + ##### DAC Peripheral features ##### + ============================================================================== + [..] + *** DAC Channels *** + ==================== + [..] + The device integrates two 12-bit Digital Analog Converters that can + be used independently or simultaneously (dual mode): + (#) DAC channel1 with DAC_OUT1 (PA4) as output + (#) DAC channel2 with DAC_OUT2 (PA5) as output + + *** DAC Triggers *** + ==================== + [..] + Digital to Analog conversion can be non-triggered using DAC_TRIGGER_NONE + and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register. + [..] + Digital to Analog conversion can be triggered by: + (#) External event: EXTI Line 9 (any GPIOx_Pin9) using DAC_TRIGGER_EXT_IT9. + The used pin (GPIOx_Pin9) must be configured in input mode. + + (#) Timers TRGO: TIM2, TIM4, TIM5, TIM6, TIM7 and TIM8 + (DAC_TRIGGER_T2_TRGO, DAC_TRIGGER_T4_TRGO...) + + (#) Software using DAC_TRIGGER_SOFTWARE + + *** DAC Buffer mode feature *** + =============================== + [..] + Each DAC channel integrates an output buffer that can be used to + reduce the output impedance, and to drive external loads directly + without having to add an external operational amplifier. + To enable, the output buffer use + sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; + [..] + (@) Refer to the device datasheet for more details about output + impedance value with and without output buffer. + + *** DAC wave generation feature *** + =================================== + [..] + Both DAC channels can be used to generate + (#) Noise wave + (#) Triangle wave + + *** DAC data format *** + ======================= + [..] + The DAC data format can be: + (#) 8-bit right alignment using DAC_ALIGN_8B_R + (#) 12-bit left alignment using DAC_ALIGN_12B_L + (#) 12-bit right alignment using DAC_ALIGN_12B_R + + *** DAC data value to voltage correspondence *** + ================================================ + [..] + The analog output voltage on each DAC channel pin is determined + by the following equation: + DAC_OUTx = VREF+ * DOR / 4095 + with DOR is the Data Output Register + VEF+ is the input voltage reference (refer to the device datasheet) + e.g. To set DAC_OUT1 to 0.7V, use + Assuming that VREF+ = 3.3V, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V + + *** DMA requests *** + ===================== + [..] + A DMA1 request can be generated when an external trigger (but not + a software trigger) occurs if DMA1 requests are enabled using + HAL_DAC_Start_DMA() + [..] + DMA1 requests are mapped as following: + (#) DAC channel1 : mapped on DMA1 Stream5 channel7 which must be + already configured + (#) DAC channel2 : mapped on DMA1 Stream6 channel7 which must be + already configured + + -@- For Dual mode and specific signal (Triangle and noise) generation please + refer to Extension Features Driver description + + + ##### How to use this driver ##### + ============================================================================== + [..] + (+) DAC APB clock must be enabled to get write access to DAC + registers using HAL_DAC_Init() + (+) Configure DAC_OUTx (DAC_OUT1: PA4, DAC_OUT2: PA5) in analog mode. + (+) Configure the DAC channel using HAL_DAC_ConfigChannel() function. + (+) Enable the DAC channel using HAL_DAC_Start() or HAL_DAC_Start_DMA functions + + *** Polling mode IO operation *** + ================================= + [..] + (+) Start the DAC peripheral using HAL_DAC_Start() + (+) To read the DAC last data output value, use the HAL_DAC_GetValue() function. + (+) Stop the DAC peripheral using HAL_DAC_Stop() + + *** DMA mode IO operation *** + ============================== + [..] + (+) Start the DAC peripheral using HAL_DAC_Start_DMA(), at this stage the user specify the length + of data to be transferred at each end of conversion + (+) At The end of data transfer HAL_DAC_ConvCpltCallbackCh1()or HAL_DAC_ConvCpltCallbackCh2() + function is executed and user can add his own code by customization of function pointer + HAL_DAC_ConvCpltCallbackCh1 or HAL_DAC_ConvCpltCallbackCh2 + (+) In case of transfer Error, HAL_DAC_ErrorCallbackCh1() function is executed and user can + add his own code by customization of function pointer HAL_DAC_ErrorCallbackCh1 + (+) Stop the DAC peripheral using HAL_DAC_Stop_DMA() + + *** DAC HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DAC HAL driver. + + (+) __HAL_DAC_ENABLE : Enable the DAC peripheral + (+) __HAL_DAC_DISABLE : Disable the DAC peripheral + (+) __HAL_DAC_CLEAR_FLAG: Clear the DAC's pending flags + (+) __HAL_DAC_GET_FLAG: Get the selected DAC's flag status + + [..] + (@) You can refer to the DAC HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup DAC DAC + * @brief DAC driver modules + * @{ + */ + +#ifdef HAL_DAC_MODULE_ENABLED + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F446xx) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup DAC_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma); +static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma); +static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DAC_Exported_Functions DAC Exported Functions + * @{ + */ + +/** @defgroup DAC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DAC. + (+) De-initialize the DAC. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DAC peripheral according to the specified parameters + * in the DAC_InitStruct. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Init(DAC_HandleTypeDef* hdac) +{ + /* Check DAC handle */ + if(hdac == NULL) + { + return HAL_ERROR; + } + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); + + if(hdac->State == HAL_DAC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hdac->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_DAC_MspInit(hdac); + } + + /* Initialize the DAC state*/ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Set DAC error code to none */ + hdac->ErrorCode = HAL_DAC_ERROR_NONE; + + /* Initialize the DAC state*/ + hdac->State = HAL_DAC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Deinitializes the DAC peripheral registers to their default reset values. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_DeInit(DAC_HandleTypeDef* hdac) +{ + /* Check DAC handle */ + if(hdac == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DAC_ALL_INSTANCE(hdac->Instance)); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_DAC_MspDeInit(hdac); + + /* Set DAC error code to none */ + hdac->ErrorCode = HAL_DAC_ERROR_NONE; + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the DAC MSP. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_MspInit(DAC_HandleTypeDef* hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the DAC MSP. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_MspDeInit(DAC_HandleTypeDef* hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion. + (+) Stop conversion. + (+) Start conversion and enable DMA transfer. + (+) Stop conversion and disable DMA transfer. + (+) Get result of conversion. + +@endverbatim + * @{ + */ + +/** + * @brief Enables DAC and starts conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the Peripheral */ + __HAL_DAC_ENABLE(hdac, Channel); + + if(Channel == DAC_CHANNEL_1) + { + tmp1 = hdac->Instance->CR & DAC_CR_TEN1; + tmp2 = hdac->Instance->CR & DAC_CR_TSEL1; + /* Check if software trigger enabled */ + if((tmp1 == DAC_CR_TEN1) && (tmp2 == DAC_CR_TSEL1)) + { + /* Enable the selected DAC software conversion */ + hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG1; + } + } + else + { + tmp1 = hdac->Instance->CR & DAC_CR_TEN2; + tmp2 = hdac->Instance->CR & DAC_CR_TSEL2; + /* Check if software trigger enabled */ + if((tmp1 == DAC_CR_TEN2) && (tmp2 == DAC_CR_TSEL2)) + { + /* Enable the selected DAC software conversion*/ + hdac->Instance->SWTRIGR |= (uint32_t)DAC_SWTRIGR_SWTRIG2; + } + } + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables DAC and stop conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Disable the Peripheral */ + __HAL_DAC_DISABLE(hdac, Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enables DAC and starts conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @param pData: The destination peripheral Buffer address. + * @param Length: The length of data to be transferred from memory to DAC peripheral + * @param Alignment: Specifies the data alignment for DAC channel. + * This parameter can be one of the following values: + * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected + * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected + * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t Alignment) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_ALIGN(Alignment)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + if(Channel == DAC_CHANNEL_1) + { + /* Set the DMA transfer complete callback for channel1 */ + hdac->DMA_Handle1->XferCpltCallback = DAC_DMAConvCpltCh1; + + /* Set the DMA half transfer complete callback for channel1 */ + hdac->DMA_Handle1->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh1; + + /* Set the DMA error callback for channel1 */ + hdac->DMA_Handle1->XferErrorCallback = DAC_DMAErrorCh1; + + /* Enable the selected DAC channel1 DMA request */ + hdac->Instance->CR |= DAC_CR_DMAEN1; + + /* Case of use of channel 1 */ + switch(Alignment) + { + case DAC_ALIGN_12B_R: + /* Get DHR12R1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12R1; + break; + case DAC_ALIGN_12B_L: + /* Get DHR12L1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12L1; + break; + case DAC_ALIGN_8B_R: + /* Get DHR8R1 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR8R1; + break; + default: + break; + } + } + else + { + /* Set the DMA transfer complete callback for channel2 */ + hdac->DMA_Handle2->XferCpltCallback = DAC_DMAConvCpltCh2; + + /* Set the DMA half transfer complete callback for channel2 */ + hdac->DMA_Handle2->XferHalfCpltCallback = DAC_DMAHalfConvCpltCh2; + + /* Set the DMA error callback for channel2 */ + hdac->DMA_Handle2->XferErrorCallback = DAC_DMAErrorCh2; + + /* Enable the selected DAC channel2 DMA request */ + hdac->Instance->CR |= DAC_CR_DMAEN2; + + /* Case of use of channel 2 */ + switch(Alignment) + { + case DAC_ALIGN_12B_R: + /* Get DHR12R2 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12R2; + break; + case DAC_ALIGN_12B_L: + /* Get DHR12L2 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR12L2; + break; + case DAC_ALIGN_8B_R: + /* Get DHR8R2 address */ + tmpreg = (uint32_t)&hdac->Instance->DHR8R2; + break; + default: + break; + } + } + + /* Enable the DMA Stream */ + if(Channel == DAC_CHANNEL_1) + { + /* Enable the DAC DMA underrun interrupt */ + __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR1); + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hdac->DMA_Handle1, (uint32_t)pData, tmpreg, Length); + } + else + { + /* Enable the DAC DMA underrun interrupt */ + __HAL_DAC_ENABLE_IT(hdac, DAC_IT_DMAUDR2); + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hdac->DMA_Handle2, (uint32_t)pData, tmpreg, Length); + } + + /* Enable the Peripheral */ + __HAL_DAC_ENABLE(hdac, Channel); + + /* Process Unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disables DAC and stop conversion of channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_Stop_DMA(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Disable the selected DAC channel DMA request */ + hdac->Instance->CR &= ~(DAC_CR_DMAEN1 << Channel); + + /* Disable the Peripheral */ + __HAL_DAC_DISABLE(hdac, Channel); + + /* Disable the DMA Channel */ + /* Channel1 is used */ + if(Channel == DAC_CHANNEL_1) + { + status = HAL_DMA_Abort(hdac->DMA_Handle1); + } + else /* Channel2 is used for */ + { + status = HAL_DMA_Abort(hdac->DMA_Handle2); + } + + /* Check if DMA Channel effectively disabled */ + if(status != HAL_OK) + { + /* Update DAC state machine to error */ + hdac->State = HAL_DAC_STATE_ERROR; + } + else + { + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + } + + /* Return function status */ + return status; +} + +/** + * @brief Returns the last data output value of the selected DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval The selected DAC channel data output value. + */ +uint32_t HAL_DAC_GetValue(DAC_HandleTypeDef* hdac, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Returns the DAC channel data output register value */ + if(Channel == DAC_CHANNEL_1) + { + return hdac->Instance->DOR1; + } + else + { + return hdac->Instance->DOR2; + } +} + +/** + * @brief Handles DAC interrupt request + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +void HAL_DAC_IRQHandler(DAC_HandleTypeDef* hdac) +{ + /* Check underrun channel 1 flag */ + if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR1)) + { + /* Change DAC state to error state */ + hdac->State = HAL_DAC_STATE_ERROR; + + /* Set DAC error code to channel1 DMA underrun error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH1; + + /* Clear the underrun flag */ + __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR1); + + /* Disable the selected DAC channel1 DMA request */ + hdac->Instance->CR &= ~DAC_CR_DMAEN1; + + /* Error callback */ + HAL_DAC_DMAUnderrunCallbackCh1(hdac); + } + /* Check underrun channel 2 flag */ + if(__HAL_DAC_GET_FLAG(hdac, DAC_FLAG_DMAUDR2)) + { + /* Change DAC state to error state */ + hdac->State = HAL_DAC_STATE_ERROR; + + /* Set DAC error code to channel2 DMA underrun error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMAUNDERRUNCH2; + + /* Clear the underrun flag */ + __HAL_DAC_CLEAR_FLAG(hdac,DAC_FLAG_DMAUDR2); + + /* Disable the selected DAC channel1 DMA request */ + hdac->Instance->CR &= ~DAC_CR_DMAEN2; + + /* Error callback */ + HAL_DACEx_DMAUnderrunCallbackCh2(hdac); + } +} + +/** + * @brief Conversion complete callback in non blocking mode for Channel1 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ConvCpltCallbackCh1(DAC_HandleTypeDef* hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ConvCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Conversion half DMA transfer callback in non blocking mode for Channel1 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ConvHalfCpltCallbackCh1(DAC_HandleTypeDef* hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ConvHalfCpltCallbackCh1 could be implemented in the user file + */ +} + +/** + * @brief Error DAC callback for Channel1. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_ErrorCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ErrorCallbackCh1 could be implemented in the user file + */ +} + +/** + * @brief DMA underrun DAC callback for channel1. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DAC_DMAUnderrunCallbackCh1(DAC_HandleTypeDef *hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_DMAUnderrunCallbackCh1 could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Configure channels. + (+) Set the specified data holding register value for DAC channel. + +@endverbatim + * @{ + */ + +/** + * @brief Configures the selected DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param sConfig: DAC configuration structure. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_ConfigChannel(DAC_HandleTypeDef* hdac, DAC_ChannelConfTypeDef* sConfig, uint32_t Channel) +{ + uint32_t tmpreg1 = 0, tmpreg2 = 0; + + /* Check the DAC parameters */ + assert_param(IS_DAC_TRIGGER(sConfig->DAC_Trigger)); + assert_param(IS_DAC_OUTPUT_BUFFER_STATE(sConfig->DAC_OutputBuffer)); + assert_param(IS_DAC_CHANNEL(Channel)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Get the DAC CR value */ + tmpreg1 = hdac->Instance->CR; + /* Clear BOFFx, TENx, TSELx, WAVEx and MAMPx bits */ + tmpreg1 &= ~(((uint32_t)(DAC_CR_MAMP1 | DAC_CR_WAVE1 | DAC_CR_TSEL1 | DAC_CR_TEN1 | DAC_CR_BOFF1)) << Channel); + /* Configure for the selected DAC channel: buffer output, trigger */ + /* Set TSELx and TENx bits according to DAC_Trigger value */ + /* Set BOFFx bit according to DAC_OutputBuffer value */ + tmpreg2 = (sConfig->DAC_Trigger | sConfig->DAC_OutputBuffer); + /* Calculate CR register value depending on DAC_Channel */ + tmpreg1 |= tmpreg2 << Channel; + /* Write to DAC CR */ + hdac->Instance->CR = tmpreg1; + /* Disable wave generation */ + hdac->Instance->CR &= ~(DAC_CR_WAVE1 << Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the specified data holding register value for DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * @arg DAC_CHANNEL_1: DAC Channel1 selected + * @arg DAC_CHANNEL_2: DAC Channel2 selected + * @param Alignment: Specifies the data alignment. + * This parameter can be one of the following values: + * @arg DAC_ALIGN_8B_R: 8bit right data alignment selected + * @arg DAC_ALIGN_12B_L: 12bit left data alignment selected + * @arg DAC_ALIGN_12B_R: 12bit right data alignment selected + * @param Data: Data to be loaded in the selected data holding register. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Alignment, uint32_t Data) +{ + __IO uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_ALIGN(Alignment)); + assert_param(IS_DAC_DATA(Data)); + + tmp = (uint32_t)hdac->Instance; + if(Channel == DAC_CHANNEL_1) + { + tmp += DAC_DHR12R1_ALIGNMENT(Alignment); + } + else + { + tmp += DAC_DHR12R2_ALIGNMENT(Alignment); + } + + /* Set the DAC channel1 selected data holding register */ + *(__IO uint32_t *) tmp = Data; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DAC_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DAC state. + (+) Check the DAC Errors. + +@endverbatim + * @{ + */ + +/** + * @brief return the DAC state + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval HAL state + */ +HAL_DAC_StateTypeDef HAL_DAC_GetState(DAC_HandleTypeDef* hdac) +{ + /* Return DAC state */ + return hdac->State; +} + + +/** + * @brief Return the DAC error code + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval DAC Error Code + */ +uint32_t HAL_DAC_GetError(DAC_HandleTypeDef *hdac) +{ + return hdac->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief DMA conversion complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DAC_DMAConvCpltCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_DAC_ConvCpltCallbackCh1(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DAC_DMAHalfConvCpltCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_DAC_ConvHalfCpltCallbackCh1(hdac); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DAC_DMAErrorCh1(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Set DAC error code to DMA error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMA; + + HAL_DAC_ErrorCallbackCh1(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @} + */ +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx ||\ + STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx ||\ + STM32F446xx + */ +#endif /* HAL_DAC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dac_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dac_ex.c new file mode 100644 index 0000000..7797a6d --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dac_ex.c @@ -0,0 +1,382 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_dac_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief DAC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of DAC extension peripheral: + * + Extended features functions + * + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (+) When Dual mode is enabled (i.e DAC Channel1 and Channel2 are used simultaneously) : + Use HAL_DACEx_DualGetValue() to get digital data to be converted and use + HAL_DACEx_DualSetValue() to set digital value to converted simultaneously in Channel 1 and Channel 2. + (+) Use HAL_DACEx_TriangleWaveGenerate() to generate Triangle signal. + (+) Use HAL_DACEx_NoiseWaveGenerate() to generate Noise signal. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup DACEx DACEx + * @brief DAC driver modules + * @{ + */ + +#ifdef HAL_DAC_MODULE_ENABLED + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F446xx) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup DACEx_Exported_Functions DAC Exported Functions + * @{ + */ + +/** @defgroup DACEx_Exported_Functions_Group1 Extended features functions + * @brief Extended features functions + * +@verbatim + ============================================================================== + ##### Extended features functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Start conversion. + (+) Stop conversion. + (+) Start conversion and enable DMA transfer. + (+) Stop conversion and disable DMA transfer. + (+) Get result of conversion. + (+) Get result of dual mode conversion. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the last data output value of the selected DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval The selected DAC channel data output value. + */ +uint32_t HAL_DACEx_DualGetValue(DAC_HandleTypeDef* hdac) +{ + uint32_t tmp = 0; + + tmp |= hdac->Instance->DOR1; + + tmp |= hdac->Instance->DOR2 << 16; + + /* Returns the DAC channel data output register value */ + return tmp; +} + +/** + * @brief Enables or disables the selected DAC channel wave generation. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * DAC_CHANNEL_1 / DAC_CHANNEL_2 + * @param Amplitude: Select max triangle amplitude. + * This parameter can be one of the following values: + * @arg DAC_TRIANGLEAMPLITUDE_1: Select max triangle amplitude of 1 + * @arg DAC_TRIANGLEAMPLITUDE_3: Select max triangle amplitude of 3 + * @arg DAC_TRIANGLEAMPLITUDE_7: Select max triangle amplitude of 7 + * @arg DAC_TRIANGLEAMPLITUDE_15: Select max triangle amplitude of 15 + * @arg DAC_TRIANGLEAMPLITUDE_31: Select max triangle amplitude of 31 + * @arg DAC_TRIANGLEAMPLITUDE_63: Select max triangle amplitude of 63 + * @arg DAC_TRIANGLEAMPLITUDE_127: Select max triangle amplitude of 127 + * @arg DAC_TRIANGLEAMPLITUDE_255: Select max triangle amplitude of 255 + * @arg DAC_TRIANGLEAMPLITUDE_511: Select max triangle amplitude of 511 + * @arg DAC_TRIANGLEAMPLITUDE_1023: Select max triangle amplitude of 1023 + * @arg DAC_TRIANGLEAMPLITUDE_2047: Select max triangle amplitude of 2047 + * @arg DAC_TRIANGLEAMPLITUDE_4095: Select max triangle amplitude of 4095 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_TriangleWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the selected wave generation for the selected DAC channel */ + MODIFY_REG(hdac->Instance->CR, (DAC_CR_WAVE1 | DAC_CR_MAMP1) << Channel, (DAC_CR_WAVE1_1 | Amplitude) << Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Enables or disables the selected DAC channel wave generation. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Channel: The selected DAC channel. + * This parameter can be one of the following values: + * DAC_CHANNEL_1 / DAC_CHANNEL_2 + * @param Amplitude: Unmask DAC channel LFSR for noise wave generation. + * This parameter can be one of the following values: + * @arg DAC_LFSRUNMASK_BIT0: Unmask DAC channel LFSR bit0 for noise wave generation + * @arg DAC_LFSRUNMASK_BITS1_0: Unmask DAC channel LFSR bit[1:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS2_0: Unmask DAC channel LFSR bit[2:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS3_0: Unmask DAC channel LFSR bit[3:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS4_0: Unmask DAC channel LFSR bit[4:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS5_0: Unmask DAC channel LFSR bit[5:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS6_0: Unmask DAC channel LFSR bit[6:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS7_0: Unmask DAC channel LFSR bit[7:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS8_0: Unmask DAC channel LFSR bit[8:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS9_0: Unmask DAC channel LFSR bit[9:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS10_0: Unmask DAC channel LFSR bit[10:0] for noise wave generation + * @arg DAC_LFSRUNMASK_BITS11_0: Unmask DAC channel LFSR bit[11:0] for noise wave generation + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_NoiseWaveGenerate(DAC_HandleTypeDef* hdac, uint32_t Channel, uint32_t Amplitude) +{ + /* Check the parameters */ + assert_param(IS_DAC_CHANNEL(Channel)); + assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(Amplitude)); + + /* Process locked */ + __HAL_LOCK(hdac); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_BUSY; + + /* Enable the selected wave generation for the selected DAC channel */ + MODIFY_REG(hdac->Instance->CR, (DAC_CR_WAVE1 | DAC_CR_MAMP1) << Channel, (DAC_CR_WAVE1_0 | Amplitude) << Channel); + + /* Change DAC state */ + hdac->State = HAL_DAC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdac); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set the specified data holding register value for dual DAC channel. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @param Alignment: Specifies the data alignment for dual channel DAC. + * This parameter can be one of the following values: + * DAC_ALIGN_8B_R: 8bit right data alignment selected + * DAC_ALIGN_12B_L: 12bit left data alignment selected + * DAC_ALIGN_12B_R: 12bit right data alignment selected + * @param Data1: Data for DAC Channel2 to be loaded in the selected data holding register. + * @param Data2: Data for DAC Channel1 to be loaded in the selected data holding register. + * @note In dual mode, a unique register access is required to write in both + * DAC channels at the same time. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DACEx_DualSetValue(DAC_HandleTypeDef* hdac, uint32_t Alignment, uint32_t Data1, uint32_t Data2) +{ + uint32_t data = 0, tmp = 0; + + /* Check the parameters */ + assert_param(IS_DAC_ALIGN(Alignment)); + assert_param(IS_DAC_DATA(Data1)); + assert_param(IS_DAC_DATA(Data2)); + + /* Calculate and set dual DAC data holding register value */ + if (Alignment == DAC_ALIGN_8B_R) + { + data = ((uint32_t)Data2 << 8) | Data1; + } + else + { + data = ((uint32_t)Data2 << 16) | Data1; + } + + tmp = (uint32_t)hdac->Instance; + tmp += DAC_DHR12RD_ALIGNMENT(Alignment); + + /* Set the dual DAC selected data holding register */ + *(__IO uint32_t *)tmp = data; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** + * @brief Conversion complete callback in non blocking mode for Channel2 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_ConvCpltCallbackCh2(DAC_HandleTypeDef* hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ConvCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Conversion half DMA transfer callback in non blocking mode for Channel2 + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_ConvHalfCpltCallbackCh2(DAC_HandleTypeDef* hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ConvHalfCpltCallbackCh2 could be implemented in the user file + */ +} + +/** + * @brief Error DAC callback for Channel2. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_ErrorCallbackCh2(DAC_HandleTypeDef *hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief DMA underrun DAC callback for channel2. + * @param hdac: pointer to a DAC_HandleTypeDef structure that contains + * the configuration information for the specified DAC. + * @retval None + */ +__weak void HAL_DACEx_DMAUnderrunCallbackCh2(DAC_HandleTypeDef *hdac) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DAC_DMAUnderrunCallbackCh2 could be implemented in the user file + */ +} + +/** + * @brief DMA conversion complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAConvCpltCh2(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_DACEx_ConvCpltCallbackCh2(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @brief DMA half transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAHalfConvCpltCh2(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* Conversion complete callback */ + HAL_DACEx_ConvHalfCpltCallbackCh2(hdac); +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void DAC_DMAErrorCh2(DMA_HandleTypeDef *hdma) +{ + DAC_HandleTypeDef* hdac = ( DAC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Set DAC error code to DMA error */ + hdac->ErrorCode |= HAL_DAC_ERROR_DMA; + + HAL_DACEx_ErrorCallbackCh2(hdac); + + hdac->State= HAL_DAC_STATE_READY; +} + +/** + * @} + */ + +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx ||\ + STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx ||\ + STM32F446xx + */ + +#endif /* HAL_DAC_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dcmi.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dcmi.c new file mode 100644 index 0000000..7de37e7 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dcmi.c @@ -0,0 +1,830 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_dcmi.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief DCMI HAL module driver + * This file provides firmware functions to manage the following + * functionalities of the Digital Camera Interface (DCMI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Error functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The sequence below describes how to use this driver to capture image + from a camera module connected to the DCMI Interface. + This sequence does not take into account the configuration of the + camera module, which should be made before to configure and enable + the DCMI to capture images. + + (#) Program the required configuration through following parameters: + horizontal and vertical polarity, pixel clock polarity, Capture Rate, + Synchronization Mode, code of the frame delimiter and data width + using HAL_DCMI_Init() function. + + (#) Configure the DMA2_Stream1 channel1 to transfer Data from DCMI DR + register to the destination memory buffer. + + (#) Program the required configuration through following parameters: + DCMI mode, destination memory Buffer address and the data length + and enable capture using HAL_DCMI_Start_DMA() function. + + (#) Optionally, configure and Enable the CROP feature to select a rectangular + window from the received image using HAL_DCMI_ConfigCrop() + and HAL_DCMI_EnableCROP() functions + + (#) The capture can be stopped using HAL_DCMI_Stop() function. + + (#) To control DCMI state you can use the function HAL_DCMI_GetState(). + + *** DCMI HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DCMI HAL driver. + + (+) __HAL_DCMI_ENABLE: Enable the DCMI peripheral. + (+) __HAL_DCMI_DISABLE: Disable the DCMI peripheral. + (+) __HAL_DCMI_GET_FLAG: Get the DCMI pending flags. + (+) __HAL_DCMI_CLEAR_FLAG: Clear the DCMI pending flags. + (+) __HAL_DCMI_ENABLE_IT: Enable the specified DCMI interrupts. + (+) __HAL_DCMI_DISABLE_IT: Disable the specified DCMI interrupts. + (+) __HAL_DCMI_GET_IT_SOURCE: Check whether the specified DCMI interrupt has occurred or not. + + [..] + (@) You can refer to the DCMI HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ +/** @defgroup DCMI DCMI + * @brief DCMI HAL module driver + * @{ + */ + +#ifdef HAL_DCMI_MODULE_ENABLED + +#if defined(STM32F407xx) || defined(STM32F417xx) || defined(STM32F427xx) || defined(STM32F437xx) ||\ + defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define HAL_TIMEOUT_DCMI_STOP ((uint32_t)1000) /* 1s */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void DCMI_DMAConvCplt(DMA_HandleTypeDef *hdma); +static void DCMI_DMAError(DMA_HandleTypeDef *hdma); + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup DCMI_Exported_Functions DCMI Exported Functions + * @{ + */ + +/** @defgroup DCMI_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DCMI + (+) De-initialize the DCMI + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DCMI according to the specified + * parameters in the DCMI_InitTypeDef and create the associated handle. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_DCMI_Init(DCMI_HandleTypeDef *hdcmi) +{ + /* Check the DCMI peripheral state */ + if(hdcmi == NULL) + { + return HAL_ERROR; + } + + /* Check function parameters */ + assert_param(IS_DCMI_ALL_INSTANCE(hdcmi->Instance)); + assert_param(IS_DCMI_PCKPOLARITY(hdcmi->Init.PCKPolarity)); + assert_param(IS_DCMI_VSPOLARITY(hdcmi->Init.VSPolarity)); + assert_param(IS_DCMI_HSPOLARITY(hdcmi->Init.HSPolarity)); + assert_param(IS_DCMI_SYNCHRO(hdcmi->Init.SynchroMode)); + assert_param(IS_DCMI_CAPTURE_RATE(hdcmi->Init.CaptureRate)); + assert_param(IS_DCMI_EXTENDED_DATA(hdcmi->Init.ExtendedDataMode)); + assert_param(IS_DCMI_MODE_JPEG(hdcmi->Init.JPEGMode)); + + if(hdcmi->State == HAL_DCMI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hdcmi->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_DCMI_MspInit(hdcmi); + } + + /* Change the DCMI state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + /* Configures the HS, VS, DE and PC polarity */ + hdcmi->Instance->CR &= ~(DCMI_CR_PCKPOL | DCMI_CR_HSPOL | DCMI_CR_VSPOL | DCMI_CR_EDM_0 | + DCMI_CR_EDM_1 | DCMI_CR_FCRC_0 | DCMI_CR_FCRC_1 | DCMI_CR_JPEG | + DCMI_CR_ESS); + hdcmi->Instance->CR |= (uint32_t)(hdcmi->Init.SynchroMode | hdcmi->Init.CaptureRate | \ + hdcmi->Init.VSPolarity | hdcmi->Init.HSPolarity | \ + hdcmi->Init.PCKPolarity | hdcmi->Init.ExtendedDataMode | \ + hdcmi->Init.JPEGMode); + + if(hdcmi->Init.SynchroMode == DCMI_SYNCHRO_EMBEDDED) + { + DCMI->ESCR = (((uint32_t)hdcmi->Init.SyncroCode.FrameStartCode) | + ((uint32_t)hdcmi->Init.SyncroCode.LineStartCode << 8)| + ((uint32_t)hdcmi->Init.SyncroCode.LineEndCode << 16) | + ((uint32_t)hdcmi->Init.SyncroCode.FrameEndCode << 24)); + + } + + /* Enable the Line interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_LINE); + + /* Enable the VSYNC interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_VSYNC); + + /* Enable the Frame capture complete interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_FRAME); + + /* Enable the Synchronization error interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_ERR); + + /* Enable the Overflow interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_OVF); + + /* Enable DCMI by setting DCMIEN bit */ + __HAL_DCMI_ENABLE(hdcmi); + + /* Update error code */ + hdcmi->ErrorCode = HAL_DCMI_ERROR_NONE; + + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Deinitializes the DCMI peripheral registers to their default reset + * values. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_DCMI_DeInit(DCMI_HandleTypeDef *hdcmi) +{ + /* DeInit the low level hardware */ + HAL_DCMI_MspDeInit(hdcmi); + + /* Update error code */ + hdcmi->ErrorCode = HAL_DCMI_ERROR_NONE; + + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @brief Initializes the DCMI MSP. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_MspInit(DCMI_HandleTypeDef* hdcmi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the DCMI MSP. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_MspDeInit(DCMI_HandleTypeDef* hdcmi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ +/** @defgroup DCMI_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure destination address and data length and + Enables DCMI DMA request and enables DCMI capture + (+) Stop the DCMI capture. + (+) Handles DCMI interrupt request. + +@endverbatim + * @{ + */ + +/** + * @brief Enables DCMI DMA request and enables DCMI capture + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @param DCMI_Mode: DCMI capture mode snapshot or continuous grab. + * @param pData: The destination memory Buffer address (LCD Frame buffer). + * @param Length: The length of capture to be transferred. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Start_DMA(DCMI_HandleTypeDef* hdcmi, uint32_t DCMI_Mode, uint32_t pData, uint32_t Length) +{ + /* Initialize the second memory address */ + uint32_t SecondMemAddress = 0; + + /* Check function parameters */ + assert_param(IS_DCMI_CAPTURE_MODE(DCMI_Mode)); + + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DCMI_CAPTURE_MODE(DCMI_Mode)); + + /* Configure the DCMI Mode */ + hdcmi->Instance->CR &= ~(DCMI_CR_CM); + hdcmi->Instance->CR |= (uint32_t)(DCMI_Mode); + + /* Set the DMA memory0 conversion complete callback */ + hdcmi->DMA_Handle->XferCpltCallback = DCMI_DMAConvCplt; + + /* Set the DMA error callback */ + hdcmi->DMA_Handle->XferErrorCallback = DCMI_DMAError; + + if(Length <= 0xFFFF) + { + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hdcmi->DMA_Handle, (uint32_t)&hdcmi->Instance->DR, (uint32_t)pData, Length); + } + else /* DCMI_DOUBLE_BUFFER Mode */ + { + /* Set the DMA memory1 conversion complete callback */ + hdcmi->DMA_Handle->XferM1CpltCallback = DCMI_DMAConvCplt; + + /* Initialize transfer parameters */ + hdcmi->XferCount = 1; + hdcmi->XferSize = Length; + hdcmi->pBuffPtr = pData; + + /* Get the number of buffer */ + while(hdcmi->XferSize > 0xFFFF) + { + hdcmi->XferSize = (hdcmi->XferSize/2); + hdcmi->XferCount = hdcmi->XferCount*2; + } + + /* Update DCMI counter and transfer number*/ + hdcmi->XferCount = (hdcmi->XferCount - 2); + hdcmi->XferTransferNumber = hdcmi->XferCount; + + /* Update second memory address */ + SecondMemAddress = (uint32_t)(pData + (4*hdcmi->XferSize)); + + /* Start DMA multi buffer transfer */ + HAL_DMAEx_MultiBufferStart_IT(hdcmi->DMA_Handle, (uint32_t)&hdcmi->Instance->DR, (uint32_t)pData, SecondMemAddress, hdcmi->XferSize); + } + + /* Enable Capture */ + DCMI->CR |= DCMI_CR_CAPTURE; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Disable DCMI DMA request and Disable DCMI capture + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Stop(DCMI_HandleTypeDef* hdcmi) +{ + uint32_t tickstart = 0; + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + __HAL_DCMI_DISABLE(hdcmi); + + /* Disable Capture */ + DCMI->CR &= ~(DCMI_CR_CAPTURE); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the DCMI capture effectively disabled */ + while((hdcmi->Instance->CR & DCMI_CR_CAPTURE) != 0) + { + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DCMI_STOP) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_TIMEOUT; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + + /* Disable the DMA */ + HAL_DMA_Abort(hdcmi->DMA_Handle); + + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_NONE; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles DCMI interrupt request. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for the DCMI. + * @retval None + */ +void HAL_DCMI_IRQHandler(DCMI_HandleTypeDef *hdcmi) +{ + /* Synchronization error interrupt management *******************************/ + if(__HAL_DCMI_GET_FLAG(hdcmi, DCMI_FLAG_ERRRI) != RESET) + { + if(__HAL_DCMI_GET_IT_SOURCE(hdcmi, DCMI_IT_ERR) != RESET) + { + /* Disable the Synchronization error interrupt */ + __HAL_DCMI_DISABLE_IT(hdcmi, DCMI_IT_ERR); + + /* Clear the Synchronization error flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_ERRRI); + + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_SYNC; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Abort the DMA Transfer */ + HAL_DMA_Abort(hdcmi->DMA_Handle); + + /* Synchronization error Callback */ + HAL_DCMI_ErrorCallback(hdcmi); + } + } + /* Overflow interrupt management ********************************************/ + if(__HAL_DCMI_GET_FLAG(hdcmi, DCMI_FLAG_OVFRI) != RESET) + { + if(__HAL_DCMI_GET_IT_SOURCE(hdcmi, DCMI_IT_OVF) != RESET) + { + /* Disable the Overflow interrupt */ + __HAL_DCMI_DISABLE_IT(hdcmi, DCMI_IT_OVF); + + /* Clear the Overflow flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_OVFRI); + + /* Update error code */ + hdcmi->ErrorCode |= HAL_DCMI_ERROR_OVF; + + /* Change DCMI state */ + hdcmi->State = HAL_DCMI_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Abort the DMA Transfer */ + HAL_DMA_Abort(hdcmi->DMA_Handle); + + /* Overflow Callback */ + HAL_DCMI_ErrorCallback(hdcmi); + } + } + /* Line Interrupt management ************************************************/ + if(__HAL_DCMI_GET_FLAG(hdcmi, DCMI_FLAG_LINERI) != RESET) + { + if(__HAL_DCMI_GET_IT_SOURCE(hdcmi, DCMI_IT_LINE) != RESET) + { + /* Clear the Line interrupt flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_LINERI); + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* Line interrupt Callback */ + HAL_DCMI_LineEventCallback(hdcmi); + } + } + /* VSYNC interrupt management ***********************************************/ + if(__HAL_DCMI_GET_FLAG(hdcmi, DCMI_FLAG_VSYNCRI) != RESET) + { + if(__HAL_DCMI_GET_IT_SOURCE(hdcmi, DCMI_IT_VSYNC) != RESET) + { + /* Disable the VSYNC interrupt */ + __HAL_DCMI_DISABLE_IT(hdcmi, DCMI_IT_VSYNC); + + /* Clear the VSYNC flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_VSYNCRI); + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* VSYNC Callback */ + HAL_DCMI_VsyncEventCallback(hdcmi); + } + } + /* End of Frame interrupt management ****************************************/ + if(__HAL_DCMI_GET_FLAG(hdcmi, DCMI_FLAG_FRAMERI) != RESET) + { + if(__HAL_DCMI_GET_IT_SOURCE(hdcmi, DCMI_IT_FRAME) != RESET) + { + /* Disable the End of Frame interrupt */ + __HAL_DCMI_DISABLE_IT(hdcmi, DCMI_IT_FRAME); + + /* Clear the End of Frame flag */ + __HAL_DCMI_CLEAR_FLAG(hdcmi, DCMI_FLAG_FRAMERI); + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* End of Frame Callback */ + HAL_DCMI_FrameEventCallback(hdcmi); + } + } +} + +/** + * @brief Error DCMI callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_ErrorCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Line Event callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_LineEventCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_LineEventCallback could be implemented in the user file + */ +} + +/** + * @brief VSYNC Event callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_VsyncEventCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_VsyncEventCallback could be implemented in the user file + */ +} + +/** + * @brief Frame Event callback. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval None + */ +__weak void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DCMI_FrameEventCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DCMI_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== +[..] This section provides functions allowing to: + (+) Configure the CROP feature. + (+) Enable/Disable the CROP feature. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the DCMI CROP coordinate. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @param YSize: DCMI Line number + * @param XSize: DCMI Pixel per line + * @param X0: DCMI window X offset + * @param Y0: DCMI window Y offset + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_ConfigCROP(DCMI_HandleTypeDef *hdcmi, uint32_t X0, uint32_t Y0, uint32_t XSize, uint32_t YSize) +{ + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DCMI_WINDOW_COORDINATE(X0)); + assert_param(IS_DCMI_WINDOW_COORDINATE(YSize)); + assert_param(IS_DCMI_WINDOW_COORDINATE(XSize)); + assert_param(IS_DCMI_WINDOW_HEIGHT(Y0)); + + /* Configure CROP */ + DCMI->CWSIZER = (XSize | (YSize << 16)); + DCMI->CWSTRTR = (X0 | (Y0 << 16)); + + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @brief Disable the Crop feature. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_DisableCROP(DCMI_HandleTypeDef *hdcmi) +{ + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Disable DCMI Crop feature */ + DCMI->CR &= ~(uint32_t)DCMI_CR_CROP; + + /* Change the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @brief Enable the Crop feature. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_EnableCROP(DCMI_HandleTypeDef *hdcmi) +{ + /* Process Locked */ + __HAL_LOCK(hdcmi); + + /* Lock the DCMI peripheral state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + + /* Enable DCMI Crop feature */ + DCMI->CR |= (uint32_t)DCMI_CR_CROP; + + /* Change the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DCMI_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DCMI state. + (+) Get the specific DCMI error flag. + +@endverbatim + * @{ + */ + +/** + * @brief Return the DCMI state + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL state + */ +HAL_DCMI_StateTypeDef HAL_DCMI_GetState(DCMI_HandleTypeDef *hdcmi) +{ + return hdcmi->State; +} + +/** +* @brief Return the DCMI error code +* @param hdcmi : pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. +* @retval DCMI Error Code +*/ +uint32_t HAL_DCMI_GetError(DCMI_HandleTypeDef *hdcmi) +{ + return hdcmi->ErrorCode; +} + +/** + * @} + */ +/* Private functions ---------------------------------------------------------*/ +/** @defgroup DCMI_Private_Functions DCMI Private Functions + * @{ + */ + + /** + * @brief DMA conversion complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DCMI_DMAConvCplt(DMA_HandleTypeDef *hdma) +{ + uint32_t tmp = 0; + + DCMI_HandleTypeDef* hdcmi = ( DCMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hdcmi->State= HAL_DCMI_STATE_READY; + + if(hdcmi->XferCount != 0) + { + /* Update memory 0 address location */ + tmp = ((hdcmi->DMA_Handle->Instance->CR) & DMA_SxCR_CT); + if(((hdcmi->XferCount % 2) == 0) && (tmp != 0)) + { + tmp = hdcmi->DMA_Handle->Instance->M0AR; + HAL_DMAEx_ChangeMemory(hdcmi->DMA_Handle, (tmp + (8*hdcmi->XferSize)), MEMORY0); + hdcmi->XferCount--; + } + /* Update memory 1 address location */ + else if((hdcmi->DMA_Handle->Instance->CR & DMA_SxCR_CT) == 0) + { + tmp = hdcmi->DMA_Handle->Instance->M1AR; + HAL_DMAEx_ChangeMemory(hdcmi->DMA_Handle, (tmp + (8*hdcmi->XferSize)), MEMORY1); + hdcmi->XferCount--; + } + } + /* Update memory 0 address location */ + else if((hdcmi->DMA_Handle->Instance->CR & DMA_SxCR_CT) != 0) + { + hdcmi->DMA_Handle->Instance->M0AR = hdcmi->pBuffPtr; + } + /* Update memory 1 address location */ + else if((hdcmi->DMA_Handle->Instance->CR & DMA_SxCR_CT) == 0) + { + tmp = hdcmi->pBuffPtr; + hdcmi->DMA_Handle->Instance->M1AR = (tmp + (4*hdcmi->XferSize)); + hdcmi->XferCount = hdcmi->XferTransferNumber; + } + + if(__HAL_DCMI_GET_FLAG(hdcmi, DCMI_FLAG_FRAMERI) != RESET) + { + /* Process Unlocked */ + __HAL_UNLOCK(hdcmi); + + /* FRAME Callback */ + HAL_DCMI_FrameEventCallback(hdcmi); + } +} + +/** + * @brief DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void DCMI_DMAError(DMA_HandleTypeDef *hdma) +{ + DCMI_HandleTypeDef* hdcmi = ( DCMI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hdcmi->State= HAL_DCMI_STATE_READY; + HAL_DCMI_ErrorCallback(hdcmi); +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx ||\ + STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_DCMI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dcmi_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dcmi_ex.c new file mode 100644 index 0000000..2f9f23d --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dcmi_ex.c @@ -0,0 +1,212 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_dcmi_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief DCMI Extension HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of DCMI extension peripheral: + * + Extension features functions + * + @verbatim + ============================================================================== + ##### DCMI peripheral extension features ##### + ============================================================================== + + [..] Comparing to other previous devices, the DCMI interface for STM32F446xx + devices contains the following additional features : + + (+) Support of Black and White cameras + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to manage the Black and White feature + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ +/** @defgroup DCMI DCMI + * @brief DCMI HAL module driver + * @{ + */ + +#ifdef HAL_DCMI_MODULE_ENABLED + +#if defined(STM32F407xx) || defined(STM32F417xx) || defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup DCMIEx_Exported_Functions DCMI Extended Exported Functions + * @{ + */ + +/** @defgroup DCMIEx_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DCMI + (+) De-initialize the DCMI + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DCMI according to the specified + * parameters in the DCMI_InitTypeDef and create the associated handle. + * @param hdcmi: pointer to a DCMI_HandleTypeDef structure that contains + * the configuration information for DCMI. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DCMI_Init(DCMI_HandleTypeDef *hdcmi) +{ + /* Check the DCMI peripheral state */ + if(hdcmi == NULL) + { + return HAL_ERROR; + } + + /* Check function parameters */ + assert_param(IS_DCMI_ALL_INSTANCE(hdcmi->Instance)); + assert_param(IS_DCMI_PCKPOLARITY(hdcmi->Init.PCKPolarity)); + assert_param(IS_DCMI_VSPOLARITY(hdcmi->Init.VSPolarity)); + assert_param(IS_DCMI_HSPOLARITY(hdcmi->Init.HSPolarity)); + assert_param(IS_DCMI_SYNCHRO(hdcmi->Init.SynchroMode)); + assert_param(IS_DCMI_CAPTURE_RATE(hdcmi->Init.CaptureRate)); + assert_param(IS_DCMI_EXTENDED_DATA(hdcmi->Init.ExtendedDataMode)); + assert_param(IS_DCMI_MODE_JPEG(hdcmi->Init.JPEGMode)); +#if defined(STM32F446xx) + assert_param(IS_DCMI_BYTE_SELECT_MODE(hdcmi->Init.ByteSelectMode)); + assert_param(IS_DCMI_BYTE_SELECT_START(hdcmi->Init.ByteSelectStart)); + assert_param(IS_DCMI_LINE_SELECT_MODE(hdcmi->Init.LineSelectMode)); + assert_param(IS_DCMI_LINE_SELECT_START(hdcmi->Init.LineSelectStart)); +#endif + if(hdcmi->State == HAL_DCMI_STATE_RESET) + { + /* Init the low level hardware */ + HAL_DCMI_MspInit(hdcmi); + } + + /* Change the DCMI state */ + hdcmi->State = HAL_DCMI_STATE_BUSY; + /* Configures the HS, VS, DE and PC polarity */ + hdcmi->Instance->CR &= ~(DCMI_CR_PCKPOL | DCMI_CR_HSPOL | DCMI_CR_VSPOL | DCMI_CR_EDM_0 |\ + DCMI_CR_EDM_1 | DCMI_CR_FCRC_0 | DCMI_CR_FCRC_1 | DCMI_CR_JPEG |\ + DCMI_CR_ESS +#if defined(STM32F446xx) + | DCMI_CR_BSM_0 | DCMI_CR_BSM_1 | DCMI_CR_OEBS |\ + DCMI_CR_LSM | DCMI_CR_OELS +#endif + ); + hdcmi->Instance->CR |= (uint32_t)(hdcmi->Init.SynchroMode | hdcmi->Init.CaptureRate |\ + hdcmi->Init.VSPolarity | hdcmi->Init.HSPolarity |\ + hdcmi->Init.PCKPolarity | hdcmi->Init.ExtendedDataMode |\ + hdcmi->Init.JPEGMode +#if defined(STM32F446xx) + | hdcmi->Init.ByteSelectMode |\ + hdcmi->Init.ByteSelectStart | hdcmi->Init.LineSelectMode |\ + hdcmi->Init.LineSelectStart +#endif + ); + if(hdcmi->Init.SynchroMode == DCMI_SYNCHRO_EMBEDDED) + { + DCMI->ESCR = (((uint32_t)hdcmi->Init.SyncroCode.FrameStartCode) | + ((uint32_t)hdcmi->Init.SyncroCode.LineStartCode << 8)| + ((uint32_t)hdcmi->Init.SyncroCode.LineEndCode << 16) | + ((uint32_t)hdcmi->Init.SyncroCode.FrameEndCode << 24)); + + } + + /* Enable the Line interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_LINE); + + /* Enable the VSYNC interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_VSYNC); + + /* Enable the Frame capture complete interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_FRAME); + + /* Enable the Synchronization error interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_ERR); + + /* Enable the Overflow interrupt */ + __HAL_DCMI_ENABLE_IT(hdcmi, DCMI_IT_OVF); + + /* Enable DCMI by setting DCMIEN bit */ + __HAL_DCMI_ENABLE(hdcmi); + + /* Update error code */ + hdcmi->ErrorCode = HAL_DCMI_ERROR_NONE; + + /* Initialize the DCMI state*/ + hdcmi->State = HAL_DCMI_STATE_READY; + + return HAL_OK; +} + + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_DCMI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma.c new file mode 100644 index 0000000..420e678 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma.c @@ -0,0 +1,928 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_dma.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief DMA HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Direct Memory Access (DMA) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and errors functions + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable and configure the peripheral to be connected to the DMA Stream + (except for internal SRAM/FLASH memories: no initialization is + necessary) please refer to Reference manual for connection between peripherals + and DMA requests . + + (#) For a given Stream, program the required configuration through the following parameters: + Transfer Direction, Source and Destination data formats, + Circular, Normal or peripheral flow control mode, Stream Priority level, + Source and Destination Increment mode, FIFO mode and its Threshold (if needed), + Burst mode for Source and/or Destination (if needed) using HAL_DMA_Init() function. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Use HAL_DMA_Start() to start DMA transfer after the configuration of Source + address and destination address and the Length of data to be transferred + (+) Use HAL_DMA_PollForTransfer() to poll for the end of current transfer, in this + case a fixed Timeout can be configured by User depending from his application. + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Configure the DMA interrupt priority using HAL_NVIC_SetPriority() + (+) Enable the DMA IRQ handler using HAL_NVIC_EnableIRQ() + (+) Use HAL_DMA_Start_IT() to start DMA transfer after the configuration of + Source address and destination address and the Length of data to be transferred. In this + case the DMA interrupt is configured + (+) Use HAL_DMA_IRQHandler() called under DMA_IRQHandler() Interrupt subroutine + (+) At the end of data transfer HAL_DMA_IRQHandler() function is executed and user can + add his own function by customization of function pointer XferCpltCallback and + XferErrorCallback (i.e a member of DMA handle structure). + [..] + (#) Use HAL_DMA_GetState() function to return the DMA state and HAL_DMA_GetError() in case of error + detection. + + (#) Use HAL_DMA_Abort() function to abort the current transfer + + -@- In Memory-to-Memory transfer mode, Circular mode is not allowed. + + -@- The FIFO is used mainly to reduce bus usage and to allow data packing/unpacking: it is + possible to set different Data Sizes for the Peripheral and the Memory (ie. you can set + Half-Word data size for the peripheral to access its data register and set Word data size + for the Memory to gain in access time. Each two half words will be packed and written in + a single access to a Word in the Memory). + + -@- When FIFO is disabled, it is not allowed to configure different Data Sizes for Source + and Destination. In this case the Peripheral Data Size will be applied to both Source + and Destination. + + *** DMA HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DMA HAL driver. + + (+) __HAL_DMA_ENABLE: Enable the specified DMA Stream. + (+) __HAL_DMA_DISABLE: Disable the specified DMA Stream. + (+) __HAL_DMA_GET_FS: Return the current DMA Stream FIFO filled level. + (+) __HAL_DMA_GET_FLAG: Get the DMA Stream pending flags. + (+) __HAL_DMA_CLEAR_FLAG: Clear the DMA Stream pending flags. + (+) __HAL_DMA_ENABLE_IT: Enable the specified DMA Stream interrupts. + (+) __HAL_DMA_DISABLE_IT: Disable the specified DMA Stream interrupts. + (+) __HAL_DMA_GET_IT_SOURCE: Check whether the specified DMA Stream interrupt has occurred or not. + + [..] + (@) You can refer to the DMA HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup DMA DMA + * @brief DMA HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup DMA_Private_Constants + * @{ + */ + #define HAL_TIMEOUT_DMA_ABORT ((uint32_t)1000) /* 1s */ +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup DMA_Private_Functions + * @{ + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ +/** @addtogroup DMA_Exported_Functions + * @{ + */ + +/** @addtogroup DMA_Exported_Functions_Group1 + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to initialize the DMA Stream source + and destination addresses, incrementation and data sizes, transfer direction, + circular/normal mode selection, memory-to-memory mode selection and Stream priority value. + [..] + The HAL_DMA_Init() function follows the DMA configuration procedures as described in + reference manual. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DMA according to the specified + * parameters in the DMA_InitTypeDef and create the associated handle. + * @param hdma: Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Init(DMA_HandleTypeDef *hdma) +{ + uint32_t tmp = 0; + + /* Check the DMA peripheral state */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA_STREAM_ALL_INSTANCE(hdma->Instance)); + assert_param(IS_DMA_CHANNEL(hdma->Init.Channel)); + assert_param(IS_DMA_DIRECTION(hdma->Init.Direction)); + assert_param(IS_DMA_PERIPHERAL_INC_STATE(hdma->Init.PeriphInc)); + assert_param(IS_DMA_MEMORY_INC_STATE(hdma->Init.MemInc)); + assert_param(IS_DMA_PERIPHERAL_DATA_SIZE(hdma->Init.PeriphDataAlignment)); + assert_param(IS_DMA_MEMORY_DATA_SIZE(hdma->Init.MemDataAlignment)); + assert_param(IS_DMA_MODE(hdma->Init.Mode)); + assert_param(IS_DMA_PRIORITY(hdma->Init.Priority)); + assert_param(IS_DMA_FIFO_MODE_STATE(hdma->Init.FIFOMode)); + /* Check the memory burst, peripheral burst and FIFO threshold parameters only + when FIFO mode is enabled */ + if(hdma->Init.FIFOMode != DMA_FIFOMODE_DISABLE) + { + assert_param(IS_DMA_FIFO_THRESHOLD(hdma->Init.FIFOThreshold)); + assert_param(IS_DMA_MEMORY_BURST(hdma->Init.MemBurst)); + assert_param(IS_DMA_PERIPHERAL_BURST(hdma->Init.PeriphBurst)); + } + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Get the CR register value */ + tmp = hdma->Instance->CR; + + /* Clear CHSEL, MBURST, PBURST, PL, MSIZE, PSIZE, MINC, PINC, CIRC, DIR, CT and DBM bits */ + tmp &= ((uint32_t)~(DMA_SxCR_CHSEL | DMA_SxCR_MBURST | DMA_SxCR_PBURST | \ + DMA_SxCR_PL | DMA_SxCR_MSIZE | DMA_SxCR_PSIZE | \ + DMA_SxCR_MINC | DMA_SxCR_PINC | DMA_SxCR_CIRC | \ + DMA_SxCR_DIR | DMA_SxCR_CT | DMA_SxCR_DBM)); + + /* Prepare the DMA Stream configuration */ + tmp |= hdma->Init.Channel | hdma->Init.Direction | + hdma->Init.PeriphInc | hdma->Init.MemInc | + hdma->Init.PeriphDataAlignment | hdma->Init.MemDataAlignment | + hdma->Init.Mode | hdma->Init.Priority; + + /* the Memory burst and peripheral burst are not used when the FIFO is disabled */ + if(hdma->Init.FIFOMode == DMA_FIFOMODE_ENABLE) + { + /* Get memory burst and peripheral burst */ + tmp |= hdma->Init.MemBurst | hdma->Init.PeriphBurst; + } + + /* Write to DMA Stream CR register */ + hdma->Instance->CR = tmp; + + /* Get the FCR register value */ + tmp = hdma->Instance->FCR; + + /* Clear Direct mode and FIFO threshold bits */ + tmp &= (uint32_t)~(DMA_SxFCR_DMDIS | DMA_SxFCR_FTH); + + /* Prepare the DMA Stream FIFO configuration */ + tmp |= hdma->Init.FIFOMode; + + /* the FIFO threshold is not used when the FIFO mode is disabled */ + if(hdma->Init.FIFOMode == DMA_FIFOMODE_ENABLE) + { + /* Get the FIFO threshold */ + tmp |= hdma->Init.FIFOThreshold; + } + + /* Write to DMA Stream FCR */ + hdma->Instance->FCR = tmp; + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the DMA peripheral + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_DeInit(DMA_HandleTypeDef *hdma) +{ + /* Check the DMA peripheral state */ + if(hdma == NULL) + { + return HAL_ERROR; + } + + /* Check the DMA peripheral state */ + if(hdma->State == HAL_DMA_STATE_BUSY) + { + return HAL_ERROR; + } + + /* Disable the selected DMA Streamx */ + __HAL_DMA_DISABLE(hdma); + + /* Reset DMA Streamx control register */ + hdma->Instance->CR = 0; + + /* Reset DMA Streamx number of data to transfer register */ + hdma->Instance->NDTR = 0; + + /* Reset DMA Streamx peripheral address register */ + hdma->Instance->PAR = 0; + + /* Reset DMA Streamx memory 0 address register */ + hdma->Instance->M0AR = 0; + + /* Reset DMA Streamx memory 1 address register */ + hdma->Instance->M1AR = 0; + + /* Reset DMA Streamx FIFO control register */ + hdma->Instance->FCR = (uint32_t)0x00000021; + + /* Clear all flags */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_DME_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_FE_FLAG_INDEX(hdma)); + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + + /* Initialize the error code */ + hdma->ErrorCode = HAL_DMA_ERROR_NONE; + + /* Initialize the DMA state */ + hdma->State = HAL_DMA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdma); + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup DMA_Exported_Functions_Group2 + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and Start DMA transfer + (+) Configure the source, destination address and data length and + Start DMA transfer with interrupt + (+) Abort DMA transfer + (+) Poll for transfer complete + (+) Handle DMA interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief Starts the DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Process locked */ + __HAL_LOCK(hdma); + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length */ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + + return HAL_OK; +} + +/** + * @brief Start the DMA Transfer with interrupt enabled. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Start_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Process locked */ + __HAL_LOCK(hdma); + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Configure the source, destination address and the data length */ + DMA_SetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the transfer complete interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TC); + + /* Enable the Half transfer complete interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_HT); + + /* Enable the transfer Error interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TE); + + /* Enable the FIFO Error interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_FE); + + /* Enable the direct mode Error interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_DME); + + /* Enable the Peripheral */ + __HAL_DMA_ENABLE(hdma); + + return HAL_OK; +} + +/** + * @brief Aborts the DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * + * @note After disabling a DMA Stream, a check for wait until the DMA Stream is + * effectively disabled is added. If a Stream is disabled + * while a data transfer is ongoing, the current data will be transferred + * and the Stream will be effectively disabled only after the transfer of + * this single data is finished. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_Abort(DMA_HandleTypeDef *hdma) +{ + uint32_t tickstart = 0; + + /* Disable the stream */ + __HAL_DMA_DISABLE(hdma); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the DMA Stream is effectively disabled */ + while((hdma->Instance->CR & DMA_SxCR_EN) != 0) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DMA_ABORT) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + /* Change the DMA state*/ + hdma->State = HAL_DMA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Polling for transfer complete. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param CompleteLevel: Specifies the DMA level complete. + * @param Timeout: Timeout duration. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA_PollForTransfer(DMA_HandleTypeDef *hdma, uint32_t CompleteLevel, uint32_t Timeout) +{ + uint32_t temp, tmp, tmp1, tmp2; + uint32_t tickstart = 0; + + /* Get the level transfer complete flag */ + if(CompleteLevel == HAL_DMA_FULL_TRANSFER) + { + /* Transfer Complete flag */ + temp = __HAL_DMA_GET_TC_FLAG_INDEX(hdma); + } + else + { + /* Half Transfer Complete flag */ + temp = __HAL_DMA_GET_HT_FLAG_INDEX(hdma); + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_DMA_GET_FLAG(hdma, temp) == RESET) + { + tmp = __HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)); + tmp1 = __HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_FE_FLAG_INDEX(hdma)); + tmp2 = __HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_DME_FLAG_INDEX(hdma)); + if((tmp != RESET) || (tmp1 != RESET) || (tmp2 != RESET)) + { + if(tmp != RESET) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TE; + + /* Clear the transfer error flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)); + } + if(tmp1 != RESET) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_FE; + + /* Clear the FIFO error flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_FE_FLAG_INDEX(hdma)); + } + if(tmp2 != RESET) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_DME; + + /* Clear the Direct Mode error flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_DME_FLAG_INDEX(hdma)); + } + /* Change the DMA state */ + hdma->State= HAL_DMA_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_ERROR; + } + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TIMEOUT; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + return HAL_TIMEOUT; + } + } + } + + if(CompleteLevel == HAL_DMA_FULL_TRANSFER) + { + /* Multi_Buffering mode enabled */ + if(((hdma->Instance->CR) & (uint32_t)(DMA_SxCR_DBM)) != 0) + { + /* Clear the half transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + /* Clear the transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)); + + /* Current memory buffer used is Memory 0 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == 0) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_MEM0; + } + /* Current memory buffer used is Memory 1 */ + else if((hdma->Instance->CR & DMA_SxCR_CT) != 0) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_MEM1; + } + } + else + { + /* Clear the half transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + /* Clear the transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)); + + /* The selected Streamx EN bit is cleared (DMA is disabled and all transfers + are complete) */ + hdma->State = HAL_DMA_STATE_READY_MEM0; + } + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + } + else + { + /* Multi_Buffering mode enabled */ + if(((hdma->Instance->CR) & (uint32_t)(DMA_SxCR_DBM)) != 0) + { + /* Clear the half transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + + /* Current memory buffer used is Memory 0 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == 0) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_HALF_MEM0; + } + /* Current memory buffer used is Memory 1 */ + else if((hdma->Instance->CR & DMA_SxCR_CT) != 0) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_HALF_MEM1; + } + } + else + { + /* Clear the half transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_HALF_MEM0; + } + } + return HAL_OK; +} + +/** + * @brief Handles DMA interrupt request. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval None + */ +void HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma) +{ + /* Transfer Error Interrupt management ***************************************/ + if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TE) != RESET) + { + /* Disable the transfer error interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TE); + + /* Clear the transfer error flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TE_FLAG_INDEX(hdma)); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_TE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if(hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + } + /* FIFO Error Interrupt management ******************************************/ + if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_FE_FLAG_INDEX(hdma)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_FE) != RESET) + { + /* Disable the FIFO Error interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_FE); + + /* Clear the FIFO error flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_FE_FLAG_INDEX(hdma)); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_FE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if(hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + } + /* Direct Mode Error Interrupt management ***********************************/ + if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_DME_FLAG_INDEX(hdma)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_DME) != RESET) + { + /* Disable the direct mode Error interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_DME); + + /* Clear the direct mode error flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_DME_FLAG_INDEX(hdma)); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_DME; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if(hdma->XferErrorCallback != NULL) + { + /* Transfer error callback */ + hdma->XferErrorCallback(hdma); + } + } + } + /* Half Transfer Complete Interrupt management ******************************/ + if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_HT) != RESET) + { + /* Multi_Buffering mode enabled */ + if(((hdma->Instance->CR) & (uint32_t)(DMA_SxCR_DBM)) != 0) + { + /* Clear the half transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + + /* Current memory buffer used is Memory 0 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == 0) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_HALF_MEM0; + } + /* Current memory buffer used is Memory 1 */ + else if((hdma->Instance->CR & DMA_SxCR_CT) != 0) + { + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_HALF_MEM1; + } + } + else + { + /* Disable the half transfer interrupt if the DMA mode is not CIRCULAR */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Disable the half transfer interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_HT); + } + /* Clear the half transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_HT_FLAG_INDEX(hdma)); + + /* Change DMA peripheral state */ + hdma->State = HAL_DMA_STATE_READY_HALF_MEM0; + } + + if(hdma->XferHalfCpltCallback != NULL) + { + /* Half transfer callback */ + hdma->XferHalfCpltCallback(hdma); + } + } + } + /* Transfer Complete Interrupt management ***********************************/ + if(__HAL_DMA_GET_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)) != RESET) + { + if(__HAL_DMA_GET_IT_SOURCE(hdma, DMA_IT_TC) != RESET) + { + if(((hdma->Instance->CR) & (uint32_t)(DMA_SxCR_DBM)) != 0) + { + /* Clear the transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)); + + /* Current memory buffer used is Memory 1 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == 0) + { + if(hdma->XferM1CpltCallback != NULL) + { + /* Transfer complete Callback for memory1 */ + hdma->XferM1CpltCallback(hdma); + } + } + /* Current memory buffer used is Memory 0 */ + else if((hdma->Instance->CR & DMA_SxCR_CT) != 0) + { + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete Callback for memory0 */ + hdma->XferCpltCallback(hdma); + } + } + } + /* Disable the transfer complete interrupt if the DMA mode is not CIRCULAR */ + else + { + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Disable the transfer complete interrupt */ + __HAL_DMA_DISABLE_IT(hdma, DMA_IT_TC); + } + /* Clear the transfer complete flag */ + __HAL_DMA_CLEAR_FLAG(hdma, __HAL_DMA_GET_TC_FLAG_INDEX(hdma)); + + /* Update error code */ + hdma->ErrorCode |= HAL_DMA_ERROR_NONE; + + /* Change the DMA state */ + hdma->State = HAL_DMA_STATE_READY_MEM0; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma); + + if(hdma->XferCpltCallback != NULL) + { + /* Transfer complete callback */ + hdma->XferCpltCallback(hdma); + } + } + } + } +} + +/** + * @} + */ + +/** @addtogroup DMA_Exported_Functions_Group3 + * +@verbatim + =============================================================================== + ##### State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the DMA state + (+) Get error code + +@endverbatim + * @{ + */ + +/** + * @brief Returns the DMA state. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval HAL state + */ +HAL_DMA_StateTypeDef HAL_DMA_GetState(DMA_HandleTypeDef *hdma) +{ + return hdma->State; +} + +/** + * @brief Return the DMA error code + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @retval DMA Error Code + */ +uint32_t HAL_DMA_GetError(DMA_HandleTypeDef *hdma) +{ + return hdma->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMA_Private_Functions + * @{ + */ + +/** + * @brief Sets the DMA Transfer parameter. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +static void DMA_SetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Clear DBM bit */ + hdma->Instance->CR &= (uint32_t)(~DMA_SxCR_DBM); + + /* Configure DMA Stream data length */ + hdma->Instance->NDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Stream destination address */ + hdma->Instance->PAR = DstAddress; + + /* Configure DMA Stream source address */ + hdma->Instance->M0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Stream source address */ + hdma->Instance->PAR = SrcAddress; + + /* Configure DMA Stream destination address */ + hdma->Instance->M0AR = DstAddress; + } +} +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma2d.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma2d.c new file mode 100644 index 0000000..a9d244c --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma2d.c @@ -0,0 +1,1266 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_dma2d.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief DMA2D HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the DMA2D peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Program the required configuration through following parameters: + the Transfer Mode, the output color mode and the output offset using + HAL_DMA2D_Init() function. + + (#) Program the required configuration through following parameters: + the input color mode, the input color, input alpha value, alpha mode + and the input offset using HAL_DMA2D_ConfigLayer() function for foreground + or/and background layer. + + *** Polling mode IO operation *** + ================================= + [..] + (+) Configure the pdata, Destination and data length and Enable + the transfer using HAL_DMA2D_Start() + (+) Wait for end of transfer using HAL_DMA2D_PollForTransfer(), at this stage + user can specify the value of timeout according to his end application. + + *** Interrupt mode IO operation *** + =================================== + [..] + (#) Configure the pdata, Destination and data length and Enable + the transfer using HAL_DMA2D_Start_IT() + (#) Use HAL_DMA2D_IRQHandler() called under DMA2D_IRQHandler() Interrupt subroutine + (#) At the end of data transfer HAL_DMA2D_IRQHandler() function is executed and user can + add his own function by customization of function pointer XferCpltCallback and + XferErrorCallback (i.e a member of DMA2D handle structure). + + -@- In Register-to-Memory transfer mode, the pdata parameter is the register + color, in Memory-to-memory or memory-to-memory with pixel format + conversion the pdata is the source address. + + -@- Configure the foreground source address, the background source address, + the Destination and data length and Enable the transfer using + HAL_DMA2D_BlendingStart() in polling mode and HAL_DMA2D_BlendingStart_IT() + in interrupt mode. + + -@- HAL_DMA2D_BlendingStart() and HAL_DMA2D_BlendingStart_IT() functions + are used if the memory to memory with blending transfer mode is selected. + + (#) Optionally, configure and enable the CLUT using HAL_DMA2D_ConfigCLUT() + HAL_DMA2D_EnableCLUT() functions. + + (#) Optionally, configure and enable LineInterrupt using the following function: + HAL_DMA2D_ProgramLineEvent(). + + (#) The transfer can be suspended, continued and aborted using the following + functions: HAL_DMA2D_Suspend(), HAL_DMA2D_Resume(), HAL_DMA2D_Abort(). + + (#) To control DMA2D state you can use the following function: HAL_DMA2D_GetState() + + *** DMA2D HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in DMA2D HAL driver : + + (+) __HAL_DMA2D_ENABLE: Enable the DMA2D peripheral. + (+) __HAL_DMA2D_DISABLE: Disable the DMA2D peripheral. + (+) __HAL_DMA2D_GET_FLAG: Get the DMA2D pending flags. + (+) __HAL_DMA2D_CLEAR_FLAG: Clear the DMA2D pending flags. + (+) __HAL_DMA2D_ENABLE_IT: Enable the specified DMA2D interrupts. + (+) __HAL_DMA2D_DISABLE_IT: Disable the specified DMA2D interrupts. + (+) __HAL_DMA2D_GET_IT_SOURCE: Check whether the specified DMA2D interrupt has occurred or not. + + [..] + (@) You can refer to the DMA2D HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ +/** @addtogroup DMA2D + * @brief DMA2D HAL module driver + * @{ + */ + +#ifdef HAL_DMA2D_MODULE_ENABLED + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) + +/* Private types -------------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup DMA2D_Private_Defines + * @{ + */ +#define HAL_TIMEOUT_DMA2D_ABORT ((uint32_t)1000) /* 1s */ +#define HAL_TIMEOUT_DMA2D_SUSPEND ((uint32_t)1000) /* 1s */ +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup DMA2D_Private_Functions_Prototypes + * @{ + */ +static void DMA2D_SetConfig(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup DMA2D_Exported_Functions + * @{ + */ + +/** @defgroup DMA2D_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the DMA2D + (+) De-initialize the DMA2D + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the DMA2D according to the specified + * parameters in the DMA2D_InitTypeDef and create the associated handle. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Init(DMA2D_HandleTypeDef *hdma2d) +{ + uint32_t tmp = 0; + + /* Check the DMA2D peripheral state */ + if(hdma2d == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_DMA2D_ALL_INSTANCE(hdma2d->Instance)); + assert_param(IS_DMA2D_MODE(hdma2d->Init.Mode)); + assert_param(IS_DMA2D_CMODE(hdma2d->Init.ColorMode)); + assert_param(IS_DMA2D_OFFSET(hdma2d->Init.OutputOffset)); + + if(hdma2d->State == HAL_DMA2D_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hdma2d->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_DMA2D_MspInit(hdma2d); + } + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + +/* DMA2D CR register configuration -------------------------------------------*/ + /* Get the CR register value */ + tmp = hdma2d->Instance->CR; + + /* Clear Mode bits */ + tmp &= (uint32_t)~DMA2D_CR_MODE; + + /* Prepare the value to be wrote to the CR register */ + tmp |= hdma2d->Init.Mode; + + /* Write to DMA2D CR register */ + hdma2d->Instance->CR = tmp; + +/* DMA2D OPFCCR register configuration ---------------------------------------*/ + /* Get the OPFCCR register value */ + tmp = hdma2d->Instance->OPFCCR; + + /* Clear Color Mode bits */ + tmp &= (uint32_t)~DMA2D_OPFCCR_CM; + + /* Prepare the value to be wrote to the OPFCCR register */ + tmp |= hdma2d->Init.ColorMode; + + /* Write to DMA2D OPFCCR register */ + hdma2d->Instance->OPFCCR = tmp; + +/* DMA2D OOR register configuration ------------------------------------------*/ + /* Get the OOR register value */ + tmp = hdma2d->Instance->OOR; + + /* Clear Offset bits */ + tmp &= (uint32_t)~DMA2D_OOR_LO; + + /* Prepare the value to be wrote to the OOR register */ + tmp |= hdma2d->Init.OutputOffset; + + /* Write to DMA2D OOR register */ + hdma2d->Instance->OOR = tmp; + + /* Update error code */ + hdma2d->ErrorCode = HAL_DMA2D_ERROR_NONE; + + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Deinitializes the DMA2D peripheral registers to their default reset + * values. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ + +HAL_StatusTypeDef HAL_DMA2D_DeInit(DMA2D_HandleTypeDef *hdma2d) +{ + /* Check the DMA2D peripheral state */ + if(hdma2d == NULL) + { + return HAL_ERROR; + } + + /* DeInit the low level hardware */ + HAL_DMA2D_MspDeInit(hdma2d); + + /* Update error code */ + hdma2d->ErrorCode = HAL_DMA2D_ERROR_NONE; + + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Initializes the DMA2D MSP. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ +__weak void HAL_DMA2D_MspInit(DMA2D_HandleTypeDef* hdma2d) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DMA2D_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the DMA2D MSP. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval None + */ +__weak void HAL_DMA2D_MspDeInit(DMA2D_HandleTypeDef* hdma2d) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_DMA2D_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup DMA2D_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the pdata, destination address and data size and + Start DMA2D transfer. + (+) Configure the source for foreground and background, destination address + and data size and Start MultiBuffer DMA2D transfer. + (+) Configure the pdata, destination address and data size and + Start DMA2D transfer with interrupt. + (+) Configure the source for foreground and background, destination address + and data size and Start MultiBuffer DMA2D transfer with interrupt. + (+) Abort DMA2D transfer. + (+) Suspend DMA2D transfer. + (+) Continue DMA2D transfer. + (+) Poll for transfer complete. + (+) handle DMA2D interrupt request. + +@endverbatim + * @{ + */ + +/** + * @brief Start the DMA2D Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param pdata: Configure the source memory Buffer address if + * the memory to memory or memory to memory with pixel format + * conversion DMA2D mode is selected, and configure + * the color value if register to memory DMA2D mode is selected. + * @param DstAddress: The destination memory Buffer address. + * @param Width: The width of data to be transferred from source to destination. + * @param Height: The height of data to be transferred from source to destination. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Start(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Disable the Peripheral */ + __HAL_DMA2D_DISABLE(hdma2d); + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, pdata, DstAddress, Width, Height); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + return HAL_OK; +} + +/** + * @brief Start the DMA2D Transfer with interrupt enabled. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param pdata: Configure the source memory Buffer address if + * the memory to memory or memory to memory with pixel format + * conversion DMA2D mode is selected, and configure + * the color value if register to memory DMA2D mode is selected. + * @param DstAddress: The destination memory Buffer address. + * @param Width: The width of data to be transferred from source to destination. + * @param Height: The height of data to be transferred from source to destination. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Start_IT(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Disable the Peripheral */ + __HAL_DMA2D_DISABLE(hdma2d); + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, pdata, DstAddress, Width, Height); + + /* Enable the transfer complete interrupt */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_TC); + + /* Enable the transfer Error interrupt */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_TE); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + /* Enable the configuration error interrupt */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_CE); + + return HAL_OK; +} + +/** + * @brief Start the multi-source DMA2D Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param SrcAddress1: The source memory Buffer address of the foreground layer. + * @param SrcAddress2: The source memory Buffer address of the background layer. + * @param DstAddress: The destination memory Buffer address + * @param Width: The width of data to be transferred from source to destination. + * @param Height: The height of data to be transferred from source to destination. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_BlendingStart(DMA2D_HandleTypeDef *hdma2d, uint32_t SrcAddress1, uint32_t SrcAddress2, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Disable the Peripheral */ + __HAL_DMA2D_DISABLE(hdma2d); + + /* Configure DMA2D Stream source2 address */ + hdma2d->Instance->BGMAR = SrcAddress2; + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, SrcAddress1, DstAddress, Width, Height); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + return HAL_OK; +} + +/** + * @brief Start the multi-source DMA2D Transfer with interrupt enabled. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param SrcAddress1: The source memory Buffer address of the foreground layer. + * @param SrcAddress2: The source memory Buffer address of the background layer. + * @param DstAddress: The destination memory Buffer address. + * @param Width: The width of data to be transferred from source to destination. + * @param Height: The height of data to be transferred from source to destination. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_BlendingStart_IT(DMA2D_HandleTypeDef *hdma2d, uint32_t SrcAddress1, uint32_t SrcAddress2, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA2D_LINE(Height)); + assert_param(IS_DMA2D_PIXEL(Width)); + + /* Disable the Peripheral */ + __HAL_DMA2D_DISABLE(hdma2d); + + /* Configure DMA2D Stream source2 address */ + hdma2d->Instance->BGMAR = SrcAddress2; + + /* Configure the source, destination address and the data size */ + DMA2D_SetConfig(hdma2d, SrcAddress1, DstAddress, Width, Height); + + /* Enable the configuration error interrupt */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_CE); + + /* Enable the transfer complete interrupt */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_TC); + + /* Enable the transfer Error interrupt */ + __HAL_DMA2D_ENABLE_IT(hdma2d, DMA2D_IT_TE); + + /* Enable the Peripheral */ + __HAL_DMA2D_ENABLE(hdma2d); + + return HAL_OK; +} + +/** + * @brief Abort the DMA2D Transfer. + * @param hdma2d : pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Abort(DMA2D_HandleTypeDef *hdma2d) +{ + uint32_t tickstart = 0; + + /* Disable the DMA2D */ + __HAL_DMA2D_DISABLE(hdma2d); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the DMA2D is effectively disabled */ + while((hdma2d->Instance->CR & DMA2D_CR_START) != 0) + { + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DMA2D_ABORT) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_TIMEOUT; + } + } + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + /* Change the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Suspend the DMA2D Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Suspend(DMA2D_HandleTypeDef *hdma2d) +{ + uint32_t tickstart = 0; + + /* Suspend the DMA2D transfer */ + hdma2d->Instance->CR |= DMA2D_CR_SUSP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if the DMA2D is effectively suspended */ + while((hdma2d->Instance->CR & DMA2D_CR_SUSP) != DMA2D_CR_SUSP) + { + if((HAL_GetTick() - tickstart ) > HAL_TIMEOUT_DMA2D_SUSPEND) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + /* Change the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_SUSPEND; + + return HAL_OK; +} + +/** + * @brief Resume the DMA2D Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_Resume(DMA2D_HandleTypeDef *hdma2d) +{ + /* Resume the DMA2D transfer */ + hdma2d->Instance->CR &= ~DMA2D_CR_SUSP; + + /* Change the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + return HAL_OK; +} + +/** + * @brief Polling for transfer complete or CLUT loading. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_PollForTransfer(DMA2D_HandleTypeDef *hdma2d, uint32_t Timeout) +{ + uint32_t tmp, tmp1; + uint32_t tickstart = 0; + + /* Polling for DMA2D transfer */ + if((hdma2d->Instance->CR & DMA2D_CR_START) != 0) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_TC) == RESET) + { + tmp = __HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_CE); + tmp1 = __HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_TE); + + if((tmp != RESET) || (tmp1 != RESET)) + { + /* Clear the transfer and configuration error flags */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CE); + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TE); + + /* Change DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_ERROR; + } + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + } + /* Polling for CLUT loading */ + if((hdma2d->Instance->FGPFCCR & DMA2D_FGPFCCR_START) != 0) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_CTC) == RESET) + { + if((__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_CAE) != RESET)) + { + /* Clear the transfer and configuration error flags */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CAE); + + /* Change DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_ERROR; + + return HAL_ERROR; + } + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TIMEOUT; + + /* Change the DMA2D state */ + hdma2d->State= HAL_DMA2D_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + } + /* Clear the transfer complete flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TC); + + /* Clear the CLUT loading flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CTC); + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} +/** + * @brief Handles DMA2D interrupt request. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL status + */ +void HAL_DMA2D_IRQHandler(DMA2D_HandleTypeDef *hdma2d) +{ + /* Transfer Error Interrupt management ***************************************/ + if(__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_TE) != RESET) + { + if(__HAL_DMA2D_GET_IT_SOURCE(hdma2d, DMA2D_IT_TE) != RESET) + { + /* Disable the transfer Error interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_TE); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_TE; + + /* Clear the transfer error flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TE); + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + if(hdma2d->XferErrorCallback != NULL) + { + /* Transfer error Callback */ + hdma2d->XferErrorCallback(hdma2d); + } + } + } + /* Configuration Error Interrupt management **********************************/ + if(__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_CE) != RESET) + { + if(__HAL_DMA2D_GET_IT_SOURCE(hdma2d, DMA2D_IT_CE) != RESET) + { + /* Disable the Configuration Error interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_CE); + + /* Clear the Configuration error flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_CE); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_CE; + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + if(hdma2d->XferErrorCallback != NULL) + { + /* Transfer error Callback */ + hdma2d->XferErrorCallback(hdma2d); + } + } + } + /* Transfer Complete Interrupt management ************************************/ + if(__HAL_DMA2D_GET_FLAG(hdma2d, DMA2D_FLAG_TC) != RESET) + { + if(__HAL_DMA2D_GET_IT_SOURCE(hdma2d, DMA2D_IT_TC) != RESET) + { + /* Disable the transfer complete interrupt */ + __HAL_DMA2D_DISABLE_IT(hdma2d, DMA2D_IT_TC); + + /* Clear the transfer complete flag */ + __HAL_DMA2D_CLEAR_FLAG(hdma2d, DMA2D_FLAG_TC); + + /* Update error code */ + hdma2d->ErrorCode |= HAL_DMA2D_ERROR_NONE; + + /* Change DMA2D state */ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hdma2d); + + if(hdma2d->XferCpltCallback != NULL) + { + /* Transfer complete Callback */ + hdma2d->XferCpltCallback(hdma2d); + } + } + } +} + +/** + * @} + */ + +/** @defgroup DMA2D_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the DMA2D foreground or/and background parameters. + (+) Configure the DMA2D CLUT transfer. + (+) Enable DMA2D CLUT. + (+) Disable DMA2D CLUT. + (+) Configure the line watermark + +@endverbatim + * @{ + */ +/** + * @brief Configure the DMA2D Layer according to the specified + * parameters in the DMA2D_InitTypeDef and create the associated handle. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_ConfigLayer(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + DMA2D_LayerCfgTypeDef *pLayerCfg = &hdma2d->LayerCfg[LayerIdx]; + + uint32_t tmp = 0; + + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + assert_param(IS_DMA2D_OFFSET(pLayerCfg->InputOffset)); + if(hdma2d->Init.Mode != DMA2D_R2M) + { + assert_param(IS_DMA2D_INPUT_COLOR_MODE(pLayerCfg->InputColorMode)); + if(hdma2d->Init.Mode != DMA2D_M2M) + { + assert_param(IS_DMA2D_ALPHA_MODE(pLayerCfg->AlphaMode)); + } + } + + /* Configure the background DMA2D layer */ + if(LayerIdx == 0) + { + /* DMA2D BGPFCR register configuration -----------------------------------*/ + /* Get the BGPFCCR register value */ + tmp = hdma2d->Instance->BGPFCCR; + + /* Clear Input color mode, alpha value and alpha mode bits */ + tmp &= (uint32_t)~(DMA2D_BGPFCCR_CM | DMA2D_BGPFCCR_AM | DMA2D_BGPFCCR_ALPHA); + + if ((pLayerCfg->InputColorMode == CM_A4) || (pLayerCfg->InputColorMode == CM_A8)) + { + /* Prepare the value to be wrote to the BGPFCCR register */ + tmp |= (pLayerCfg->InputColorMode | (pLayerCfg->AlphaMode << 16) | ((pLayerCfg->InputAlpha) & 0xFF000000)); + } + else + { + /* Prepare the value to be wrote to the BGPFCCR register */ + tmp |= (pLayerCfg->InputColorMode | (pLayerCfg->AlphaMode << 16) | (pLayerCfg->InputAlpha << 24)); + } + + /* Write to DMA2D BGPFCCR register */ + hdma2d->Instance->BGPFCCR = tmp; + + /* DMA2D BGOR register configuration -------------------------------------*/ + /* Get the BGOR register value */ + tmp = hdma2d->Instance->BGOR; + + /* Clear colors bits */ + tmp &= (uint32_t)~DMA2D_BGOR_LO; + + /* Prepare the value to be wrote to the BGOR register */ + tmp |= pLayerCfg->InputOffset; + + /* Write to DMA2D BGOR register */ + hdma2d->Instance->BGOR = tmp; + + if ((pLayerCfg->InputColorMode == CM_A4) || (pLayerCfg->InputColorMode == CM_A8)) + { + /* Prepare the value to be wrote to the BGCOLR register */ + tmp = ((pLayerCfg->InputAlpha) & 0x00FFFFFF); + + /* Write to DMA2D BGCOLR register */ + hdma2d->Instance->BGCOLR = tmp; + } + } + /* Configure the foreground DMA2D layer */ + else + { + /* DMA2D FGPFCR register configuration -----------------------------------*/ + /* Get the FGPFCCR register value */ + tmp = hdma2d->Instance->FGPFCCR; + + /* Clear Input color mode, alpha value and alpha mode bits */ + tmp &= (uint32_t)~(DMA2D_FGPFCCR_CM | DMA2D_FGPFCCR_AM | DMA2D_FGPFCCR_ALPHA); + + if ((pLayerCfg->InputColorMode == CM_A4) || (pLayerCfg->InputColorMode == CM_A8)) + { + /* Prepare the value to be wrote to the FGPFCCR register */ + tmp |= (pLayerCfg->InputColorMode | (pLayerCfg->AlphaMode << 16) | ((pLayerCfg->InputAlpha) & 0xFF000000)); + } + else + { + /* Prepare the value to be wrote to the FGPFCCR register */ + tmp |= (pLayerCfg->InputColorMode | (pLayerCfg->AlphaMode << 16) | (pLayerCfg->InputAlpha << 24)); + } + + /* Write to DMA2D FGPFCCR register */ + hdma2d->Instance->FGPFCCR = tmp; + + /* DMA2D FGOR register configuration -------------------------------------*/ + /* Get the FGOR register value */ + tmp = hdma2d->Instance->FGOR; + + /* Clear colors bits */ + tmp &= (uint32_t)~DMA2D_FGOR_LO; + + /* Prepare the value to be wrote to the FGOR register */ + tmp |= pLayerCfg->InputOffset; + + /* Write to DMA2D FGOR register */ + hdma2d->Instance->FGOR = tmp; + + if ((pLayerCfg->InputColorMode == CM_A4) || (pLayerCfg->InputColorMode == CM_A8)) + { + /* Prepare the value to be wrote to the FGCOLR register */ + tmp = ((pLayerCfg->InputAlpha) & 0x00FFFFFF); + + /* Write to DMA2D FGCOLR register */ + hdma2d->Instance->FGCOLR = tmp; + } + } + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @brief Configure the DMA2D CLUT Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param CLUTCfg: pointer to a DMA2D_CLUTCfgTypeDef structure that contains + * the configuration information for the color look up table. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_ConfigCLUT(DMA2D_HandleTypeDef *hdma2d, DMA2D_CLUTCfgTypeDef CLUTCfg, uint32_t LayerIdx) +{ + uint32_t tmp = 0, tmp1 = 0; + + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + assert_param(IS_DMA2D_CLUT_CM(CLUTCfg.CLUTColorMode)); + assert_param(IS_DMA2D_CLUT_SIZE(CLUTCfg.Size)); + + /* Configure the CLUT of the background DMA2D layer */ + if(LayerIdx == 0) + { + /* Get the BGCMAR register value */ + tmp = hdma2d->Instance->BGCMAR; + + /* Clear CLUT address bits */ + tmp &= (uint32_t)~DMA2D_BGCMAR_MA; + + /* Prepare the value to be wrote to the BGCMAR register */ + tmp |= (uint32_t)CLUTCfg.pCLUT; + + /* Write to DMA2D BGCMAR register */ + hdma2d->Instance->BGCMAR = tmp; + + /* Get the BGPFCCR register value */ + tmp = hdma2d->Instance->BGPFCCR; + + /* Clear CLUT size and CLUT address bits */ + tmp &= (uint32_t)~(DMA2D_BGPFCCR_CS | DMA2D_BGPFCCR_CCM); + + /* Get the CLUT size */ + tmp1 = CLUTCfg.Size << 16; + + /* Prepare the value to be wrote to the BGPFCCR register */ + tmp |= (CLUTCfg.CLUTColorMode | tmp1); + + /* Write to DMA2D BGPFCCR register */ + hdma2d->Instance->BGPFCCR = tmp; + } + /* Configure the CLUT of the foreground DMA2D layer */ + else + { + /* Get the FGCMAR register value */ + tmp = hdma2d->Instance->FGCMAR; + + /* Clear CLUT address bits */ + tmp &= (uint32_t)~DMA2D_FGCMAR_MA; + + /* Prepare the value to be wrote to the FGCMAR register */ + tmp |= (uint32_t)CLUTCfg.pCLUT; + + /* Write to DMA2D FGCMAR register */ + hdma2d->Instance->FGCMAR = tmp; + + /* Get the FGPFCCR register value */ + tmp = hdma2d->Instance->FGPFCCR; + + /* Clear CLUT size and CLUT address bits */ + tmp &= (uint32_t)~(DMA2D_FGPFCCR_CS | DMA2D_FGPFCCR_CCM); + + /* Get the CLUT size */ + tmp1 = CLUTCfg.Size << 8; + + /* Prepare the value to be wrote to the FGPFCCR register */ + tmp |= (CLUTCfg.CLUTColorMode | tmp1); + + /* Write to DMA2D FGPFCCR register */ + hdma2d->Instance->FGPFCCR = tmp; + } + + return HAL_OK; +} + +/** + * @brief Enable the DMA2D CLUT Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_EnableCLUT(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + + if(LayerIdx == 0) + { + /* Enable the CLUT loading for the background */ + hdma2d->Instance->BGPFCCR |= DMA2D_BGPFCCR_START; + } + else + { + /* Enable the CLUT loading for the foreground */ + hdma2d->Instance->FGPFCCR |= DMA2D_FGPFCCR_START; + } + + return HAL_OK; +} + +/** + * @brief Disable the DMA2D CLUT Transfer. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param LayerIdx: DMA2D Layer index. + * This parameter can be one of the following values: + * 0(background) / 1(foreground) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMA2D_DisableCLUT(DMA2D_HandleTypeDef *hdma2d, uint32_t LayerIdx) +{ + /* Check the parameters */ + assert_param(IS_DMA2D_LAYER(LayerIdx)); + + if(LayerIdx == 0) + { + /* Disable the CLUT loading for the background */ + hdma2d->Instance->BGPFCCR &= ~DMA2D_BGPFCCR_START; + } + else + { + /* Disable the CLUT loading for the foreground */ + hdma2d->Instance->FGPFCCR &= ~DMA2D_FGPFCCR_START; + } + + return HAL_OK; +} + +/** + * @brief Define the configuration of the line watermark . + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @param Line: Line Watermark configuration. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_DMA2D_ProgramLineEvent(DMA2D_HandleTypeDef *hdma2d, uint32_t Line) +{ + /* Process locked */ + __HAL_LOCK(hdma2d); + + /* Change DMA2D peripheral state */ + hdma2d->State = HAL_DMA2D_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_DMA2D_LineWatermark(Line)); + + /* Sets the Line watermark configuration */ + DMA2D->LWR = (uint32_t)Line; + + /* Initialize the DMA2D state*/ + hdma2d->State = HAL_DMA2D_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hdma2d); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup DMA2D_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to : + (+) Check the DMA2D state + (+) Get error code + +@endverbatim + * @{ + */ + +/** + * @brief Return the DMA2D state + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the DMA2D. + * @retval HAL state + */ +HAL_DMA2D_StateTypeDef HAL_DMA2D_GetState(DMA2D_HandleTypeDef *hdma2d) +{ + return hdma2d->State; +} + +/** + * @brief Return the DMA2D error code + * @param hdma2d : pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for DMA2D. + * @retval DMA2D Error Code + */ +uint32_t HAL_DMA2D_GetError(DMA2D_HandleTypeDef *hdma2d) +{ + return hdma2d->ErrorCode; +} + +/** + * @} + */ + + +/** + * @brief Set the DMA2D Transfer parameter. + * @param hdma2d: pointer to a DMA2D_HandleTypeDef structure that contains + * the configuration information for the specified DMA2D. + * @param pdata: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param Width: The width of data to be transferred from source to destination. + * @param Height: The height of data to be transferred from source to destination. + * @retval HAL status + */ +static void DMA2D_SetConfig(DMA2D_HandleTypeDef *hdma2d, uint32_t pdata, uint32_t DstAddress, uint32_t Width, uint32_t Height) +{ + uint32_t tmp = 0; + uint32_t tmp1 = 0; + uint32_t tmp2 = 0; + uint32_t tmp3 = 0; + uint32_t tmp4 = 0; + + tmp = Width << 16; + + /* Configure DMA2D data size */ + hdma2d->Instance->NLR = (Height | tmp); + + /* Configure DMA2D destination address */ + hdma2d->Instance->OMAR = DstAddress; + + /* Register to memory DMA2D mode selected */ + if (hdma2d->Init.Mode == DMA2D_R2M) + { + tmp1 = pdata & DMA2D_OCOLR_ALPHA_1; + tmp2 = pdata & DMA2D_OCOLR_RED_1; + tmp3 = pdata & DMA2D_OCOLR_GREEN_1; + tmp4 = pdata & DMA2D_OCOLR_BLUE_1; + + /* Prepare the value to be wrote to the OCOLR register according to the color mode */ + if (hdma2d->Init.ColorMode == DMA2D_ARGB8888) + { + tmp = (tmp3 | tmp2 | tmp1| tmp4); + } + else if (hdma2d->Init.ColorMode == DMA2D_RGB888) + { + tmp = (tmp3 | tmp2 | tmp4); + } + else if (hdma2d->Init.ColorMode == DMA2D_RGB565) + { + tmp2 = (tmp2 >> 19); + tmp3 = (tmp3 >> 10); + tmp4 = (tmp4 >> 3 ); + tmp = ((tmp3 << 5) | (tmp2 << 11) | tmp4); + } + else if (hdma2d->Init.ColorMode == DMA2D_ARGB1555) + { + tmp1 = (tmp1 >> 31); + tmp2 = (tmp2 >> 19); + tmp3 = (tmp3 >> 11); + tmp4 = (tmp4 >> 3 ); + tmp = ((tmp3 << 5) | (tmp2 << 10) | (tmp1 << 15) | tmp4); + } + else /* DMA2D_CMode = DMA2D_ARGB4444 */ + { + tmp1 = (tmp1 >> 28); + tmp2 = (tmp2 >> 20); + tmp3 = (tmp3 >> 12); + tmp4 = (tmp4 >> 4 ); + tmp = ((tmp3 << 4) | (tmp2 << 8) | (tmp1 << 12) | tmp4); + } + /* Write to DMA2D OCOLR register */ + hdma2d->Instance->OCOLR = tmp; + } + else /* M2M, M2M_PFC or M2M_Blending DMA2D Mode */ + { + /* Configure DMA2D source address */ + hdma2d->Instance->FGMAR = pdata; + } +} + +/** + * @} + */ +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ +#endif /* HAL_DMA2D_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma_ex.c new file mode 100644 index 0000000..923883e --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dma_ex.c @@ -0,0 +1,307 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_dma_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief DMA Extension HAL module driver + * This file provides firmware functions to manage the following + * functionalities of the DMA Extension peripheral: + * + Extended features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The DMA Extension HAL driver can be used as follows: + (#) Start a multi buffer transfer using the HAL_DMA_MultiBufferStart() function + for polling mode or HAL_DMA_MultiBufferStart_IT() for interrupt mode. + + -@- In Memory-to-Memory transfer mode, Multi (Double) Buffer mode is not allowed. + -@- When Multi (Double) Buffer mode is enabled the, transfer is circular by default. + -@- In Multi (Double) buffer mode, it is possible to update the base address for + the AHB memory port on the fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup DMAEx DMAEx + * @brief DMA Extended HAL module driver + * @{ + */ + +#ifdef HAL_DMA_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private Constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup DMAEx_Private_Functions + * @{ + */ +static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @addtogroup DMAEx_Exported_Functions + * @{ + */ + + +/** @addtogroup DMAEx_Exported_Functions_Group1 + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the source, destination address and data length and + Start MultiBuffer DMA transfer + (+) Configure the source, destination address and data length and + Start MultiBuffer DMA transfer with interrupt + (+) Change on the fly the memory0 or memory1 address. + +@endverbatim + * @{ + */ + + +/** + * @brief Starts the multi_buffer DMA Transfer. + * @param hdma : pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param SecondMemAddress: The second memory Buffer address in case of multi buffer Transfer + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength) +{ + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Current memory buffer used is Memory 0 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == 0) + { + hdma->State = HAL_DMA_STATE_BUSY_MEM0; + } + /* Current memory buffer used is Memory 1 */ + else if((hdma->Instance->CR & DMA_SxCR_CT) != 0) + { + hdma->State = HAL_DMA_STATE_BUSY_MEM1; + } + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Enable the double buffer mode */ + hdma->Instance->CR |= (uint32_t)DMA_SxCR_DBM; + + /* Configure DMA Stream destination address */ + hdma->Instance->M1AR = SecondMemAddress; + + /* Configure the source, destination address and the data length */ + DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the peripheral */ + __HAL_DMA_ENABLE(hdma); + + return HAL_OK; +} + +/** + * @brief Starts the multi_buffer DMA Transfer with interrupt enabled. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param SecondMemAddress: The second memory Buffer address in case of multi buffer Transfer + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_MultiBufferStart_IT(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t SecondMemAddress, uint32_t DataLength) +{ + /* Process Locked */ + __HAL_LOCK(hdma); + + /* Current memory buffer used is Memory 0 */ + if((hdma->Instance->CR & DMA_SxCR_CT) == 0) + { + hdma->State = HAL_DMA_STATE_BUSY_MEM0; + } + /* Current memory buffer used is Memory 1 */ + else if((hdma->Instance->CR & DMA_SxCR_CT) != 0) + { + hdma->State = HAL_DMA_STATE_BUSY_MEM1; + } + + /* Check the parameters */ + assert_param(IS_DMA_BUFFER_SIZE(DataLength)); + + /* Disable the peripheral */ + __HAL_DMA_DISABLE(hdma); + + /* Enable the Double buffer mode */ + hdma->Instance->CR |= (uint32_t)DMA_SxCR_DBM; + + /* Configure DMA Stream destination address */ + hdma->Instance->M1AR = SecondMemAddress; + + /* Configure the source, destination address and the data length */ + DMA_MultiBufferSetConfig(hdma, SrcAddress, DstAddress, DataLength); + + /* Enable the transfer complete interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TC); + + /* Enable the Half transfer interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_HT); + + /* Enable the transfer Error interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_TE); + + /* Enable the fifo Error interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_FE); + + /* Enable the direct mode Error interrupt */ + __HAL_DMA_ENABLE_IT(hdma, DMA_IT_DME); + + /* Enable the peripheral */ + __HAL_DMA_ENABLE(hdma); + + return HAL_OK; +} + +/** + * @brief Change the memory0 or memory1 address on the fly. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param Address: The new address + * @param memory: the memory to be changed, This parameter can be one of + * the following values: + * MEMORY0 / + * MEMORY1 + * @note The MEMORY0 address can be changed only when the current transfer use + * MEMORY1 and the MEMORY1 address can be changed only when the current + * transfer use MEMORY0. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_DMAEx_ChangeMemory(DMA_HandleTypeDef *hdma, uint32_t Address, HAL_DMA_MemoryTypeDef memory) +{ + if(memory == MEMORY0) + { + /* change the memory0 address */ + hdma->Instance->M0AR = Address; + } + else + { + /* change the memory1 address */ + hdma->Instance->M1AR = Address; + } + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup DMAEx_Private_Functions + * @{ + */ + +/** + * @brief Set the DMA Transfer parameter. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA Stream. + * @param SrcAddress: The source memory Buffer address + * @param DstAddress: The destination memory Buffer address + * @param DataLength: The length of data to be transferred from source to destination + * @retval HAL status + */ +static void DMA_MultiBufferSetConfig(DMA_HandleTypeDef *hdma, uint32_t SrcAddress, uint32_t DstAddress, uint32_t DataLength) +{ + /* Configure DMA Stream data length */ + hdma->Instance->NDTR = DataLength; + + /* Peripheral to Memory */ + if((hdma->Init.Direction) == DMA_MEMORY_TO_PERIPH) + { + /* Configure DMA Stream destination address */ + hdma->Instance->PAR = DstAddress; + + /* Configure DMA Stream source address */ + hdma->Instance->M0AR = SrcAddress; + } + /* Memory to Peripheral */ + else + { + /* Configure DMA Stream source address */ + hdma->Instance->PAR = SrcAddress; + + /* Configure DMA Stream destination address */ + hdma->Instance->M0AR = DstAddress; + } +} + +/** + * @} + */ + +#endif /* HAL_DMA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_eth.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_eth.c new file mode 100644 index 0000000..686e3e7 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_eth.c @@ -0,0 +1,2017 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_eth.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief ETH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Ethernet (ETH) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Declare a ETH_HandleTypeDef handle structure, for example: + ETH_HandleTypeDef heth; + + (#)Fill parameters of Init structure in heth handle + + (#)Call HAL_ETH_Init() API to initialize the Ethernet peripheral (MAC, DMA, ...) + + (#)Initialize the ETH low level resources through the HAL_ETH_MspInit() API: + (##) Enable the Ethernet interface clock using + (+++) __HAL_RCC_ETHMAC_CLK_ENABLE(); + (+++) __HAL_RCC_ETHMACTX_CLK_ENABLE(); + (+++) __HAL_RCC_ETHMACRX_CLK_ENABLE(); + + (##) Initialize the related GPIO clocks + (##) Configure Ethernet pin-out + (##) Configure Ethernet NVIC interrupt (IT mode) + + (#)Initialize Ethernet DMA Descriptors in chain mode and point to allocated buffers: + (##) HAL_ETH_DMATxDescListInit(); for Transmission process + (##) HAL_ETH_DMARxDescListInit(); for Reception process + + (#)Enable MAC and DMA transmission and reception: + (##) HAL_ETH_Start(); + + (#)Prepare ETH DMA TX Descriptors and give the hand to ETH DMA to transfer + the frame to MAC TX FIFO: + (##) HAL_ETH_TransmitFrame(); + + (#)Poll for a received frame in ETH RX DMA Descriptors and get received + frame parameters + (##) HAL_ETH_GetReceivedFrame(); (should be called into an infinite loop) + + (#) Get a received frame when an ETH RX interrupt occurs: + (##) HAL_ETH_GetReceivedFrame_IT(); (called in IT mode only) + + (#) Communicate with external PHY device: + (##) Read a specific register from the PHY + HAL_ETH_ReadPHYRegister(); + (##) Write data to a specific RHY register: + HAL_ETH_WritePHYRegister(); + + (#) Configure the Ethernet MAC after ETH peripheral initialization + HAL_ETH_ConfigMAC(); all MAC parameters should be filled. + + (#) Configure the Ethernet DMA after ETH peripheral initialization + HAL_ETH_ConfigDMA(); all DMA parameters should be filled. + + -@- The PTP protocol and the DMA descriptors ring mode are not supported + in this driver + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup ETH ETH + * @brief ETH HAL module driver + * @{ + */ + +#ifdef HAL_ETH_MODULE_ENABLED + +#if defined(STM32F407xx) || defined(STM32F417xx) || defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup ETH_Private_Constants ETH Private Constants + * @{ + */ +#define LINKED_STATE_TIMEOUT_VALUE ((uint32_t)2000) /* 2000 ms */ +#define AUTONEGO_COMPLETED_TIMEOUT_VALUE ((uint32_t)1000) /* 1000 ms */ + +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup ETH_Private_Functions ETH Private Functions + * @{ + */ +static void ETH_MACDMAConfig(ETH_HandleTypeDef *heth, uint32_t err); +static void ETH_MACAddressConfig(ETH_HandleTypeDef *heth, uint32_t MacAddr, uint8_t *Addr); +static void ETH_MACReceptionEnable(ETH_HandleTypeDef *heth); +static void ETH_MACReceptionDisable(ETH_HandleTypeDef *heth); +static void ETH_MACTransmissionEnable(ETH_HandleTypeDef *heth); +static void ETH_MACTransmissionDisable(ETH_HandleTypeDef *heth); +static void ETH_DMATransmissionEnable(ETH_HandleTypeDef *heth); +static void ETH_DMATransmissionDisable(ETH_HandleTypeDef *heth); +static void ETH_DMAReceptionEnable(ETH_HandleTypeDef *heth); +static void ETH_DMAReceptionDisable(ETH_HandleTypeDef *heth); +static void ETH_FlushTransmitFIFO(ETH_HandleTypeDef *heth); + +/** + * @} + */ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup ETH_Exported_Functions ETH Exported Functions + * @{ + */ + +/** @defgroup ETH_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the Ethernet peripheral + (+) De-initialize the Ethernet peripheral + + @endverbatim + * @{ + */ + +/** + * @brief Initializes the Ethernet MAC and DMA according to default + * parameters. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Init(ETH_HandleTypeDef *heth) +{ + uint32_t tmpreg1 = 0, phyreg = 0; + uint32_t hclk = 60000000; + uint32_t tickstart = 0; + uint32_t err = ETH_SUCCESS; + + /* Check the ETH peripheral state */ + if(heth == NULL) + { + return HAL_ERROR; + } + + /* Check parameters */ + assert_param(IS_ETH_AUTONEGOTIATION(heth->Init.AutoNegotiation)); + assert_param(IS_ETH_RX_MODE(heth->Init.RxMode)); + assert_param(IS_ETH_CHECKSUM_MODE(heth->Init.ChecksumMode)); + assert_param(IS_ETH_MEDIA_INTERFACE(heth->Init.MediaInterface)); + + if(heth->State == HAL_ETH_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + heth->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC. */ + HAL_ETH_MspInit(heth); + } + + /* Enable SYSCFG Clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Select MII or RMII Mode*/ + SYSCFG->PMC &= ~(SYSCFG_PMC_MII_RMII_SEL); + SYSCFG->PMC |= (uint32_t)heth->Init.MediaInterface; + + /* Ethernet Software reset */ + /* Set the SWR bit: resets all MAC subsystem internal registers and logic */ + /* After reset all the registers holds their respective reset values */ + (heth->Instance)->DMABMR |= ETH_DMABMR_SR; + + /* Wait for software reset */ + while (((heth->Instance)->DMABMR & ETH_DMABMR_SR) != (uint32_t)RESET) + { + } + + /*-------------------------------- MAC Initialization ----------------------*/ + /* Get the ETHERNET MACMIIAR value */ + tmpreg1 = (heth->Instance)->MACMIIAR; + /* Clear CSR Clock Range CR[2:0] bits */ + tmpreg1 &= ETH_MACMIIAR_CR_MASK; + + /* Get hclk frequency value */ + hclk = HAL_RCC_GetHCLKFreq(); + + /* Set CR bits depending on hclk value */ + if((hclk >= 20000000)&&(hclk < 35000000)) + { + /* CSR Clock Range between 20-35 MHz */ + tmpreg1 |= (uint32_t)ETH_MACMIIAR_CR_Div16; + } + else if((hclk >= 35000000)&&(hclk < 60000000)) + { + /* CSR Clock Range between 35-60 MHz */ + tmpreg1 |= (uint32_t)ETH_MACMIIAR_CR_Div26; + } + else if((hclk >= 60000000)&&(hclk < 100000000)) + { + /* CSR Clock Range between 60-100 MHz */ + tmpreg1 |= (uint32_t)ETH_MACMIIAR_CR_Div42; + } + else if((hclk >= 100000000)&&(hclk < 150000000)) + { + /* CSR Clock Range between 100-150 MHz */ + tmpreg1 |= (uint32_t)ETH_MACMIIAR_CR_Div62; + } + else /* ((hclk >= 150000000)&&(hclk <= 168000000)) */ + { + /* CSR Clock Range between 150-168 MHz */ + tmpreg1 |= (uint32_t)ETH_MACMIIAR_CR_Div102; + } + + /* Write to ETHERNET MAC MIIAR: Configure the ETHERNET CSR Clock Range */ + (heth->Instance)->MACMIIAR = (uint32_t)tmpreg1; + + /*-------------------- PHY initialization and configuration ----------------*/ + /* Put the PHY in reset mode */ + if((HAL_ETH_WritePHYRegister(heth, PHY_BCR, PHY_RESET)) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Delay to assure PHY reset */ + HAL_Delay(PHY_RESET_DELAY); + + if((heth->Init).AutoNegotiation != ETH_AUTONEGOTIATION_DISABLE) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* We wait for linked status */ + do + { + HAL_ETH_ReadPHYRegister(heth, PHY_BSR, &phyreg); + + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > LINKED_STATE_TIMEOUT_VALUE) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + } while (((phyreg & PHY_LINKED_STATUS) != PHY_LINKED_STATUS)); + + + /* Enable Auto-Negotiation */ + if((HAL_ETH_WritePHYRegister(heth, PHY_BCR, PHY_AUTONEGOTIATION)) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until the auto-negotiation will be completed */ + do + { + HAL_ETH_ReadPHYRegister(heth, PHY_BSR, &phyreg); + + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > AUTONEGO_COMPLETED_TIMEOUT_VALUE) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + + } while (((phyreg & PHY_AUTONEGO_COMPLETE) != PHY_AUTONEGO_COMPLETE)); + + /* Read the result of the auto-negotiation */ + if((HAL_ETH_ReadPHYRegister(heth, PHY_SR, &phyreg)) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Configure the MAC with the Duplex Mode fixed by the auto-negotiation process */ + if((phyreg & PHY_DUPLEX_STATUS) != (uint32_t)RESET) + { + /* Set Ethernet duplex mode to Full-duplex following the auto-negotiation */ + (heth->Init).DuplexMode = ETH_MODE_FULLDUPLEX; + } + else + { + /* Set Ethernet duplex mode to Half-duplex following the auto-negotiation */ + (heth->Init).DuplexMode = ETH_MODE_HALFDUPLEX; + } + /* Configure the MAC with the speed fixed by the auto-negotiation process */ + if((phyreg & PHY_SPEED_STATUS) == PHY_SPEED_STATUS) + { + /* Set Ethernet speed to 10M following the auto-negotiation */ + (heth->Init).Speed = ETH_SPEED_10M; + } + else + { + /* Set Ethernet speed to 100M following the auto-negotiation */ + (heth->Init).Speed = ETH_SPEED_100M; + } + } + else /* AutoNegotiation Disable */ + { + /* Check parameters */ + assert_param(IS_ETH_SPEED(heth->Init.Speed)); + assert_param(IS_ETH_DUPLEX_MODE(heth->Init.DuplexMode)); + + /* Set MAC Speed and Duplex Mode */ + if(HAL_ETH_WritePHYRegister(heth, PHY_BCR, ((uint16_t)((heth->Init).DuplexMode >> 3) | + (uint16_t)((heth->Init).Speed >> 1))) != HAL_OK) + { + /* In case of write timeout */ + err = ETH_ERROR; + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set the ETH peripheral state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return HAL_ERROR */ + return HAL_ERROR; + } + + /* Delay to assure PHY configuration */ + HAL_Delay(PHY_CONFIG_DELAY); + } + + /* Config MAC and DMA */ + ETH_MACDMAConfig(heth, err); + + /* Set ETH HAL State to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief De-Initializes the ETH peripheral. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DeInit(ETH_HandleTypeDef *heth) +{ + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* De-Init the low level hardware : GPIO, CLOCK, NVIC. */ + HAL_ETH_MspDeInit(heth); + + /* Set ETH HAL state to Disabled */ + heth->State= HAL_ETH_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the DMA Tx descriptors in chain mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param DMATxDescTab: Pointer to the first Tx desc list + * @param TxBuff: Pointer to the first TxBuffer list + * @param TxBuffCount: Number of the used Tx desc in the list + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DMATxDescListInit(ETH_HandleTypeDef *heth, ETH_DMADescTypeDef *DMATxDescTab, uint8_t *TxBuff, uint32_t TxBuffCount) +{ + uint32_t i = 0; + ETH_DMADescTypeDef *dmatxdesc; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Set the DMATxDescToSet pointer with the first one of the DMATxDescTab list */ + heth->TxDesc = DMATxDescTab; + + /* Fill each DMATxDesc descriptor with the right values */ + for(i=0; i < TxBuffCount; i++) + { + /* Get the pointer on the ith member of the Tx Desc list */ + dmatxdesc = DMATxDescTab + i; + + /* Set Second Address Chained bit */ + dmatxdesc->Status = ETH_DMATXDESC_TCH; + + /* Set Buffer1 address pointer */ + dmatxdesc->Buffer1Addr = (uint32_t)(&TxBuff[i*ETH_TX_BUF_SIZE]); + + if ((heth->Init).ChecksumMode == ETH_CHECKSUM_BY_HARDWARE) + { + /* Set the DMA Tx descriptors checksum insertion */ + dmatxdesc->Status |= ETH_DMATXDESC_CHECKSUMTCPUDPICMPFULL; + } + + /* Initialize the next descriptor with the Next Descriptor Polling Enable */ + if(i < (TxBuffCount-1)) + { + /* Set next descriptor address register with next descriptor base address */ + dmatxdesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1); + } + else + { + /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ + dmatxdesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab; + } + } + + /* Set Transmit Descriptor List Address Register */ + (heth->Instance)->DMATDLAR = (uint32_t) DMATxDescTab; + + /* Set ETH HAL State to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the DMA Rx descriptors in chain mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param DMARxDescTab: Pointer to the first Rx desc list + * @param RxBuff: Pointer to the first RxBuffer list + * @param RxBuffCount: Number of the used Rx desc in the list + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_DMARxDescListInit(ETH_HandleTypeDef *heth, ETH_DMADescTypeDef *DMARxDescTab, uint8_t *RxBuff, uint32_t RxBuffCount) +{ + uint32_t i = 0; + ETH_DMADescTypeDef *DMARxDesc; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Set the Ethernet RxDesc pointer with the first one of the DMARxDescTab list */ + heth->RxDesc = DMARxDescTab; + + /* Fill each DMARxDesc descriptor with the right values */ + for(i=0; i < RxBuffCount; i++) + { + /* Get the pointer on the ith member of the Rx Desc list */ + DMARxDesc = DMARxDescTab+i; + + /* Set Own bit of the Rx descriptor Status */ + DMARxDesc->Status = ETH_DMARXDESC_OWN; + + /* Set Buffer1 size and Second Address Chained bit */ + DMARxDesc->ControlBufferSize = ETH_DMARXDESC_RCH | ETH_RX_BUF_SIZE; + + /* Set Buffer1 address pointer */ + DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*ETH_RX_BUF_SIZE]); + + if((heth->Init).RxMode == ETH_RXINTERRUPT_MODE) + { + /* Enable Ethernet DMA Rx Descriptor interrupt */ + DMARxDesc->ControlBufferSize &= ~ETH_DMARXDESC_DIC; + } + + /* Initialize the next descriptor with the Next Descriptor Polling Enable */ + if(i < (RxBuffCount-1)) + { + /* Set next descriptor address register with next descriptor base address */ + DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1); + } + else + { + /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ + DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab); + } + } + + /* Set Receive Descriptor List Address Register */ + (heth->Instance)->DMARDLAR = (uint32_t) DMARxDescTab; + + /* Set ETH HAL State to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the ETH MSP. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_MspInit(ETH_HandleTypeDef *heth) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes ETH MSP. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_MspDeInit(ETH_HandleTypeDef *heth) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * + @verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] This section provides functions allowing to: + (+) Transmit a frame + HAL_ETH_TransmitFrame(); + (+) Receive a frame + HAL_ETH_GetReceivedFrame(); + HAL_ETH_GetReceivedFrame_IT(); + (+) Read from an External PHY register + HAL_ETH_ReadPHYRegister(); + (+) Write to an External PHY register + HAL_ETH_WritePHYRegister(); + + @endverbatim + + * @{ + */ + +/** + * @brief Sends an Ethernet frame. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param FrameLength: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_TransmitFrame(ETH_HandleTypeDef *heth, uint32_t FrameLength) +{ + uint32_t bufcount = 0, size = 0, i = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + if (FrameLength == 0) + { + /* Set ETH HAL state to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_ERROR; + } + + /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */ + if(((heth->TxDesc)->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET) + { + /* OWN bit set */ + heth->State = HAL_ETH_STATE_BUSY_TX; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_ERROR; + } + + /* Get the number of needed Tx buffers for the current frame */ + if (FrameLength > ETH_TX_BUF_SIZE) + { + bufcount = FrameLength/ETH_TX_BUF_SIZE; + if (FrameLength % ETH_TX_BUF_SIZE) + { + bufcount++; + } + } + else + { + bufcount = 1; + } + if (bufcount == 1) + { + /* Set LAST and FIRST segment */ + heth->TxDesc->Status |=ETH_DMATXDESC_FS|ETH_DMATXDESC_LS; + /* Set frame size */ + heth->TxDesc->ControlBufferSize = (FrameLength & ETH_DMATXDESC_TBS1); + /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */ + heth->TxDesc->Status |= ETH_DMATXDESC_OWN; + /* Point to next descriptor */ + heth->TxDesc= (ETH_DMADescTypeDef *)(heth->TxDesc->Buffer2NextDescAddr); + } + else + { + for (i=0; i< bufcount; i++) + { + /* Clear FIRST and LAST segment bits */ + heth->TxDesc->Status &= ~(ETH_DMATXDESC_FS | ETH_DMATXDESC_LS); + + if (i == 0) + { + /* Setting the first segment bit */ + heth->TxDesc->Status |= ETH_DMATXDESC_FS; + } + + /* Program size */ + heth->TxDesc->ControlBufferSize = (ETH_TX_BUF_SIZE & ETH_DMATXDESC_TBS1); + + if (i == (bufcount-1)) + { + /* Setting the last segment bit */ + heth->TxDesc->Status |= ETH_DMATXDESC_LS; + size = FrameLength - (bufcount-1)*ETH_TX_BUF_SIZE; + heth->TxDesc->ControlBufferSize = (size & ETH_DMATXDESC_TBS1); + } + + /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */ + heth->TxDesc->Status |= ETH_DMATXDESC_OWN; + /* point to next descriptor */ + heth->TxDesc = (ETH_DMADescTypeDef *)(heth->TxDesc->Buffer2NextDescAddr); + } + } + + /* When Tx Buffer unavailable flag is set: clear it and resume transmission */ + if (((heth->Instance)->DMASR & ETH_DMASR_TBUS) != (uint32_t)RESET) + { + /* Clear TBUS ETHERNET DMA flag */ + (heth->Instance)->DMASR = ETH_DMASR_TBUS; + /* Resume DMA transmission*/ + (heth->Instance)->DMATPDR = 0; + } + + /* Set ETH HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Checks for received frames. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_GetReceivedFrame(ETH_HandleTypeDef *heth) +{ + uint32_t framelength = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Check the ETH state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Check if segment is not owned by DMA */ + /* (((heth->RxDesc->Status & ETH_DMARXDESC_OWN) == (uint32_t)RESET) && ((heth->RxDesc->Status & ETH_DMARXDESC_LS) != (uint32_t)RESET)) */ + if(((heth->RxDesc->Status & ETH_DMARXDESC_OWN) == (uint32_t)RESET)) + { + /* Check if last segment */ + if(((heth->RxDesc->Status & ETH_DMARXDESC_LS) != (uint32_t)RESET)) + { + /* increment segment count */ + (heth->RxFrameInfos).SegCount++; + + /* Check if last segment is first segment: one segment contains the frame */ + if ((heth->RxFrameInfos).SegCount == 1) + { + (heth->RxFrameInfos).FSRxDesc =heth->RxDesc; + } + + heth->RxFrameInfos.LSRxDesc = heth->RxDesc; + + /* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */ + framelength = (((heth->RxDesc)->Status & ETH_DMARXDESC_FL) >> ETH_DMARXDESC_FRAMELENGTHSHIFT) - 4; + heth->RxFrameInfos.length = framelength; + + /* Get the address of the buffer start address */ + heth->RxFrameInfos.buffer = ((heth->RxFrameInfos).FSRxDesc)->Buffer1Addr; + /* point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) ((heth->RxDesc)->Buffer2NextDescAddr); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; + } + /* Check if first segment */ + else if((heth->RxDesc->Status & ETH_DMARXDESC_FS) != (uint32_t)RESET) + { + (heth->RxFrameInfos).FSRxDesc = heth->RxDesc; + (heth->RxFrameInfos).LSRxDesc = NULL; + (heth->RxFrameInfos).SegCount = 1; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + } + /* Check if intermediate segment */ + else + { + (heth->RxFrameInfos).SegCount++; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + } + } + + /* Set ETH HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_ERROR; +} + +/** + * @brief Gets the Received frame in interrupt mode. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_GetReceivedFrame_IT(ETH_HandleTypeDef *heth) +{ + uint32_t descriptorscancounter = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set ETH HAL State to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Scan descriptors owned by CPU */ + while (((heth->RxDesc->Status & ETH_DMARXDESC_OWN) == (uint32_t)RESET) && (descriptorscancounter < ETH_RXBUFNB)) + { + /* Just for security */ + descriptorscancounter++; + + /* Check if first segment in frame */ + /* ((heth->RxDesc->Status & ETH_DMARXDESC_FS) != (uint32_t)RESET) && ((heth->RxDesc->Status & ETH_DMARXDESC_LS) == (uint32_t)RESET)) */ + if((heth->RxDesc->Status & (ETH_DMARXDESC_FS | ETH_DMARXDESC_LS)) == (uint32_t)ETH_DMARXDESC_FS) + { + heth->RxFrameInfos.FSRxDesc = heth->RxDesc; + heth->RxFrameInfos.SegCount = 1; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + } + /* Check if intermediate segment */ + /* ((heth->RxDesc->Status & ETH_DMARXDESC_LS) == (uint32_t)RESET)&& ((heth->RxDesc->Status & ETH_DMARXDESC_FS) == (uint32_t)RESET)) */ + else if ((heth->RxDesc->Status & (ETH_DMARXDESC_LS | ETH_DMARXDESC_FS)) == (uint32_t)RESET) + { + /* Increment segment count */ + (heth->RxFrameInfos.SegCount)++; + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*)(heth->RxDesc->Buffer2NextDescAddr); + } + /* Should be last segment */ + else + { + /* Last segment */ + heth->RxFrameInfos.LSRxDesc = heth->RxDesc; + + /* Increment segment count */ + (heth->RxFrameInfos.SegCount)++; + + /* Check if last segment is first segment: one segment contains the frame */ + if ((heth->RxFrameInfos.SegCount) == 1) + { + heth->RxFrameInfos.FSRxDesc = heth->RxDesc; + } + + /* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */ + heth->RxFrameInfos.length = (((heth->RxDesc)->Status & ETH_DMARXDESC_FL) >> ETH_DMARXDESC_FRAMELENGTHSHIFT) - 4; + + /* Get the address of the buffer start address */ + heth->RxFrameInfos.buffer =((heth->RxFrameInfos).FSRxDesc)->Buffer1Addr; + + /* Point to next descriptor */ + heth->RxDesc = (ETH_DMADescTypeDef*) (heth->RxDesc->Buffer2NextDescAddr); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; + } + } + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_ERROR; +} + +/** + * @brief This function handles ETH interrupt request. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +void HAL_ETH_IRQHandler(ETH_HandleTypeDef *heth) +{ + /* Frame received */ + if (__HAL_ETH_DMA_GET_FLAG(heth, ETH_DMA_FLAG_R)) + { + /* Receive complete callback */ + HAL_ETH_RxCpltCallback(heth); + + /* Clear the Eth DMA Rx IT pending bits */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_IT_R); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + } + /* Frame transmitted */ + else if (__HAL_ETH_DMA_GET_FLAG(heth, ETH_DMA_FLAG_T)) + { + /* Transfer complete callback */ + HAL_ETH_TxCpltCallback(heth); + + /* Clear the Eth DMA Tx IT pending bits */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_IT_T); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + } + + /* Clear the interrupt flags */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_IT_NIS); + + /* ETH DMA Error */ + if(__HAL_ETH_DMA_GET_FLAG(heth, ETH_DMA_FLAG_AIS)) + { + /* Ethernet Error callback */ + HAL_ETH_ErrorCallback(heth); + + /* Clear the interrupt flags */ + __HAL_ETH_DMA_CLEAR_IT(heth, ETH_DMA_FLAG_AIS); + + /* Set HAL State to Ready */ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + } +} + +/** + * @brief Tx Transfer completed callbacks. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_TxCpltCallback(ETH_HandleTypeDef *heth) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Ethernet transfer error callbacks + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +__weak void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_ETH_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Reads a PHY register + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param PHYReg: PHY register address, is the index of one of the 32 PHY register. + * This parameter can be one of the following values: + * PHY_BCR: Transceiver Basic Control Register, + * PHY_BSR: Transceiver Basic Status Register. + * More PHY register could be read depending on the used PHY + * @param RegValue: PHY register value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_ReadPHYRegister(ETH_HandleTypeDef *heth, uint16_t PHYReg, uint32_t *RegValue) +{ + uint32_t tmpreg1 = 0; + uint32_t tickstart = 0; + + /* Check parameters */ + assert_param(IS_ETH_PHY_ADDRESS(heth->Init.PhyAddress)); + + /* Check the ETH peripheral state */ + if(heth->State == HAL_ETH_STATE_BUSY_RD) + { + return HAL_BUSY; + } + /* Set ETH HAL State to BUSY_RD */ + heth->State = HAL_ETH_STATE_BUSY_RD; + + /* Get the ETHERNET MACMIIAR value */ + tmpreg1 = heth->Instance->MACMIIAR; + + /* Keep only the CSR Clock Range CR[2:0] bits value */ + tmpreg1 &= ~ETH_MACMIIAR_CR_MASK; + + /* Prepare the MII address register value */ + tmpreg1 |=(((uint32_t)heth->Init.PhyAddress << 11) & ETH_MACMIIAR_PA); /* Set the PHY device address */ + tmpreg1 |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */ + tmpreg1 &= ~ETH_MACMIIAR_MW; /* Set the read mode */ + tmpreg1 |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */ + + /* Write the result value into the MII Address register */ + heth->Instance->MACMIIAR = tmpreg1; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check for the Busy flag */ + while((tmpreg1 & ETH_MACMIIAR_MB) == ETH_MACMIIAR_MB) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > PHY_READ_TO) + { + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + + tmpreg1 = heth->Instance->MACMIIAR; + } + + /* Get MACMIIDR value */ + *RegValue = (uint16_t)(heth->Instance->MACMIIDR); + + /* Set ETH HAL State to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Writes to a PHY register. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param PHYReg: PHY register address, is the index of one of the 32 PHY register. + * This parameter can be one of the following values: + * PHY_BCR: Transceiver Control Register. + * More PHY register could be written depending on the used PHY + * @param RegValue: the value to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_WritePHYRegister(ETH_HandleTypeDef *heth, uint16_t PHYReg, uint32_t RegValue) +{ + uint32_t tmpreg1 = 0; + uint32_t tickstart = 0; + + /* Check parameters */ + assert_param(IS_ETH_PHY_ADDRESS(heth->Init.PhyAddress)); + + /* Check the ETH peripheral state */ + if(heth->State == HAL_ETH_STATE_BUSY_WR) + { + return HAL_BUSY; + } + /* Set ETH HAL State to BUSY_WR */ + heth->State = HAL_ETH_STATE_BUSY_WR; + + /* Get the ETHERNET MACMIIAR value */ + tmpreg1 = heth->Instance->MACMIIAR; + + /* Keep only the CSR Clock Range CR[2:0] bits value */ + tmpreg1 &= ~ETH_MACMIIAR_CR_MASK; + + /* Prepare the MII register address value */ + tmpreg1 |=(((uint32_t)heth->Init.PhyAddress<<11) & ETH_MACMIIAR_PA); /* Set the PHY device address */ + tmpreg1 |=(((uint32_t)PHYReg<<6) & ETH_MACMIIAR_MR); /* Set the PHY register address */ + tmpreg1 |= ETH_MACMIIAR_MW; /* Set the write mode */ + tmpreg1 |= ETH_MACMIIAR_MB; /* Set the MII Busy bit */ + + /* Give the value to the MII data register */ + heth->Instance->MACMIIDR = (uint16_t)RegValue; + + /* Write the result value into the MII Address register */ + heth->Instance->MACMIIAR = tmpreg1; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check for the Busy flag */ + while((tmpreg1 & ETH_MACMIIAR_MB) == ETH_MACMIIAR_MB) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > PHY_WRITE_TO) + { + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + return HAL_TIMEOUT; + } + + tmpreg1 = heth->Instance->MACMIIAR; + } + + /* Set ETH HAL State to READY */ + heth->State = HAL_ETH_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Enable MAC and DMA transmission and reception. + HAL_ETH_Start(); + (+) Disable MAC and DMA transmission and reception. + HAL_ETH_Stop(); + (+) Set the MAC configuration in runtime mode + HAL_ETH_ConfigMAC(); + (+) Set the DMA configuration in runtime mode + HAL_ETH_ConfigDMA(); + +@endverbatim + * @{ + */ + + /** + * @brief Enables Ethernet MAC and DMA reception/transmission + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Start(ETH_HandleTypeDef *heth) +{ + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Enable transmit state machine of the MAC for transmission on the MII */ + ETH_MACTransmissionEnable(heth); + + /* Enable receive state machine of the MAC for reception from the MII */ + ETH_MACReceptionEnable(heth); + + /* Flush Transmit FIFO */ + ETH_FlushTransmitFIFO(heth); + + /* Start DMA transmission */ + ETH_DMATransmissionEnable(heth); + + /* Start DMA reception */ + ETH_DMAReceptionEnable(heth); + + /* Set the ETH state to READY*/ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop Ethernet MAC and DMA reception/transmission + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_Stop(ETH_HandleTypeDef *heth) +{ + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State = HAL_ETH_STATE_BUSY; + + /* Stop DMA transmission */ + ETH_DMATransmissionDisable(heth); + + /* Stop DMA reception */ + ETH_DMAReceptionDisable(heth); + + /* Disable receive state machine of the MAC for reception from the MII */ + ETH_MACReceptionDisable(heth); + + /* Flush Transmit FIFO */ + ETH_FlushTransmitFIFO(heth); + + /* Disable transmit state machine of the MAC for transmission on the MII */ + ETH_MACTransmissionDisable(heth); + + /* Set the ETH state*/ + heth->State = HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Set ETH MAC Configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param macconf: MAC Configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_ConfigMAC(ETH_HandleTypeDef *heth, ETH_MACInitTypeDef *macconf) +{ + uint32_t tmpreg1 = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State= HAL_ETH_STATE_BUSY; + + assert_param(IS_ETH_SPEED(heth->Init.Speed)); + assert_param(IS_ETH_DUPLEX_MODE(heth->Init.DuplexMode)); + + if (macconf != NULL) + { + /* Check the parameters */ + assert_param(IS_ETH_WATCHDOG(macconf->Watchdog)); + assert_param(IS_ETH_JABBER(macconf->Jabber)); + assert_param(IS_ETH_INTER_FRAME_GAP(macconf->InterFrameGap)); + assert_param(IS_ETH_CARRIER_SENSE(macconf->CarrierSense)); + assert_param(IS_ETH_RECEIVE_OWN(macconf->ReceiveOwn)); + assert_param(IS_ETH_LOOPBACK_MODE(macconf->LoopbackMode)); + assert_param(IS_ETH_CHECKSUM_OFFLOAD(macconf->ChecksumOffload)); + assert_param(IS_ETH_RETRY_TRANSMISSION(macconf->RetryTransmission)); + assert_param(IS_ETH_AUTOMATIC_PADCRC_STRIP(macconf->AutomaticPadCRCStrip)); + assert_param(IS_ETH_BACKOFF_LIMIT(macconf->BackOffLimit)); + assert_param(IS_ETH_DEFERRAL_CHECK(macconf->DeferralCheck)); + assert_param(IS_ETH_RECEIVE_ALL(macconf->ReceiveAll)); + assert_param(IS_ETH_SOURCE_ADDR_FILTER(macconf->SourceAddrFilter)); + assert_param(IS_ETH_CONTROL_FRAMES(macconf->PassControlFrames)); + assert_param(IS_ETH_BROADCAST_FRAMES_RECEPTION(macconf->BroadcastFramesReception)); + assert_param(IS_ETH_DESTINATION_ADDR_FILTER(macconf->DestinationAddrFilter)); + assert_param(IS_ETH_PROMISCUOUS_MODE(macconf->PromiscuousMode)); + assert_param(IS_ETH_MULTICAST_FRAMES_FILTER(macconf->MulticastFramesFilter)); + assert_param(IS_ETH_UNICAST_FRAMES_FILTER(macconf->UnicastFramesFilter)); + assert_param(IS_ETH_PAUSE_TIME(macconf->PauseTime)); + assert_param(IS_ETH_ZEROQUANTA_PAUSE(macconf->ZeroQuantaPause)); + assert_param(IS_ETH_PAUSE_LOW_THRESHOLD(macconf->PauseLowThreshold)); + assert_param(IS_ETH_UNICAST_PAUSE_FRAME_DETECT(macconf->UnicastPauseFrameDetect)); + assert_param(IS_ETH_RECEIVE_FLOWCONTROL(macconf->ReceiveFlowControl)); + assert_param(IS_ETH_TRANSMIT_FLOWCONTROL(macconf->TransmitFlowControl)); + assert_param(IS_ETH_VLAN_TAG_COMPARISON(macconf->VLANTagComparison)); + assert_param(IS_ETH_VLAN_TAG_IDENTIFIER(macconf->VLANTagIdentifier)); + + /*------------------------ ETHERNET MACCR Configuration --------------------*/ + /* Get the ETHERNET MACCR value */ + tmpreg1 = (heth->Instance)->MACCR; + /* Clear WD, PCE, PS, TE and RE bits */ + tmpreg1 &= ETH_MACCR_CLEAR_MASK; + + tmpreg1 |= (uint32_t)(macconf->Watchdog | + macconf->Jabber | + macconf->InterFrameGap | + macconf->CarrierSense | + (heth->Init).Speed | + macconf->ReceiveOwn | + macconf->LoopbackMode | + (heth->Init).DuplexMode | + macconf->ChecksumOffload | + macconf->RetryTransmission | + macconf->AutomaticPadCRCStrip | + macconf->BackOffLimit | + macconf->DeferralCheck); + + /* Write to ETHERNET MACCR */ + (heth->Instance)->MACCR = (uint32_t)tmpreg1; + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg1; + + /*----------------------- ETHERNET MACFFR Configuration --------------------*/ + /* Write to ETHERNET MACFFR */ + (heth->Instance)->MACFFR = (uint32_t)(macconf->ReceiveAll | + macconf->SourceAddrFilter | + macconf->PassControlFrames | + macconf->BroadcastFramesReception | + macconf->DestinationAddrFilter | + macconf->PromiscuousMode | + macconf->MulticastFramesFilter | + macconf->UnicastFramesFilter); + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACFFR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFFR = tmpreg1; + + /*--------------- ETHERNET MACHTHR and MACHTLR Configuration ---------------*/ + /* Write to ETHERNET MACHTHR */ + (heth->Instance)->MACHTHR = (uint32_t)macconf->HashTableHigh; + + /* Write to ETHERNET MACHTLR */ + (heth->Instance)->MACHTLR = (uint32_t)macconf->HashTableLow; + /*----------------------- ETHERNET MACFCR Configuration --------------------*/ + + /* Get the ETHERNET MACFCR value */ + tmpreg1 = (heth->Instance)->MACFCR; + /* Clear xx bits */ + tmpreg1 &= ETH_MACFCR_CLEAR_MASK; + + tmpreg1 |= (uint32_t)((macconf->PauseTime << 16) | + macconf->ZeroQuantaPause | + macconf->PauseLowThreshold | + macconf->UnicastPauseFrameDetect | + macconf->ReceiveFlowControl | + macconf->TransmitFlowControl); + + /* Write to ETHERNET MACFCR */ + (heth->Instance)->MACFCR = (uint32_t)tmpreg1; + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACFCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFCR = tmpreg1; + + /*----------------------- ETHERNET MACVLANTR Configuration -----------------*/ + (heth->Instance)->MACVLANTR = (uint32_t)(macconf->VLANTagComparison | + macconf->VLANTagIdentifier); + + /* Wait until the write operation will be taken into account : + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACVLANTR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACVLANTR = tmpreg1; + } + else /* macconf == NULL : here we just configure Speed and Duplex mode */ + { + /*------------------------ ETHERNET MACCR Configuration --------------------*/ + /* Get the ETHERNET MACCR value */ + tmpreg1 = (heth->Instance)->MACCR; + + /* Clear FES and DM bits */ + tmpreg1 &= ~((uint32_t)0x00004800); + + tmpreg1 |= (uint32_t)(heth->Init.Speed | heth->Init.DuplexMode); + + /* Write to ETHERNET MACCR */ + (heth->Instance)->MACCR = (uint32_t)tmpreg1; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg1; + } + + /* Set the ETH state to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Sets ETH DMA Configuration. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param dmaconf: DMA Configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_ETH_ConfigDMA(ETH_HandleTypeDef *heth, ETH_DMAInitTypeDef *dmaconf) +{ + uint32_t tmpreg1 = 0; + + /* Process Locked */ + __HAL_LOCK(heth); + + /* Set the ETH peripheral state to BUSY */ + heth->State= HAL_ETH_STATE_BUSY; + + /* Check parameters */ + assert_param(IS_ETH_DROP_TCPIP_CHECKSUM_FRAME(dmaconf->DropTCPIPChecksumErrorFrame)); + assert_param(IS_ETH_RECEIVE_STORE_FORWARD(dmaconf->ReceiveStoreForward)); + assert_param(IS_ETH_FLUSH_RECEIVE_FRAME(dmaconf->FlushReceivedFrame)); + assert_param(IS_ETH_TRANSMIT_STORE_FORWARD(dmaconf->TransmitStoreForward)); + assert_param(IS_ETH_TRANSMIT_THRESHOLD_CONTROL(dmaconf->TransmitThresholdControl)); + assert_param(IS_ETH_FORWARD_ERROR_FRAMES(dmaconf->ForwardErrorFrames)); + assert_param(IS_ETH_FORWARD_UNDERSIZED_GOOD_FRAMES(dmaconf->ForwardUndersizedGoodFrames)); + assert_param(IS_ETH_RECEIVE_THRESHOLD_CONTROL(dmaconf->ReceiveThresholdControl)); + assert_param(IS_ETH_SECOND_FRAME_OPERATE(dmaconf->SecondFrameOperate)); + assert_param(IS_ETH_ADDRESS_ALIGNED_BEATS(dmaconf->AddressAlignedBeats)); + assert_param(IS_ETH_FIXED_BURST(dmaconf->FixedBurst)); + assert_param(IS_ETH_RXDMA_BURST_LENGTH(dmaconf->RxDMABurstLength)); + assert_param(IS_ETH_TXDMA_BURST_LENGTH(dmaconf->TxDMABurstLength)); + assert_param(IS_ETH_ENHANCED_DESCRIPTOR_FORMAT(dmaconf->EnhancedDescriptorFormat)); + assert_param(IS_ETH_DMA_DESC_SKIP_LENGTH(dmaconf->DescriptorSkipLength)); + assert_param(IS_ETH_DMA_ARBITRATION_ROUNDROBIN_RXTX(dmaconf->DMAArbitration)); + + /*----------------------- ETHERNET DMAOMR Configuration --------------------*/ + /* Get the ETHERNET DMAOMR value */ + tmpreg1 = (heth->Instance)->DMAOMR; + /* Clear xx bits */ + tmpreg1 &= ETH_DMAOMR_CLEAR_MASK; + + tmpreg1 |= (uint32_t)(dmaconf->DropTCPIPChecksumErrorFrame | + dmaconf->ReceiveStoreForward | + dmaconf->FlushReceivedFrame | + dmaconf->TransmitStoreForward | + dmaconf->TransmitThresholdControl | + dmaconf->ForwardErrorFrames | + dmaconf->ForwardUndersizedGoodFrames | + dmaconf->ReceiveThresholdControl | + dmaconf->SecondFrameOperate); + + /* Write to ETHERNET DMAOMR */ + (heth->Instance)->DMAOMR = (uint32_t)tmpreg1; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->DMAOMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMAOMR = tmpreg1; + + /*----------------------- ETHERNET DMABMR Configuration --------------------*/ + (heth->Instance)->DMABMR = (uint32_t)(dmaconf->AddressAlignedBeats | + dmaconf->FixedBurst | + dmaconf->RxDMABurstLength | /* !! if 4xPBL is selected for Tx or Rx it is applied for the other */ + dmaconf->TxDMABurstLength | + dmaconf->EnhancedDescriptorFormat | + (dmaconf->DescriptorSkipLength << 2) | + dmaconf->DMAArbitration | + ETH_DMABMR_USP); /* Enable use of separate PBL for Rx and Tx */ + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->DMABMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMABMR = tmpreg1; + + /* Set the ETH state to Ready */ + heth->State= HAL_ETH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(heth); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup ETH_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * + @verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + (+) Get the ETH handle state: + HAL_ETH_GetState(); + + + @endverbatim + * @{ + */ + +/** + * @brief Return the ETH HAL state + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval HAL state + */ +HAL_ETH_StateTypeDef HAL_ETH_GetState(ETH_HandleTypeDef *heth) +{ + /* Return ETH state */ + return heth->State; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup ETH_Private_Functions + * @{ + */ + +/** + * @brief Configures Ethernet MAC and DMA with default parameters. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param err: Ethernet Init error + * @retval HAL status + */ +static void ETH_MACDMAConfig(ETH_HandleTypeDef *heth, uint32_t err) +{ + ETH_MACInitTypeDef macinit; + ETH_DMAInitTypeDef dmainit; + uint32_t tmpreg1 = 0; + + if (err != ETH_SUCCESS) /* Auto-negotiation failed */ + { + /* Set Ethernet duplex mode to Full-duplex */ + (heth->Init).DuplexMode = ETH_MODE_FULLDUPLEX; + + /* Set Ethernet speed to 100M */ + (heth->Init).Speed = ETH_SPEED_100M; + } + + /* Ethernet MAC default initialization **************************************/ + macinit.Watchdog = ETH_WATCHDOG_ENABLE; + macinit.Jabber = ETH_JABBER_ENABLE; + macinit.InterFrameGap = ETH_INTERFRAMEGAP_96BIT; + macinit.CarrierSense = ETH_CARRIERSENCE_ENABLE; + macinit.ReceiveOwn = ETH_RECEIVEOWN_ENABLE; + macinit.LoopbackMode = ETH_LOOPBACKMODE_DISABLE; + if(heth->Init.ChecksumMode == ETH_CHECKSUM_BY_HARDWARE) + { + macinit.ChecksumOffload = ETH_CHECKSUMOFFLAOD_ENABLE; + } + else + { + macinit.ChecksumOffload = ETH_CHECKSUMOFFLAOD_DISABLE; + } + macinit.RetryTransmission = ETH_RETRYTRANSMISSION_DISABLE; + macinit.AutomaticPadCRCStrip = ETH_AUTOMATICPADCRCSTRIP_DISABLE; + macinit.BackOffLimit = ETH_BACKOFFLIMIT_10; + macinit.DeferralCheck = ETH_DEFFERRALCHECK_DISABLE; + macinit.ReceiveAll = ETH_RECEIVEAll_DISABLE; + macinit.SourceAddrFilter = ETH_SOURCEADDRFILTER_DISABLE; + macinit.PassControlFrames = ETH_PASSCONTROLFRAMES_BLOCKALL; + macinit.BroadcastFramesReception = ETH_BROADCASTFRAMESRECEPTION_ENABLE; + macinit.DestinationAddrFilter = ETH_DESTINATIONADDRFILTER_NORMAL; + macinit.PromiscuousMode = ETH_PROMISCUOUS_MODE_DISABLE; + macinit.MulticastFramesFilter = ETH_MULTICASTFRAMESFILTER_PERFECT; + macinit.UnicastFramesFilter = ETH_UNICASTFRAMESFILTER_PERFECT; + macinit.HashTableHigh = 0x0; + macinit.HashTableLow = 0x0; + macinit.PauseTime = 0x0; + macinit.ZeroQuantaPause = ETH_ZEROQUANTAPAUSE_DISABLE; + macinit.PauseLowThreshold = ETH_PAUSELOWTHRESHOLD_MINUS4; + macinit.UnicastPauseFrameDetect = ETH_UNICASTPAUSEFRAMEDETECT_DISABLE; + macinit.ReceiveFlowControl = ETH_RECEIVEFLOWCONTROL_DISABLE; + macinit.TransmitFlowControl = ETH_TRANSMITFLOWCONTROL_DISABLE; + macinit.VLANTagComparison = ETH_VLANTAGCOMPARISON_16BIT; + macinit.VLANTagIdentifier = 0x0; + + /*------------------------ ETHERNET MACCR Configuration --------------------*/ + /* Get the ETHERNET MACCR value */ + tmpreg1 = (heth->Instance)->MACCR; + /* Clear WD, PCE, PS, TE and RE bits */ + tmpreg1 &= ETH_MACCR_CLEAR_MASK; + /* Set the WD bit according to ETH Watchdog value */ + /* Set the JD: bit according to ETH Jabber value */ + /* Set the IFG bit according to ETH InterFrameGap value */ + /* Set the DCRS bit according to ETH CarrierSense value */ + /* Set the FES bit according to ETH Speed value */ + /* Set the DO bit according to ETH ReceiveOwn value */ + /* Set the LM bit according to ETH LoopbackMode value */ + /* Set the DM bit according to ETH Mode value */ + /* Set the IPCO bit according to ETH ChecksumOffload value */ + /* Set the DR bit according to ETH RetryTransmission value */ + /* Set the ACS bit according to ETH AutomaticPadCRCStrip value */ + /* Set the BL bit according to ETH BackOffLimit value */ + /* Set the DC bit according to ETH DeferralCheck value */ + tmpreg1 |= (uint32_t)(macinit.Watchdog | + macinit.Jabber | + macinit.InterFrameGap | + macinit.CarrierSense | + (heth->Init).Speed | + macinit.ReceiveOwn | + macinit.LoopbackMode | + (heth->Init).DuplexMode | + macinit.ChecksumOffload | + macinit.RetryTransmission | + macinit.AutomaticPadCRCStrip | + macinit.BackOffLimit | + macinit.DeferralCheck); + + /* Write to ETHERNET MACCR */ + (heth->Instance)->MACCR = (uint32_t)tmpreg1; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg1; + + /*----------------------- ETHERNET MACFFR Configuration --------------------*/ + /* Set the RA bit according to ETH ReceiveAll value */ + /* Set the SAF and SAIF bits according to ETH SourceAddrFilter value */ + /* Set the PCF bit according to ETH PassControlFrames value */ + /* Set the DBF bit according to ETH BroadcastFramesReception value */ + /* Set the DAIF bit according to ETH DestinationAddrFilter value */ + /* Set the PR bit according to ETH PromiscuousMode value */ + /* Set the PM, HMC and HPF bits according to ETH MulticastFramesFilter value */ + /* Set the HUC and HPF bits according to ETH UnicastFramesFilter value */ + /* Write to ETHERNET MACFFR */ + (heth->Instance)->MACFFR = (uint32_t)(macinit.ReceiveAll | + macinit.SourceAddrFilter | + macinit.PassControlFrames | + macinit.BroadcastFramesReception | + macinit.DestinationAddrFilter | + macinit.PromiscuousMode | + macinit.MulticastFramesFilter | + macinit.UnicastFramesFilter); + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACFFR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFFR = tmpreg1; + + /*--------------- ETHERNET MACHTHR and MACHTLR Configuration --------------*/ + /* Write to ETHERNET MACHTHR */ + (heth->Instance)->MACHTHR = (uint32_t)macinit.HashTableHigh; + + /* Write to ETHERNET MACHTLR */ + (heth->Instance)->MACHTLR = (uint32_t)macinit.HashTableLow; + /*----------------------- ETHERNET MACFCR Configuration -------------------*/ + + /* Get the ETHERNET MACFCR value */ + tmpreg1 = (heth->Instance)->MACFCR; + /* Clear xx bits */ + tmpreg1 &= ETH_MACFCR_CLEAR_MASK; + + /* Set the PT bit according to ETH PauseTime value */ + /* Set the DZPQ bit according to ETH ZeroQuantaPause value */ + /* Set the PLT bit according to ETH PauseLowThreshold value */ + /* Set the UP bit according to ETH UnicastPauseFrameDetect value */ + /* Set the RFE bit according to ETH ReceiveFlowControl value */ + /* Set the TFE bit according to ETH TransmitFlowControl value */ + tmpreg1 |= (uint32_t)((macinit.PauseTime << 16) | + macinit.ZeroQuantaPause | + macinit.PauseLowThreshold | + macinit.UnicastPauseFrameDetect | + macinit.ReceiveFlowControl | + macinit.TransmitFlowControl); + + /* Write to ETHERNET MACFCR */ + (heth->Instance)->MACFCR = (uint32_t)tmpreg1; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACFCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACFCR = tmpreg1; + + /*----------------------- ETHERNET MACVLANTR Configuration ----------------*/ + /* Set the ETV bit according to ETH VLANTagComparison value */ + /* Set the VL bit according to ETH VLANTagIdentifier value */ + (heth->Instance)->MACVLANTR = (uint32_t)(macinit.VLANTagComparison | + macinit.VLANTagIdentifier); + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACVLANTR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACVLANTR = tmpreg1; + + /* Ethernet DMA default initialization ************************************/ + dmainit.DropTCPIPChecksumErrorFrame = ETH_DROPTCPIPCHECKSUMERRORFRAME_ENABLE; + dmainit.ReceiveStoreForward = ETH_RECEIVESTOREFORWARD_ENABLE; + dmainit.FlushReceivedFrame = ETH_FLUSHRECEIVEDFRAME_ENABLE; + dmainit.TransmitStoreForward = ETH_TRANSMITSTOREFORWARD_ENABLE; + dmainit.TransmitThresholdControl = ETH_TRANSMITTHRESHOLDCONTROL_64BYTES; + dmainit.ForwardErrorFrames = ETH_FORWARDERRORFRAMES_DISABLE; + dmainit.ForwardUndersizedGoodFrames = ETH_FORWARDUNDERSIZEDGOODFRAMES_DISABLE; + dmainit.ReceiveThresholdControl = ETH_RECEIVEDTHRESHOLDCONTROL_64BYTES; + dmainit.SecondFrameOperate = ETH_SECONDFRAMEOPERARTE_ENABLE; + dmainit.AddressAlignedBeats = ETH_ADDRESSALIGNEDBEATS_ENABLE; + dmainit.FixedBurst = ETH_FIXEDBURST_ENABLE; + dmainit.RxDMABurstLength = ETH_RXDMABURSTLENGTH_32BEAT; + dmainit.TxDMABurstLength = ETH_TXDMABURSTLENGTH_32BEAT; + dmainit.EnhancedDescriptorFormat = ETH_DMAENHANCEDDESCRIPTOR_ENABLE; + dmainit.DescriptorSkipLength = 0x0; + dmainit.DMAArbitration = ETH_DMAARBITRATION_ROUNDROBIN_RXTX_1_1; + + /* Get the ETHERNET DMAOMR value */ + tmpreg1 = (heth->Instance)->DMAOMR; + /* Clear xx bits */ + tmpreg1 &= ETH_DMAOMR_CLEAR_MASK; + + /* Set the DT bit according to ETH DropTCPIPChecksumErrorFrame value */ + /* Set the RSF bit according to ETH ReceiveStoreForward value */ + /* Set the DFF bit according to ETH FlushReceivedFrame value */ + /* Set the TSF bit according to ETH TransmitStoreForward value */ + /* Set the TTC bit according to ETH TransmitThresholdControl value */ + /* Set the FEF bit according to ETH ForwardErrorFrames value */ + /* Set the FUF bit according to ETH ForwardUndersizedGoodFrames value */ + /* Set the RTC bit according to ETH ReceiveThresholdControl value */ + /* Set the OSF bit according to ETH SecondFrameOperate value */ + tmpreg1 |= (uint32_t)(dmainit.DropTCPIPChecksumErrorFrame | + dmainit.ReceiveStoreForward | + dmainit.FlushReceivedFrame | + dmainit.TransmitStoreForward | + dmainit.TransmitThresholdControl | + dmainit.ForwardErrorFrames | + dmainit.ForwardUndersizedGoodFrames | + dmainit.ReceiveThresholdControl | + dmainit.SecondFrameOperate); + + /* Write to ETHERNET DMAOMR */ + (heth->Instance)->DMAOMR = (uint32_t)tmpreg1; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->DMAOMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMAOMR = tmpreg1; + + /*----------------------- ETHERNET DMABMR Configuration ------------------*/ + /* Set the AAL bit according to ETH AddressAlignedBeats value */ + /* Set the FB bit according to ETH FixedBurst value */ + /* Set the RPBL and 4*PBL bits according to ETH RxDMABurstLength value */ + /* Set the PBL and 4*PBL bits according to ETH TxDMABurstLength value */ + /* Set the Enhanced DMA descriptors bit according to ETH EnhancedDescriptorFormat value*/ + /* Set the DSL bit according to ETH DesciptorSkipLength value */ + /* Set the PR and DA bits according to ETH DMAArbitration value */ + (heth->Instance)->DMABMR = (uint32_t)(dmainit.AddressAlignedBeats | + dmainit.FixedBurst | + dmainit.RxDMABurstLength | /* !! if 4xPBL is selected for Tx or Rx it is applied for the other */ + dmainit.TxDMABurstLength | + dmainit.EnhancedDescriptorFormat | + (dmainit.DescriptorSkipLength << 2) | + dmainit.DMAArbitration | + ETH_DMABMR_USP); /* Enable use of separate PBL for Rx and Tx */ + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->DMABMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMABMR = tmpreg1; + + if((heth->Init).RxMode == ETH_RXINTERRUPT_MODE) + { + /* Enable the Ethernet Rx Interrupt */ + __HAL_ETH_DMA_ENABLE_IT((heth), ETH_DMA_IT_NIS | ETH_DMA_IT_R); + } + + /* Initialize MAC address in ethernet MAC */ + ETH_MACAddressConfig(heth, ETH_MAC_ADDRESS0, heth->Init.MACAddr); +} + +/** + * @brief Configures the selected MAC address. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @param MacAddr: The MAC address to configure + * This parameter can be one of the following values: + * @arg ETH_MAC_Address0: MAC Address0 + * @arg ETH_MAC_Address1: MAC Address1 + * @arg ETH_MAC_Address2: MAC Address2 + * @arg ETH_MAC_Address3: MAC Address3 + * @param Addr: Pointer to MAC address buffer data (6 bytes) + * @retval HAL status + */ +static void ETH_MACAddressConfig(ETH_HandleTypeDef *heth, uint32_t MacAddr, uint8_t *Addr) +{ + uint32_t tmpreg1; + + /* Check the parameters */ + assert_param(IS_ETH_MAC_ADDRESS0123(MacAddr)); + + /* Calculate the selected MAC address high register */ + tmpreg1 = ((uint32_t)Addr[5] << 8) | (uint32_t)Addr[4]; + /* Load the selected MAC address high register */ + (*(__IO uint32_t *)((uint32_t)(ETH_MAC_ADDR_HBASE + MacAddr))) = tmpreg1; + /* Calculate the selected MAC address low register */ + tmpreg1 = ((uint32_t)Addr[3] << 24) | ((uint32_t)Addr[2] << 16) | ((uint32_t)Addr[1] << 8) | Addr[0]; + + /* Load the selected MAC address low register */ + (*(__IO uint32_t *)((uint32_t)(ETH_MAC_ADDR_LBASE + MacAddr))) = tmpreg1; +} + +/** + * @brief Enables the MAC transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACTransmissionEnable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg1 = 0; + + /* Enable the MAC transmission */ + (heth->Instance)->MACCR |= ETH_MACCR_TE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg1; +} + +/** + * @brief Disables the MAC transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACTransmissionDisable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg1 = 0; + + /* Disable the MAC transmission */ + (heth->Instance)->MACCR &= ~ETH_MACCR_TE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg1; +} + +/** + * @brief Enables the MAC reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACReceptionEnable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg1 = 0; + + /* Enable the MAC reception */ + (heth->Instance)->MACCR |= ETH_MACCR_RE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg1; +} + +/** + * @brief Disables the MAC reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_MACReceptionDisable(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg1 = 0; + + /* Disable the MAC reception */ + (heth->Instance)->MACCR &= ~ETH_MACCR_RE; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->MACCR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->MACCR = tmpreg1; +} + +/** + * @brief Enables the DMA transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMATransmissionEnable(ETH_HandleTypeDef *heth) +{ + /* Enable the DMA transmission */ + (heth->Instance)->DMAOMR |= ETH_DMAOMR_ST; +} + +/** + * @brief Disables the DMA transmission. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMATransmissionDisable(ETH_HandleTypeDef *heth) +{ + /* Disable the DMA transmission */ + (heth->Instance)->DMAOMR &= ~ETH_DMAOMR_ST; +} + +/** + * @brief Enables the DMA reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMAReceptionEnable(ETH_HandleTypeDef *heth) +{ + /* Enable the DMA reception */ + (heth->Instance)->DMAOMR |= ETH_DMAOMR_SR; +} + +/** + * @brief Disables the DMA reception. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_DMAReceptionDisable(ETH_HandleTypeDef *heth) +{ + /* Disable the DMA reception */ + (heth->Instance)->DMAOMR &= ~ETH_DMAOMR_SR; +} + +/** + * @brief Clears the ETHERNET transmit FIFO. + * @param heth: pointer to a ETH_HandleTypeDef structure that contains + * the configuration information for ETHERNET module + * @retval None + */ +static void ETH_FlushTransmitFIFO(ETH_HandleTypeDef *heth) +{ + __IO uint32_t tmpreg1 = 0; + + /* Set the Flush Transmit FIFO bit */ + (heth->Instance)->DMAOMR |= ETH_DMAOMR_FTF; + + /* Wait until the write operation will be taken into account: + at least four TX_CLK/RX_CLK clock cycles */ + tmpreg1 = (heth->Instance)->DMAOMR; + HAL_Delay(ETH_REG_WRITE_DELAY); + (heth->Instance)->DMAOMR = tmpreg1; +} + +/** + * @} + */ + +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ +#endif /* HAL_ETH_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash.c new file mode 100644 index 0000000..24923df --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash.c @@ -0,0 +1,761 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_flash.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the internal FLASH memory: + * + Program operations functions + * + Memory Control functions + * + Peripheral Errors functions + * + @verbatim + ============================================================================== + ##### FLASH peripheral features ##### + ============================================================================== + + [..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses + to the Flash memory. It implements the erase and program Flash memory operations + and the read and write protection mechanisms. + + [..] The Flash memory interface accelerates code execution with a system of instruction + prefetch and cache lines. + + [..] The FLASH main features are: + (+) Flash memory read operations + (+) Flash memory program/erase operations + (+) Read / write protections + (+) Prefetch on I-Code + (+) 64 cache lines of 128 bits on I-Code + (+) 8 cache lines of 128 bits on D-Code + + + ##### How to use this driver ##### + ============================================================================== + [..] + This driver provides functions and macros to configure and program the FLASH + memory of all STM32F4xx devices. + + (#) FLASH Memory IO Programming functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Program functions: byte, half word, word and double word + (++) There Two modes of programming : + (+++) Polling mode using HAL_FLASH_Program() function + (+++) Interrupt mode using HAL_FLASH_Program_IT() function + + (#) Interrupts and flags management functions : + (++) Handle FLASH interrupts by calling HAL_FLASH_IRQHandler() + (++) Wait for last FLASH operation according to its status + (++) Get error flag status by calling HAL_SetErrorCode() + + [..] + In addition to these functions, this driver includes a set of macros allowing + to handle the following operations: + (+) Set the latency + (+) Enable/Disable the prefetch buffer + (+) Enable/Disable the Instruction cache and the Data cache + (+) Reset the Instruction cache and the Data cache + (+) Enable/Disable the FLASH interrupts + (+) Monitor the FLASH flags status + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup FLASH FLASH + * @brief FLASH HAL module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup FLASH_Private_Constants + * @{ + */ +#define SECTOR_MASK ((uint32_t)0xFFFFFF07) +#define FLASH_TIMEOUT_VALUE ((uint32_t)50000)/* 50 s */ +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup FLASH_Private_Variables + * @{ + */ +/* Variable used for Erase sectors under interruption */ +FLASH_ProcessTypeDef pFlash; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup FLASH_Private_Functions + * @{ + */ +/* Program operations */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data); +static void FLASH_Program_Word(uint32_t Address, uint32_t Data); +static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data); +static void FLASH_Program_Byte(uint32_t Address, uint8_t Data); +static void FLASH_SetErrorCode(void); + +HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FLASH_Exported_Functions FLASH Exported Functions + * @{ + */ + +/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions + * @brief Programming operation functions + * +@verbatim + =============================================================================== + ##### Programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the FLASH + program operations. + +@endverbatim + * @{ + */ + +/** + * @brief Program byte, halfword, word or double word at a specified address + * @param TypeProgram: Indicate the way to program at a specified address. + * This parameter can be a value of @ref FLASH_Type_Program + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed + * + * @retval HAL_StatusTypeDef HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + if(TypeProgram == FLASH_TYPEPROGRAM_BYTE) + { + /*Program byte (8-bit) at a specified address.*/ + FLASH_Program_Byte(Address, (uint8_t) Data); + } + else if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD) + { + /*Program halfword (16-bit) at a specified address.*/ + FLASH_Program_HalfWord(Address, (uint16_t) Data); + } + else if(TypeProgram == FLASH_TYPEPROGRAM_WORD) + { + /*Program word (32-bit) at a specified address.*/ + FLASH_Program_Word(Address, (uint32_t) Data); + } + else + { + /*Program double word (64-bit) at a specified address.*/ + FLASH_Program_DoubleWord(Address, Data); + } + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + /* If the program operation is completed, disable the PG Bit */ + FLASH->CR &= (~FLASH_CR_PG); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + return status; +} + +/** + * @brief Program byte, halfword, word or double word at a specified address with interrupt enabled. + * @param TypeProgram: Indicate the way to program at a specified address. + * This parameter can be a value of @ref FLASH_Type_Program + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram)); + + /* Enable End of FLASH Operation interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP); + + /* Enable Error source interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_ERR); + + /* Clear pending flags (if any) */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |\ + FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR| FLASH_FLAG_PGSERR); + + pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAM; + pFlash.Address = Address; + + if(TypeProgram == FLASH_TYPEPROGRAM_BYTE) + { + /*Program byte (8-bit) at a specified address.*/ + FLASH_Program_Byte(Address, (uint8_t) Data); + } + else if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD) + { + /*Program halfword (16-bit) at a specified address.*/ + FLASH_Program_HalfWord(Address, (uint16_t) Data); + } + else if(TypeProgram == FLASH_TYPEPROGRAM_WORD) + { + /*Program word (32-bit) at a specified address.*/ + FLASH_Program_Word(Address, (uint32_t) Data); + } + else + { + /*Program double word (64-bit) at a specified address.*/ + FLASH_Program_DoubleWord(Address, Data); + } + + return status; +} + +/** + * @brief This function handles FLASH interrupt request. + * @retval None + */ +void HAL_FLASH_IRQHandler(void) +{ + uint32_t temp; + + /* If the program operation is completed, disable the PG Bit */ + FLASH->CR &= (~FLASH_CR_PG); + + /* If the erase operation is completed, disable the SER Bit */ + FLASH->CR &= (~FLASH_CR_SER); + FLASH->CR &= SECTOR_MASK; + + /* if the erase operation is completed, disable the MER Bit */ + FLASH->CR &= (~FLASH_MER_BIT); + + /* Check FLASH End of Operation flag */ + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP) != RESET) + { + if(pFlash.ProcedureOnGoing == FLASH_PROC_SECTERASE) + { + /*Nb of sector to erased can be decreased*/ + pFlash.NbSectorsToErase--; + + /* Check if there are still sectors to erase*/ + if(pFlash.NbSectorsToErase != 0) + { + temp = pFlash.Sector; + /*Indicate user which sector has been erased*/ + HAL_FLASH_EndOfOperationCallback(temp); + + /* Clear pending flags (if any) */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |\ + FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR| FLASH_FLAG_PGSERR); + + /*Increment sector number*/ + pFlash.Sector++; + temp = pFlash.Sector; + FLASH_Erase_Sector(temp, pFlash.VoltageForErase); + } + else + { + /*No more sectors to Erase, user callback can be called.*/ + /*Reset Sector and stop Erase sectors procedure*/ + pFlash.Sector = temp = 0xFFFFFFFF; + pFlash.ProcedureOnGoing = FLASH_PROC_NONE; + /* FLASH EOP interrupt user callback */ + HAL_FLASH_EndOfOperationCallback(temp); + /* Clear FLASH End of Operation pending bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + } + } + else + { + if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE) + { + /*MassErase ended. Return the selected bank*/ + /* FLASH EOP interrupt user callback */ + HAL_FLASH_EndOfOperationCallback(pFlash.Bank); + } + else + { + /*Program ended. Return the selected address*/ + /* FLASH EOP interrupt user callback */ + HAL_FLASH_EndOfOperationCallback(pFlash.Address); + } + pFlash.ProcedureOnGoing = FLASH_PROC_NONE; + /* Clear FLASH End of Operation pending bit */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP); + } + + } + + /* Check FLASH operation error flags */ + if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | \ + FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR | FLASH_FLAG_RDERR)) != RESET) + { + if(pFlash.ProcedureOnGoing == FLASH_PROC_SECTERASE) + { + /*return the faulty sector*/ + temp = pFlash.Sector; + pFlash.Sector = 0xFFFFFFFF; + } + else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE) + { + /*return the faulty bank*/ + temp = pFlash.Bank; + } + else + { + /*return the faulty address*/ + temp = pFlash.Address; + } + + /*Save the Error code*/ + FLASH_SetErrorCode(); + + /* FLASH error interrupt user callback */ + HAL_FLASH_OperationErrorCallback(temp); + /* Clear FLASH error pending bits */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR |\ + FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR | FLASH_FLAG_RDERR); + + /*Stop the procedure ongoing*/ + pFlash.ProcedureOnGoing = FLASH_PROC_NONE; + } + + if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE) + { + /* Disable End of FLASH Operation interrupt */ + __HAL_FLASH_DISABLE_IT(FLASH_IT_EOP); + + /* Disable Error source interrupt */ + __HAL_FLASH_DISABLE_IT(FLASH_IT_ERR); + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + } + +} + +/** + * @brief FLASH end of operation interrupt callback + * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure + * Mass Erase: Bank number which has been requested to erase + * Sectors Erase: Sector which has been erased + * (if 0xFFFFFFFF, it means that all the selected sectors have been erased) + * Program: Address which was selected for data program + * @retval None + */ +__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FLASH_EndOfOperationCallback could be implemented in the user file + */ +} + +/** + * @brief FLASH operation error interrupt callback + * @param ReturnValue: The value saved in this parameter depends on the ongoing procedure + * Mass Erase: Bank number which has been requested to erase + * Sectors Erase: Sector number which returned an error + * Program: Address which was selected for data program + * @retval None + */ +__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FLASH_OperationErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions + * @brief management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the FLASH + memory operations. + +@endverbatim + * @{ + */ + +/** + * @brief Unlock the FLASH control register access + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Unlock(void) +{ + if((FLASH->CR & FLASH_CR_LOCK) != RESET) + { + /* Authorize the FLASH Registers access */ + FLASH->KEYR = FLASH_KEY1; + FLASH->KEYR = FLASH_KEY2; + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Locks the FLASH control register access + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_Lock(void) +{ + /* Set the LOCK Bit to lock the FLASH Registers access */ + FLASH->CR |= FLASH_CR_LOCK; + + return HAL_OK; +} + +/** + * @brief Unlock the FLASH Option Control Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void) +{ + if((FLASH->OPTCR & FLASH_OPTCR_OPTLOCK) != RESET) + { + /* Authorizes the Option Byte register programming */ + FLASH->OPTKEYR = FLASH_OPT_KEY1; + FLASH->OPTKEYR = FLASH_OPT_KEY2; + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Lock the FLASH Option Control Registers access. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Lock(void) +{ + /* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */ + FLASH->OPTCR |= FLASH_OPTCR_OPTLOCK; + + return HAL_OK; +} + +/** + * @brief Launch the option byte loading. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASH_OB_Launch(void) +{ + /* Set the OPTSTRT bit in OPTCR register */ + *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS |= FLASH_OPTCR_OPTSTRT; + + /* Wait for last operation to be completed */ + return(FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE)); +} + +/** + * @} + */ + +/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time Errors of the FLASH peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Get the specific FLASH error flag. + * @retval FLASH_ErrorCode: The returned value can be a combination of: + * @arg HAL_FLASH_ERROR_RD: FLASH Read Protection error flag (PCROP) + * @arg HAL_FLASH_ERROR_PGS: FLASH Programming Sequence error flag + * @arg HAL_FLASH_ERROR_PGP: FLASH Programming Parallelism error flag + * @arg HAL_FLASH_ERROR_PGA: FLASH Programming Alignment error flag + * @arg HAL_FLASH_ERROR_WRP: FLASH Write protected error flag + * @arg HAL_FLASH_ERROR_OPERATION: FLASH operation Error flag + */ +uint32_t HAL_FLASH_GetError(void) +{ + return pFlash.ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Wait for a FLASH operation to complete. + * @param Timeout: maximum flash operationtimeout + * @retval HAL Status + */ +HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Clear Error Code */ + pFlash.ErrorCode = HAL_FLASH_ERROR_NONE; + + /* Wait for the FLASH operation to complete by polling on BUSY flag to be reset. + Even if the FLASH operation fails, the BUSY flag will be reset and an error + flag will be set */ + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY) != RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + if(__HAL_FLASH_GET_FLAG((FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | \ + FLASH_FLAG_PGPERR | FLASH_FLAG_PGSERR | FLASH_FLAG_RDERR)) != RESET) + { + /*Save the error code*/ + FLASH_SetErrorCode(); + return HAL_ERROR; + } + + /* If there is an error flag set */ + return HAL_OK; + +} + +/** + * @brief Program a double word (64-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V and an External Vpp is present. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_DOUBLE_WORD; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint64_t*)Address = Data; +} + + +/** + * @brief Program word (32-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_Word(uint32_t Address, uint32_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_WORD; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint32_t*)Address = Data; +} + +/** + * @brief Program a half-word (16-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_HALF_WORD; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint16_t*)Address = Data; +} + +/** + * @brief Program byte (8-bit) at a specified address. + * @note This function must be used when the device voltage range is from + * 2.7V to 3.6V. + * + * @note If an erase and a program operations are requested simultaneously, + * the erase operation is performed before the program one. + * + * @param Address: specifies the address to be programmed. + * @param Data: specifies the data to be programmed. + * @retval None + */ +static void FLASH_Program_Byte(uint32_t Address, uint8_t Data) +{ + /* Check the parameters */ + assert_param(IS_FLASH_ADDRESS(Address)); + + /* If the previous operation is completed, proceed to program the new data */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= FLASH_PSIZE_BYTE; + FLASH->CR |= FLASH_CR_PG; + + *(__IO uint8_t*)Address = Data; +} + +/** + * @brief Set the specific FLASH error flag. + * @retval None + */ +static void FLASH_SetErrorCode(void) +{ + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGAERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_PGA; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGPERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_PGP; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGSERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_PGS; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_RDERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_RD; + } + + if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPERR) != RESET) + { + pFlash.ErrorCode |= HAL_FLASH_ERROR_OPERATION; + } +} + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash_ex.c new file mode 100644 index 0000000..0fadd8f --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash_ex.c @@ -0,0 +1,1316 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_flash_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief Extended FLASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the FLASH extension peripheral: + * + Extended programming operations functions + * + @verbatim + ============================================================================== + ##### Flash Extension features ##### + ============================================================================== + + [..] Comparing to other previous devices, the FLASH interface for STM32F427xx/437xx and + STM32F429xx/439xx devices contains the following additional features + + (+) Capacity up to 2 Mbyte with dual bank architecture supporting read-while-write + capability (RWW) + (+) Dual bank memory organization + (+) PCROP protection for all banks + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure and program the FLASH memory + of all STM32F427xx/437xx andSTM32F429xx/439xx devices. It includes + (#) FLASH Memory Erase functions: + (++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and + HAL_FLASH_Lock() functions + (++) Erase function: Erase sector, erase all sectors + (++) There are two modes of erase : + (+++) Polling Mode using HAL_FLASHEx_Erase() + (+++) Interrupt Mode using HAL_FLASHEx_Erase_IT() + + (#) Option Bytes Programming functions: Use HAL_FLASHEx_OBProgram() to : + (++) Set/Reset the write protection + (++) Set the Read protection Level + (++) Set the BOR level + (++) Program the user Option Bytes + (#) Advanced Option Bytes Programming functions: Use HAL_FLASHEx_AdvOBProgram() to : + (++) Extended space (bank 2) erase function + (++) Full FLASH space (2 Mo) erase (bank 1 and bank 2) + (++) Dual Boot activation + (++) Write protection configuration for bank 2 + (++) PCROP protection configuration and control for both banks + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup FLASHEx FLASHEx + * @brief FLASH HAL Extension module driver + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Constants + * @{ + */ +#define SECTOR_MASK ((uint32_t)0xFFFFFF07) +#define FLASH_TIMEOUT_VALUE ((uint32_t)50000)/* 50 s */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Variables + * @{ + */ +extern FLASH_ProcessTypeDef pFlash; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup FLASHEx_Private_Functions + * @{ + */ +/* Option bytes control */ +static void FLASH_MassErase(uint8_t VoltageRange, uint32_t Banks); +static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks); +static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Banks); +static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t Level); +static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t Iwdg, uint8_t Stop, uint8_t Stdby); +static HAL_StatusTypeDef FLASH_OB_BOR_LevelConfig(uint8_t Level); +static uint8_t FLASH_OB_GetUser(void); +static uint16_t FLASH_OB_GetWRP(void); +static uint8_t FLASH_OB_GetRDP(void); +static uint8_t FLASH_OB_GetBOR(void); + +#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) +static HAL_StatusTypeDef FLASH_OB_EnablePCROP(uint32_t Sector); +static HAL_StatusTypeDef FLASH_OB_DisablePCROP(uint32_t Sector); +#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */ + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) +static HAL_StatusTypeDef FLASH_OB_EnablePCROP(uint32_t SectorBank1, uint32_t SectorBank2, uint32_t Banks); +static HAL_StatusTypeDef FLASH_OB_DisablePCROP(uint32_t SectorBank1, uint32_t SectorBank2, uint32_t Banks); +static HAL_StatusTypeDef FLASH_OB_BootConfig(uint8_t BootConfig); +#endif /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */ + +extern HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FLASHEx_Exported_Functions FLASHEx Exported Functions + * @{ + */ + +/** @defgroup FLASHEx_Exported_Functions_Group1 Extended IO operation functions + * @brief Extended IO operation functions + * +@verbatim + =============================================================================== + ##### Extended programming operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the Extension FLASH + programming operations Operations. + +@endverbatim + * @{ + */ +/** + * @brief Perform a mass erase or erase the specified FLASH memory sectors + * @param[in] pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * + * @param[out] SectorError: pointer to variable that + * contains the configuration information on faulty sector in case of error + * (0xFFFFFFFF means that all the sectors have been correctly erased) + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase(FLASH_EraseInitTypeDef *pEraseInit, uint32_t *SectorError) +{ + HAL_StatusTypeDef status = HAL_ERROR; + uint32_t index = 0; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /*Initialization of SectorError variable*/ + *SectorError = 0xFFFFFFFF; + + if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) + { + /*Mass erase to be done*/ + FLASH_MassErase((uint8_t) pEraseInit->VoltageRange, pEraseInit->Banks); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + /* if the erase operation is completed, disable the MER Bit */ + FLASH->CR &= (~FLASH_MER_BIT); + } + else + { + /* Check the parameters */ + assert_param(IS_FLASH_NBSECTORS(pEraseInit->NbSectors + pEraseInit->Sector)); + + /* Erase by sector by sector to be done*/ + for(index = pEraseInit->Sector; index < (pEraseInit->NbSectors + pEraseInit->Sector); index++) + { + FLASH_Erase_Sector(index, (uint8_t) pEraseInit->VoltageRange); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + /* If the erase operation is completed, disable the SER Bit */ + FLASH->CR &= (~FLASH_CR_SER); + FLASH->CR &= SECTOR_MASK; + + if(status != HAL_OK) + { + /* In case of error, stop erase procedure and return the faulty sector*/ + *SectorError = index; + break; + } + } + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + return status; +} + +/** + * @brief Perform a mass erase or erase the specified FLASH memory sectors with interrupt enabled + * @param pEraseInit: pointer to an FLASH_EraseInitTypeDef structure that + * contains the configuration information for the erasing. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_Erase_IT(FLASH_EraseInitTypeDef *pEraseInit) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_FLASH_TYPEERASE(pEraseInit->TypeErase)); + + /* Enable End of FLASH Operation interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_EOP); + + /* Enable Error source interrupt */ + __HAL_FLASH_ENABLE_IT(FLASH_IT_ERR); + + /* Clear pending flags (if any) */ + __HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR |\ + FLASH_FLAG_PGAERR | FLASH_FLAG_PGPERR| FLASH_FLAG_PGSERR); + + if(pEraseInit->TypeErase == FLASH_TYPEERASE_MASSERASE) + { + /*Mass erase to be done*/ + pFlash.ProcedureOnGoing = FLASH_PROC_MASSERASE; + pFlash.Bank = pEraseInit->Banks; + FLASH_MassErase((uint8_t) pEraseInit->VoltageRange, pEraseInit->Banks); + } + else + { + /* Erase by sector to be done*/ + + /* Check the parameters */ + assert_param(IS_FLASH_NBSECTORS(pEraseInit->NbSectors + pEraseInit->Sector)); + + pFlash.ProcedureOnGoing = FLASH_PROC_SECTERASE; + pFlash.NbSectorsToErase = pEraseInit->NbSectors; + pFlash.Sector = pEraseInit->Sector; + pFlash.VoltageForErase = (uint8_t)pEraseInit->VoltageRange; + + /*Erase 1st sector and wait for IT*/ + FLASH_Erase_Sector(pEraseInit->Sector, pEraseInit->VoltageRange); + } + + return status; +} + +/** + * @brief Program option bytes + * @param pOBInit: pointer to an FLASH_OBInitStruct structure that + * contains the configuration information for the programming. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_OBProgram(FLASH_OBProgramInitTypeDef *pOBInit) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Process Locked */ + __HAL_LOCK(&pFlash); + + /* Check the parameters */ + assert_param(IS_OPTIONBYTE(pOBInit->OptionType)); + + /*Write protection configuration*/ + if((pOBInit->OptionType & OPTIONBYTE_WRP) == OPTIONBYTE_WRP) + { + assert_param(IS_WRPSTATE(pOBInit->WRPState)); + if(pOBInit->WRPState == OB_WRPSTATE_ENABLE) + { + /*Enable of Write protection on the selected Sector*/ + status = FLASH_OB_EnableWRP(pOBInit->WRPSector, pOBInit->Banks); + } + else + { + /*Disable of Write protection on the selected Sector*/ + status = FLASH_OB_DisableWRP(pOBInit->WRPSector, pOBInit->Banks); + } + } + + /*Read protection configuration*/ + if((pOBInit->OptionType & OPTIONBYTE_RDP) == OPTIONBYTE_RDP) + { + status = FLASH_OB_RDP_LevelConfig(pOBInit->RDPLevel); + } + + /*USER configuration*/ + if((pOBInit->OptionType & OPTIONBYTE_USER) == OPTIONBYTE_USER) + { + status = FLASH_OB_UserConfig(pOBInit->USERConfig&OB_IWDG_SW, + pOBInit->USERConfig&OB_STOP_NO_RST, + pOBInit->USERConfig&OB_STDBY_NO_RST); + } + + /*BOR Level configuration*/ + if((pOBInit->OptionType & OPTIONBYTE_BOR) == OPTIONBYTE_BOR) + { + status = FLASH_OB_BOR_LevelConfig(pOBInit->BORLevel); + } + + /* Process Unlocked */ + __HAL_UNLOCK(&pFlash); + + return status; +} + +/** + * @brief Get the Option byte configuration + * @param pOBInit: pointer to an FLASH_OBInitStruct structure that + * contains the configuration information for the programming. + * + * @retval None + */ +void HAL_FLASHEx_OBGetConfig(FLASH_OBProgramInitTypeDef *pOBInit) +{ + pOBInit->OptionType = OPTIONBYTE_WRP | OPTIONBYTE_RDP | OPTIONBYTE_USER | OPTIONBYTE_BOR; + + /*Get WRP*/ + pOBInit->WRPSector = (uint32_t)FLASH_OB_GetWRP(); + + /*Get RDP Level*/ + pOBInit->RDPLevel = (uint32_t)FLASH_OB_GetRDP(); + + /*Get USER*/ + pOBInit->USERConfig = (uint8_t)FLASH_OB_GetUser(); + + /*Get BOR Level*/ + pOBInit->BORLevel = (uint32_t)FLASH_OB_GetBOR(); +} + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) +/** + * @brief Program option bytes + * @param pAdvOBInit: pointer to an FLASH_AdvOBProgramInitTypeDef structure that + * contains the configuration information for the programming. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_AdvOBProgram (FLASH_AdvOBProgramInitTypeDef *pAdvOBInit) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the parameters */ + assert_param(IS_OBEX(pAdvOBInit->OptionType)); + + /*Program PCROP option byte*/ + if(((pAdvOBInit->OptionType) & OPTIONBYTE_PCROP) == OPTIONBYTE_PCROP) + { + /* Check the parameters */ + assert_param(IS_PCROPSTATE(pAdvOBInit->PCROPState)); + if((pAdvOBInit->PCROPState) == OB_PCROP_STATE_ENABLE) + { + /*Enable of Write protection on the selected Sector*/ +#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) + status = FLASH_OB_EnablePCROP(pAdvOBInit->Sectors); +#else /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */ + status = FLASH_OB_EnablePCROP(pAdvOBInit->SectorsBank1, pAdvOBInit->SectorsBank2, pAdvOBInit->Banks); +#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */ + } + else + { + /*Disable of Write protection on the selected Sector*/ +#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) + status = FLASH_OB_DisablePCROP(pAdvOBInit->Sectors); +#else /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */ + status = FLASH_OB_DisablePCROP(pAdvOBInit->SectorsBank1, pAdvOBInit->SectorsBank2, pAdvOBInit->Banks); +#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */ + } + } + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) + /*Program BOOT config option byte*/ + if(((pAdvOBInit->OptionType) & OPTIONBYTE_BOOTCONFIG) == OPTIONBYTE_BOOTCONFIG) + { + status = FLASH_OB_BootConfig(pAdvOBInit->BootConfig); + } +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + + return status; +} + +/** + * @brief Get the OBEX byte configuration + * @param pAdvOBInit: pointer to an FLASH_AdvOBProgramInitTypeDef structure that + * contains the configuration information for the programming. + * + * @retval None + */ +void HAL_FLASHEx_AdvOBGetConfig(FLASH_AdvOBProgramInitTypeDef *pAdvOBInit) +{ +#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) + /*Get Sector*/ + pAdvOBInit->Sectors = (*(__IO uint16_t *)(OPTCR_BYTE2_ADDRESS)); +#else /* STM32F427xx || STM32F437xx || STM32F429xx|| STM32F439xx */ + /*Get Sector for Bank1*/ + pAdvOBInit->SectorsBank1 = (*(__IO uint16_t *)(OPTCR_BYTE2_ADDRESS)); + + /*Get Sector for Bank2*/ + pAdvOBInit->SectorsBank2 = (*(__IO uint16_t *)(OPTCR1_BYTE2_ADDRESS)); + + /*Get Boot config OB*/ + pAdvOBInit->BootConfig = *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS; +#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */ +} + +/** + * @brief Select the Protection Mode + * + * @note After PCROP activated Option Byte modification NOT POSSIBLE! excepted + * Global Read Out Protection modification (from level1 to level0) + * @note Once SPRMOD bit is active unprotection of a protected sector is not possible + * @note Read a protected sector will set RDERR Flag and write a protected sector will set WRPERR Flag + * @note This function can be used only for STM32F42xxx/STM32F43xxx/STM32F401xx/STM32F411xx/STM32F446xx devices. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_OB_SelectPCROP(void) +{ + uint8_t optiontmp = 0xFF; + + /* Mask SPRMOD bit */ + optiontmp = (uint8_t)((*(__IO uint8_t *)OPTCR_BYTE3_ADDRESS) & (uint8_t)0x7F); + + /* Update Option Byte */ + *(__IO uint8_t *)OPTCR_BYTE3_ADDRESS = (uint8_t)(OB_PCROP_SELECTED | optiontmp); + + return HAL_OK; +} + +/** + * @brief Deselect the Protection Mode + * + * @note After PCROP activated Option Byte modification NOT POSSIBLE! excepted + * Global Read Out Protection modification (from level1 to level0) + * @note Once SPRMOD bit is active unprotection of a protected sector is not possible + * @note Read a protected sector will set RDERR Flag and write a protected sector will set WRPERR Flag + * @note This function can be used only for STM32F42xxx/STM32F43xxx/STM32F401xx/STM32F411xx/STM32F446xx devices. + * + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_FLASHEx_OB_DeSelectPCROP(void) +{ + uint8_t optiontmp = 0xFF; + + /* Mask SPRMOD bit */ + optiontmp = (uint8_t)((*(__IO uint8_t *)OPTCR_BYTE3_ADDRESS) & (uint8_t)0x7F); + + /* Update Option Byte */ + *(__IO uint8_t *)OPTCR_BYTE3_ADDRESS = (uint8_t)(OB_PCROP_DESELECTED | optiontmp); + + return HAL_OK; +} +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F401xC || STM32F401xE || STM32F411xE */ + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) +/** + * @brief Returns the FLASH Write Protection Option Bytes value for Bank 2 + * @note This function can be used only for STM32F427X and STM32F429X devices. + * @retval The FLASH Write Protection Option Bytes value + */ +uint16_t HAL_FLASHEx_OB_GetBank2WRP(void) +{ + /* Return the FLASH write protection Register value */ + return (*(__IO uint16_t *)(OPTCR1_BYTE2_ADDRESS)); +} +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + +/** + * @} + */ + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx)|| defined(STM32F439xx) +/** + * @brief Full erase of FLASH memory sectors + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * + * @param Banks: Banks to be erased + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: Bank1 to be erased + * @arg FLASH_BANK_2: Bank2 to be erased + * @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased + * + * @retval HAL Status + */ +static void FLASH_MassErase(uint8_t VoltageRange, uint32_t Banks) +{ + uint32_t tmp_psize = 0; + + /* Check the parameters */ + assert_param(IS_VOLTAGERANGE(VoltageRange)); + assert_param(IS_FLASH_BANK(Banks)); + + /* if the previous operation is completed, proceed to erase all sectors */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= tmp_psize; + if(Banks == FLASH_BANK_BOTH) + { + /* bank1 & bank2 will be erased*/ + FLASH->CR |= FLASH_MER_BIT; + } + else if(Banks == FLASH_BANK_1) + { + /*Only bank1 will be erased*/ + FLASH->CR |= FLASH_CR_MER1; + } + else + { + /*Only bank2 will be erased*/ + FLASH->CR |= FLASH_CR_MER2; + } + FLASH->CR |= FLASH_CR_STRT; +} + +/** + * @brief Erase the specified FLASH memory sector + * @param Sector: FLASH sector to erase + * The value of this parameter depend on device used within the same series + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * + * @retval None + */ +void FLASH_Erase_Sector(uint32_t Sector, uint8_t VoltageRange) +{ + uint32_t tmp_psize = 0; + + /* Check the parameters */ + assert_param(IS_FLASH_SECTOR(Sector)); + assert_param(IS_VOLTAGERANGE(VoltageRange)); + + if(VoltageRange == FLASH_VOLTAGE_RANGE_1) + { + tmp_psize = FLASH_PSIZE_BYTE; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_2) + { + tmp_psize = FLASH_PSIZE_HALF_WORD; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_3) + { + tmp_psize = FLASH_PSIZE_WORD; + } + else + { + tmp_psize = FLASH_PSIZE_DOUBLE_WORD; + } + + /* Need to add offset of 4 when sector higher than FLASH_SECTOR_11 */ + if(Sector > FLASH_SECTOR_11) + { + Sector += 4; + } + /* If the previous operation is completed, proceed to erase the sector */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= tmp_psize; + FLASH->CR &= SECTOR_MASK; + FLASH->CR |= FLASH_CR_SER | (Sector << POSITION_VAL(FLASH_CR_SNB)); + FLASH->CR |= FLASH_CR_STRT; +} + +/** + * @brief Enable the write protection of the desired bank1 or bank 2 sectors + * + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase the flash sector i if CortexM4 + * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 + * @note Active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1). + * + * @param WRPSector: specifies the sector(s) to be write protected. + * This parameter can be one of the following values: + * @arg WRPSector: A value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_23 + * @arg OB_WRP_SECTOR_All + * @note BANK2 starts from OB_WRP_SECTOR_12 + * + * @param Banks: Enable write protection on all the sectors for the specific bank + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: WRP on all sectors of bank1 + * @arg FLASH_BANK_2: WRP on all sectors of bank2 + * @arg FLASH_BANK_BOTH: WRP on all sectors of bank1 & bank2 + * + * @retval HAL FLASH State + */ +static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WRP_SECTOR(WRPSector)); + assert_param(IS_FLASH_BANK(Banks)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + if(((WRPSector == OB_WRP_SECTOR_All) && ((Banks == FLASH_BANK_1) || (Banks == FLASH_BANK_BOTH))) || + (WRPSector < OB_WRP_SECTOR_12)) + { + if(WRPSector == OB_WRP_SECTOR_All) + { + /*Write protection on all sector of BANK1*/ + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~(WRPSector>>12)); + } + else + { + /*Write protection done on sectors of BANK1*/ + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~WRPSector); + } + } + else + { + /*Write protection done on sectors of BANK2*/ + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS &= (~(WRPSector>>12)); + } + + /*Write protection on all sector of BANK2*/ + if((WRPSector == OB_WRP_SECTOR_All) && (Banks == FLASH_BANK_BOTH)) + { + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS &= (~(WRPSector>>12)); + } + } + + } + return status; +} + +/** + * @brief Disable the write protection of the desired bank1 or bank 2 sectors + * + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase the flash sector i if CortexM4 + * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 + * @note Active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1). + * + * @param WRPSector: specifies the sector(s) to be write protected. + * This parameter can be one of the following values: + * @arg WRPSector: A value between OB_WRP_SECTOR_0 and OB_WRP_SECTOR_23 + * @arg OB_WRP_Sector_All + * @note BANK2 starts from OB_WRP_SECTOR_12 + * + * @param Banks: Disable write protection on all the sectors for the specific bank + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: Bank1 to be erased + * @arg FLASH_BANK_2: Bank2 to be erased + * @arg FLASH_BANK_BOTH: Bank1 and Bank2 to be erased + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Banks) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WRP_SECTOR(WRPSector)); + assert_param(IS_FLASH_BANK(Banks)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + if(((WRPSector == OB_WRP_SECTOR_All) && ((Banks == FLASH_BANK_1) || (Banks == FLASH_BANK_BOTH))) || + (WRPSector < OB_WRP_SECTOR_12)) + { + if(WRPSector == OB_WRP_SECTOR_All) + { + /*Write protection on all sector of BANK1*/ + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)(WRPSector>>12); + } + else + { + /*Write protection done on sectors of BANK1*/ + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)WRPSector; + } + } + else + { + /*Write protection done on sectors of BANK2*/ + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS |= (uint16_t)(WRPSector>>12); + } + + /*Write protection on all sector of BANK2*/ + if((WRPSector == OB_WRP_SECTOR_All) && (Banks == FLASH_BANK_BOTH)) + { + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS |= (uint16_t)(WRPSector>>12); + } + } + + } + + return status; +} + +/** + * @brief Configure the Dual Bank Boot. + * + * @note This function can be used only for STM32F42xxx/43xxx devices. + * + * @param BootConfig specifies the Dual Bank Boot Option byte. + * This parameter can be one of the following values: + * @arg OB_Dual_BootEnabled: Dual Bank Boot Enable + * @arg OB_Dual_BootDisabled: Dual Bank Boot Disabled + * @retval None + */ +static HAL_StatusTypeDef FLASH_OB_BootConfig(uint8_t BootConfig) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_BOOT(BootConfig)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /* Set Dual Bank Boot */ + *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS &= (~FLASH_OPTCR_BFB2); + *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS |= BootConfig; + } + + return status; +} + +/** + * @brief Enable the read/write protection (PCROP) of the desired + * sectors of Bank 1 and/or Bank 2. + * @note This function can be used only for STM32F42xxx/43xxx devices. + * @param SectorBank1 Specifies the sector(s) to be read/write protected or unprotected for bank1. + * This parameter can be one of the following values: + * @arg OB_PCROP: A value between OB_PCROP_SECTOR_0 and OB_PCROP_SECTOR_11 + * @arg OB_PCROP_SECTOR__All + * @param SectorBank2 Specifies the sector(s) to be read/write protected or unprotected for bank2. + * This parameter can be one of the following values: + * @arg OB_PCROP: A value between OB_PCROP_SECTOR_12 and OB_PCROP_SECTOR_23 + * @arg OB_PCROP_SECTOR__All + * @param Banks Enable PCROP protection on all the sectors for the specific bank + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: WRP on all sectors of bank1 + * @arg FLASH_BANK_2: WRP on all sectors of bank2 + * @arg FLASH_BANK_BOTH: WRP on all sectors of bank1 & bank2 + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_EnablePCROP(uint32_t SectorBank1, uint32_t SectorBank2, uint32_t Banks) +{ + HAL_StatusTypeDef status = HAL_OK; + + assert_param(IS_FLASH_BANK(Banks)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + if((Banks == FLASH_BANK_1) || (Banks == FLASH_BANK_BOTH)) + { + assert_param(IS_OB_PCROP(SectorBank1)); + /*Write protection done on sectors of BANK1*/ + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)SectorBank1; + } + else + { + assert_param(IS_OB_PCROP(SectorBank2)); + /*Write protection done on sectors of BANK2*/ + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS |= (uint16_t)SectorBank2; + } + + /*Write protection on all sector of BANK2*/ + if(Banks == FLASH_BANK_BOTH) + { + assert_param(IS_OB_PCROP(SectorBank2)); + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /*Write protection done on sectors of BANK2*/ + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS |= (uint16_t)SectorBank2; + } + } + + } + + return status; +} + + +/** + * @brief Disable the read/write protection (PCROP) of the desired + * sectors of Bank 1 and/or Bank 2. + * @note This function can be used only for STM32F42xxx/43xxx devices. + * @param SectorBank1 specifies the sector(s) to be read/write protected or unprotected for bank1. + * This parameter can be one of the following values: + * @arg OB_PCROP: A value between OB_PCROP_SECTOR_0 and OB_PCROP_SECTOR_11 + * @arg OB_PCROP_SECTOR__All + * @param SectorBank2 Specifies the sector(s) to be read/write protected or unprotected for bank2. + * This parameter can be one of the following values: + * @arg OB_PCROP: A value between OB_PCROP_SECTOR_12 and OB_PCROP_SECTOR_23 + * @arg OB_PCROP_SECTOR__All + * @param Banks Disable PCROP protection on all the sectors for the specific bank + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: WRP on all sectors of bank1 + * @arg FLASH_BANK_2: WRP on all sectors of bank2 + * @arg FLASH_BANK_BOTH: WRP on all sectors of bank1 & bank2 + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_DisablePCROP(uint32_t SectorBank1, uint32_t SectorBank2, uint32_t Banks) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_FLASH_BANK(Banks)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + if((Banks == FLASH_BANK_1) || (Banks == FLASH_BANK_BOTH)) + { + assert_param(IS_OB_PCROP(SectorBank1)); + /*Write protection done on sectors of BANK1*/ + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~SectorBank1); + } + else + { + /*Write protection done on sectors of BANK2*/ + assert_param(IS_OB_PCROP(SectorBank2)); + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS &= (~SectorBank2); + } + + /*Write protection on all sector of BANK2*/ + if(Banks == FLASH_BANK_BOTH) + { + assert_param(IS_OB_PCROP(SectorBank2)); + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /*Write protection done on sectors of BANK2*/ + *(__IO uint16_t*)OPTCR1_BYTE2_ADDRESS &= (~SectorBank2); + } + } + + } + + return status; + +} + +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)|| defined(STM32F417xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) +/** + * @brief Mass erase of FLASH memory + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * + * @param Banks: Banks to be erased + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: Bank1 to be erased + * + * @retval None + */ +static void FLASH_MassErase(uint8_t VoltageRange, uint32_t Banks) +{ + uint32_t tmp_psize = 0; + + /* Check the parameters */ + assert_param(IS_VOLTAGERANGE(VoltageRange)); + assert_param(IS_FLASH_BANK(Banks)); + + /* If the previous operation is completed, proceed to erase all sectors */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= tmp_psize; + FLASH->CR |= FLASH_CR_MER; + FLASH->CR |= FLASH_CR_STRT; +} + +/** + * @brief Erase the specified FLASH memory sector + * @param Sector: FLASH sector to erase + * The value of this parameter depend on device used within the same series + * @param VoltageRange: The device voltage range which defines the erase parallelism. + * This parameter can be one of the following values: + * @arg FLASH_VOLTAGE_RANGE_1: when the device voltage range is 1.8V to 2.1V, + * the operation will be done by byte (8-bit) + * @arg FLASH_VOLTAGE_RANGE_2: when the device voltage range is 2.1V to 2.7V, + * the operation will be done by half word (16-bit) + * @arg FLASH_VOLTAGE_RANGE_3: when the device voltage range is 2.7V to 3.6V, + * the operation will be done by word (32-bit) + * @arg FLASH_VOLTAGE_RANGE_4: when the device voltage range is 2.7V to 3.6V + External Vpp, + * the operation will be done by double word (64-bit) + * + * @retval None + */ +void FLASH_Erase_Sector(uint32_t Sector, uint8_t VoltageRange) +{ + uint32_t tmp_psize = 0; + + /* Check the parameters */ + assert_param(IS_FLASH_SECTOR(Sector)); + assert_param(IS_VOLTAGERANGE(VoltageRange)); + + if(VoltageRange == FLASH_VOLTAGE_RANGE_1) + { + tmp_psize = FLASH_PSIZE_BYTE; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_2) + { + tmp_psize = FLASH_PSIZE_HALF_WORD; + } + else if(VoltageRange == FLASH_VOLTAGE_RANGE_3) + { + tmp_psize = FLASH_PSIZE_WORD; + } + else + { + tmp_psize = FLASH_PSIZE_DOUBLE_WORD; + } + + /* If the previous operation is completed, proceed to erase the sector */ + FLASH->CR &= CR_PSIZE_MASK; + FLASH->CR |= tmp_psize; + FLASH->CR &= SECTOR_MASK; + FLASH->CR |= FLASH_CR_SER | (Sector << POSITION_VAL(FLASH_CR_SNB)); + FLASH->CR |= FLASH_CR_STRT; +} + +/** + * @brief Enable the write protection of the desired bank 1 sectors + * + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase the flash sector i if CortexM4 + * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 + * @note Active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1). + * + * @param WRPSector: specifies the sector(s) to be write protected. + * The value of this parameter depend on device used within the same series + * + * @param Banks: Enable write protection on all the sectors for the specific bank + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: WRP on all sectors of bank1 + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_EnableWRP(uint32_t WRPSector, uint32_t Banks) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WRP_SECTOR(WRPSector)); + assert_param(IS_FLASH_BANK(Banks)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~WRPSector); + } + + return status; +} + +/** + * @brief Disable the write protection of the desired bank 1 sectors + * + * @note When the memory read protection level is selected (RDP level = 1), + * it is not possible to program or erase the flash sector i if CortexM4 + * debug features are connected or boot code is executed in RAM, even if nWRPi = 1 + * @note Active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1). + * + * @param WRPSector: specifies the sector(s) to be write protected. + * The value of this parameter depend on device used within the same series + * + * @param Banks: Enable write protection on all the sectors for the specific bank + * This parameter can be one of the following values: + * @arg FLASH_BANK_1: WRP on all sectors of bank1 + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_DisableWRP(uint32_t WRPSector, uint32_t Banks) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_WRP_SECTOR(WRPSector)); + assert_param(IS_FLASH_BANK(Banks)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)WRPSector; + } + + return status; +} +#endif /* STM32F40xxx || STM32F41xxx || STM32F401xx || STM32F411xE || STM32F446xx */ + +#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) +/** + * @brief Enable the read/write protection (PCROP) of the desired sectors. + * @note This function can be used only for STM32F401xx devices. + * @param Sector specifies the sector(s) to be read/write protected or unprotected. + * This parameter can be one of the following values: + * @arg OB_PCROP: A value between OB_PCROP_Sector0 and OB_PCROP_Sector5 + * @arg OB_PCROP_Sector_All + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_EnablePCROP(uint32_t Sector) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_PCROP(Sector)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS |= (uint16_t)Sector; + } + + return status; +} + + +/** + * @brief Disable the read/write protection (PCROP) of the desired sectors. + * @note This function can be used only for STM32F401xx devices. + * @param Sector specifies the sector(s) to be read/write protected or unprotected. + * This parameter can be one of the following values: + * @arg OB_PCROP: A value between OB_PCROP_Sector0 and OB_PCROP_Sector5 + * @arg OB_PCROP_Sector_All + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_DisablePCROP(uint32_t Sector) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_PCROP(Sector)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint16_t*)OPTCR_BYTE2_ADDRESS &= (~Sector); + } + + return status; + +} +#endif /* STM32F401xC || STM32F401xE || STM32F411xE || STM32F446xx */ + +/** + * @brief Set the read protection level. + * @param Level: specifies the read protection level. + * This parameter can be one of the following values: + * @arg OB_RDP_LEVEL_0: No protection + * @arg OB_RDP_LEVEL_1: Read protection of the memory + * @arg OB_RDP_LEVEL_2: Full chip protection + * + * @note WARNING: When enabling OB_RDP level 2 it's no more possible to go back to level 1 or 0 + * + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_RDP_LevelConfig(uint8_t Level) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_RDP_LEVEL(Level)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + *(__IO uint8_t*)OPTCR_BYTE1_ADDRESS = Level; + } + + return status; +} + +/** + * @brief Program the FLASH User Option Byte: IWDG_SW / RST_STOP / RST_STDBY. + * @param Iwdg: Selects the IWDG mode + * This parameter can be one of the following values: + * @arg OB_IWDG_SW: Software IWDG selected + * @arg OB_IWDG_HW: Hardware IWDG selected + * @param Stop: Reset event when entering STOP mode. + * This parameter can be one of the following values: + * @arg OB_STOP_NO_RST: No reset generated when entering in STOP + * @arg OB_STOP_RST: Reset generated when entering in STOP + * @param Stdby: Reset event when entering Standby mode. + * This parameter can be one of the following values: + * @arg OB_STDBY_NO_RST: No reset generated when entering in STANDBY + * @arg OB_STDBY_RST: Reset generated when entering in STANDBY + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_UserConfig(uint8_t Iwdg, uint8_t Stop, uint8_t Stdby) +{ + uint8_t optiontmp = 0xFF; + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_OB_IWDG_SOURCE(Iwdg)); + assert_param(IS_OB_STOP_SOURCE(Stop)); + assert_param(IS_OB_STDBY_SOURCE(Stdby)); + + /* Wait for last operation to be completed */ + status = FLASH_WaitForLastOperation((uint32_t)FLASH_TIMEOUT_VALUE); + + if(status == HAL_OK) + { + /* Mask OPTLOCK, OPTSTRT, BOR_LEV and BFB2 bits */ + optiontmp = (uint8_t)((*(__IO uint8_t *)OPTCR_BYTE0_ADDRESS) & (uint8_t)0x1F); + + /* Update User Option Byte */ + *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS = Iwdg | (uint8_t)(Stdby | (uint8_t)(Stop | ((uint8_t)optiontmp))); + } + + return status; +} + +/** + * @brief Set the BOR Level. + * @param Level: specifies the Option Bytes BOR Reset Level. + * This parameter can be one of the following values: + * @arg OB_BOR_LEVEL3: Supply voltage ranges from 2.7 to 3.6 V + * @arg OB_BOR_LEVEL2: Supply voltage ranges from 2.4 to 2.7 V + * @arg OB_BOR_LEVEL1: Supply voltage ranges from 2.1 to 2.4 V + * @arg OB_BOR_OFF: Supply voltage ranges from 1.62 to 2.1 V + * @retval HAL Status + */ +static HAL_StatusTypeDef FLASH_OB_BOR_LevelConfig(uint8_t Level) +{ + /* Check the parameters */ + assert_param(IS_OB_BOR_LEVEL(Level)); + + /* Set the BOR Level */ + *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS &= (~FLASH_OPTCR_BOR_LEV); + *(__IO uint8_t *)OPTCR_BYTE0_ADDRESS |= Level; + + return HAL_OK; +} + +/** + * @brief Return the FLASH User Option Byte value. + * @retval uint8_t FLASH User Option Bytes values: IWDG_SW(Bit0), RST_STOP(Bit1) + * and RST_STDBY(Bit2). + */ +static uint8_t FLASH_OB_GetUser(void) +{ + /* Return the User Option Byte */ + return ((uint8_t)(FLASH->OPTCR & 0xE0)); +} + +/** + * @brief Return the FLASH Write Protection Option Bytes value. + * @retval uint16_t FLASH Write Protection Option Bytes value + */ +static uint16_t FLASH_OB_GetWRP(void) +{ + /* Return the FLASH write protection Register value */ + return (*(__IO uint16_t *)(OPTCR_BYTE2_ADDRESS)); +} + +/** + * @brief Returns the FLASH Read Protection level. + * @retval FLASH ReadOut Protection Status: + * This parameter can be one of the following values: + * @arg OB_RDP_LEVEL_0: No protection + * @arg OB_RDP_LEVEL_1: Read protection of the memory + * @arg OB_RDP_LEVEL_2: Full chip protection + */ +static uint8_t FLASH_OB_GetRDP(void) +{ + uint8_t readstatus = OB_RDP_LEVEL_0; + + if((*(__IO uint8_t*)(OPTCR_BYTE1_ADDRESS) == (uint8_t)OB_RDP_LEVEL_2)) + { + readstatus = OB_RDP_LEVEL_2; + } + else if((*(__IO uint8_t*)(OPTCR_BYTE1_ADDRESS) == (uint8_t)OB_RDP_LEVEL_1)) + { + readstatus = OB_RDP_LEVEL_1; + } + else + { + readstatus = OB_RDP_LEVEL_0; + } + + return readstatus; +} + +/** + * @brief Returns the FLASH BOR level. + * @retval uint8_t The FLASH BOR level: + * - OB_BOR_LEVEL3: Supply voltage ranges from 2.7 to 3.6 V + * - OB_BOR_LEVEL2: Supply voltage ranges from 2.4 to 2.7 V + * - OB_BOR_LEVEL1: Supply voltage ranges from 2.1 to 2.4 V + * - OB_BOR_OFF : Supply voltage ranges from 1.62 to 2.1 V + */ +static uint8_t FLASH_OB_GetBOR(void) +{ + /* Return the FLASH BOR level */ + return (uint8_t)(*(__IO uint8_t *)(OPTCR_BYTE0_ADDRESS) & (uint8_t)0x0C); +} + +/** + * @} + */ + +#endif /* HAL_FLASH_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash_ramfunc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash_ramfunc.c new file mode 100644 index 0000000..6fb67d3 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_flash_ramfunc.c @@ -0,0 +1,194 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_flash_ramfunc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief FLASH RAMFUNC module driver. + * This file provides a FLASH firmware functions which should be + * executed from internal SRAM + * + Stop/Start the flash interface while System Run + * + Enable/Disable the flash sleep while System Run + @verbatim + ============================================================================== + ##### APIs executed from Internal RAM ##### + ============================================================================== + [..] + *** ARM Compiler *** + -------------------- + [..] RAM functions are defined using the toolchain options. + Functions that are be executed in RAM should reside in a separate + source module. Using the 'Options for File' dialog you can simply change + the 'Code / Const' area of a module to a memory space in physical RAM. + Available memory areas are declared in the 'Target' tab of the + Options for Target' dialog. + + *** ICCARM Compiler *** + ----------------------- + [..] RAM functions are defined using a specific toolchain keyword "__ramfunc". + + *** GNU Compiler *** + -------------------- + [..] RAM functions are defined using a specific toolchain attribute + "__attribute__((section(".RamFunc")))". + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup FLASHRAMFUNC FLASH RAMFUNC + * @brief FLASH functions executed from RAM + * @{ + */ + +#ifdef HAL_FLASH_MODULE_ENABLED + +#if defined(STM32F411xE) || defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FLASHRAMFUNC_Exported_Functions FLASH RAMFUNC Exported Functions + * @{ + */ + +/** @defgroup FLASHRAMFUNC_Exported_Functions_Group1 Peripheral features functions executed from internal RAM + * @brief Peripheral Extended features functions + * +@verbatim + + =============================================================================== + ##### ramfunc functions ##### + =============================================================================== + [..] + This subsection provides a set of functions that should be executed from RAM + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Stop the flash interface while System Run + * @note This mode is only available for STM32F411xx devices. + * @note This mode couldn't be set while executing with the flash itself. + * It should be done with specific routine executed from RAM. + * @retval None + */ +__RAM_FUNC HAL_FLASHEx_StopFlashInterfaceClk(void) +{ + /* Enable Power ctrl clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + /* Stop the flash interface while System Run */ + SET_BIT(PWR->CR, PWR_CR_FISSR); + + return HAL_OK; +} + +/** + * @brief Start the flash interface while System Run + * @note This mode is only available for STM32F411xx devices. + * @note This mode couldn't be set while executing with the flash itself. + * It should be done with specific routine executed from RAM. + * @retval None + */ +__RAM_FUNC HAL_FLASHEx_StartFlashInterfaceClk(void) +{ + /* Enable Power ctrl clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + /* Start the flash interface while System Run */ + CLEAR_BIT(PWR->CR, PWR_CR_FISSR); + + return HAL_OK; +} + +/** + * @brief Enable the flash sleep while System Run + * @note This mode is only available for STM32F411xx devices. + * @note This mode could n't be set while executing with the flash itself. + * It should be done with specific routine executed from RAM. + * @retval None + */ +__RAM_FUNC HAL_FLASHEx_EnableFlashSleepMode(void) +{ + /* Enable Power ctrl clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + /* Enable the flash sleep while System Run */ + SET_BIT(PWR->CR, PWR_CR_FMSSR); + + return HAL_OK; +} + +/** + * @brief Disable the flash sleep while System Run + * @note This mode is only available for STM32F411xx devices. + * @note This mode couldn't be set while executing with the flash itself. + * It should be done with specific routine executed from RAM. + * @retval None + */ +__RAM_FUNC HAL_FLASHEx_DisableFlashSleepMode(void) +{ + /* Enable Power ctrl clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + /* Disable the flash sleep while System Run */ + CLEAR_BIT(PWR->CR, PWR_CR_FMSSR); + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* STM32F411xE || STM32F446xx */ +#endif /* HAL_FLASH_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_fmpi2c.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_fmpi2c.c new file mode 100644 index 0000000..41dc90a --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_fmpi2c.c @@ -0,0 +1,4098 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_fmpi2c.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief FMPI2C HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Inter Integrated Circuit (FMPI2C) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The FMPI2C HAL driver can be used as follows: + + (#) Declare a FMPI2C_HandleTypeDef handle structure, for example: + FMPI2C_HandleTypeDef hfmpi2c; + + (#)Initialize the FMPI2C low level resources by implement the HAL_FMPI2C_MspInit ()API: + (##) Enable the FMPI2Cx interface clock + (##) FMPI2C pins configuration + (+++) Enable the clock for the FMPI2C GPIOs + (+++) Configure FMPI2C pins as alternate function open-drain + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the FMPI2Cx interrupt priority + (+++) Enable the NVIC FMPI2C IRQ Channel + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive stream + (+++) Enable the DMAx interface clock using + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx Stream + (+++) Associate the initilalized DMA handle to the hfmpi2c DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream + + (#) Configure the Communication Clock Timing, Own Address1, Master Adressing Mode, Dual Addressing mode, + Own Address2, Own Address2 Mask, General call and Nostretch mode in the hfmpi2c Init structure. + + (#) Initialize the FMPI2C registers by calling the HAL_FMPI2C_Init() API: + (+++) These API's configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customed HAL_FMPI2C_MspInit(&hfmpi2c) API. + + (#) To check if target device is ready for communication, use the function HAL_FMPI2C_IsDeviceReady() + + (#) For FMPI2C IO and IO MEM operations, three mode of operations are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Transmit in master mode an amount of data in blocking mode using HAL_FMPI2C_Master_Transmit() + (+) Receive in master mode an amount of data in blocking mode using HAL_FMPI2C_Master_Receive() + (+) Transmit in slave mode an amount of data in blocking mode using HAL_FMPI2C_Slave_Transmit() + (+) Receive in slave mode an amount of data in blocking mode using HAL_FMPI2C_Slave_Receive() + + *** Polling mode IO MEM operation *** + ===================================== + [..] + (+) Write an amount of data in blocking mode to a specific memory address using HAL_FMPI2C_Mem_Write() + (+) Read an amount of data in blocking mode from a specific memory address using HAL_FMPI2C_Mem_Read() + + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Transmit in master mode an amount of data in non blocking mode using HAL_FMPI2C_Master_Transmit_IT() + (+) At transmission end of transfer HAL_FMPI2C_MasterTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MasterTxCpltCallback + (+) Receive in master mode an amount of data in non blocking mode using HAL_FMPI2C_Master_Receive_IT() + (+) At reception end of transfer HAL_FMPI2C_MasterRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MasterRxCpltCallback + (+) Transmit in slave mode an amount of data in non blocking mode using HAL_FMPI2C_Slave_Transmit_IT() + (+) At transmission end of transfer HAL_FMPI2C_SlaveTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_SlaveTxCpltCallback + (+) Receive in slave mode an amount of data in non blocking mode using HAL_FMPI2C_Slave_Receive_IT() + (+) At reception end of transfer HAL_FMPI2C_SlaveRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_SlaveRxCpltCallback + (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback + + *** Interrupt mode IO MEM operation *** + ======================================= + [..] + (+) Write an amount of data in no-blocking mode with Interrupt to a specific memory address using + HAL_FMPI2C_Mem_Write_IT() + (+) At MEM end of write transfer HAL_FMPI2C_MemTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MemTxCpltCallback + (+) Read an amount of data in no-blocking mode with Interrupt from a specific memory address using + HAL_FMPI2C_Mem_Read_IT() + (+) At MEM end of read transfer HAL_FMPI2C_MemRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MemRxCpltCallback + (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Transmit in master mode an amount of data in non blocking mode (DMA) using + HAL_FMPI2C_Master_Transmit_DMA() + (+) At transmission end of transfer HAL_FMPI2C_MasterTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MasterTxCpltCallback + (+) Receive in master mode an amount of data in non blocking mode (DMA) using + HAL_FMPI2C_Master_Receive_DMA() + (+) At reception end of transfer HAL_FMPI2C_MasterRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MasterRxCpltCallback + (+) Transmit in slave mode an amount of data in non blocking mode (DMA) using + HAL_FMPI2C_Slave_Transmit_DMA() + (+) At transmission end of transfer HAL_FMPI2C_SlaveTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_SlaveTxCpltCallback + (+) Receive in slave mode an amount of data in non blocking mode (DMA) using + HAL_FMPI2C_Slave_Receive_DMA() + (+) At reception end of transfer HAL_FMPI2C_SlaveRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_SlaveRxCpltCallback + (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback + + *** DMA mode IO MEM operation *** + ================================= + [..] + (+) Write an amount of data in no-blocking mode with DMA to a specific memory address using + HAL_FMPI2C_Mem_Write_DMA() + (+) At MEM end of write transfer HAL_FMPI2C_MemTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MemTxCpltCallback + (+) Read an amount of data in no-blocking mode with DMA from a specific memory address using + HAL_FMPI2C_Mem_Read_DMA() + (+) At MEM end of read transfer HAL_FMPI2C_MemRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_MemRxCpltCallback + (+) In case of transfer Error, HAL_FMPI2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_FMPI2C_ErrorCallback + + + *** FMPI2C HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in FMPI2C HAL driver. + + (+) __HAL_FMPI2C_ENABLE: Enable the FMPI2C peripheral + (+) __HAL_FMPI2C_DISABLE: Disable the FMPI2C peripheral + (+) __HAL_FMPI2C_GET_FLAG : Checks whether the specified FMPI2C flag is set or not + (+) __HAL_FMPI2C_CLEAR_FLAG : Clears the specified FMPI2C pending flag + (+) __HAL_FMPI2C_ENABLE_IT: Enables the specified FMPI2C interrupt + (+) __HAL_FMPI2C_DISABLE_IT: Disables the specified FMPI2C interrupt + + [..] + (@) You can refer to the FMPI2C HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup FMPI2C FMPI2C + * @brief FMPI2C HAL module driver + * @{ + */ + +#ifdef HAL_FMPI2C_MODULE_ENABLED + +#if defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup FMPI2C_Private_Constants + * @{ + */ +#define TIMING_CLEAR_MASK ((uint32_t)0xF0FFFFFF) /*<! FMPI2C TIMING clear register Mask */ +#define FMPI2C_TIMEOUT_ADDR ((uint32_t)10000) /* 10 s */ +#define FMPI2C_TIMEOUT_BUSY ((uint32_t)25) /* 25 ms */ +#define FMPI2C_TIMEOUT_DIR ((uint32_t)25) /* 25 ms */ +#define FMPI2C_TIMEOUT_RXNE ((uint32_t)25) /* 25 ms */ +#define FMPI2C_TIMEOUT_STOPF ((uint32_t)25) /* 25 ms */ +#define FMPI2C_TIMEOUT_TC ((uint32_t)25) /* 25 ms */ +#define FMPI2C_TIMEOUT_TCR ((uint32_t)25) /* 25 ms */ +#define FMPI2C_TIMEOUT_TXIS ((uint32_t)25) /* 25 ms */ +#define FMPI2C_TIMEOUT_FLAG ((uint32_t)25) /* 25 ms */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup FMPI2C_Private_Functions + * @brief FMPI2C private functions + * @{ + */ +static void FMPI2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma); +static void FMPI2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma); +static void FMPI2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma); +static void FMPI2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma); +static void FMPI2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma); +static void FMPI2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma); +static void FMPI2C_DMAError(DMA_HandleTypeDef *hdma); + +static HAL_StatusTypeDef FMPI2C_RequestMemoryWrite(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout); +static HAL_StatusTypeDef FMPI2C_RequestMemoryRead(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout); +static HAL_StatusTypeDef FMPI2C_WaitOnFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +static HAL_StatusTypeDef FMPI2C_WaitOnTXISFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout); +static HAL_StatusTypeDef FMPI2C_WaitOnRXNEFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout); +static HAL_StatusTypeDef FMPI2C_WaitOnSTOPFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout); +static HAL_StatusTypeDef FMPI2C_IsAcknowledgeFailed(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout); + +static HAL_StatusTypeDef FMPI2C_MasterTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c); +static HAL_StatusTypeDef FMPI2C_MasterReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c); + +static HAL_StatusTypeDef FMPI2C_SlaveTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c); +static HAL_StatusTypeDef FMPI2C_SlaveReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c); + +static void FMPI2C_TransferConfig(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup FMPI2C_Exported_Functions FMPI2C Exported Functions + * @{ + */ + +/** @defgroup FMPI2C_Exported_Functions_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization/de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialiaze the FMPI2Cx peripheral: + + (+) User must Implement HAL_FMPI2C_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_FMPI2C_Init() to configure the selected device with + the selected configuration: + (++) Clock Timing + (++) Own Address 1 + (++) Addressing mode (Master, Slave) + (++) Dual Addressing mode + (++) Own Address 2 + (++) Own Address 2 Mask + (++) General call mode + (++) Nostretch mode + + (+) Call the function HAL_FMPI2C_DeInit() to restore the default configuration + of the selected FMPI2Cx periperal. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FMPI2C according to the specified parameters + * in the FMPI2C_InitTypeDef and create the associated handle. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Init(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* Check the FMPI2C handle allocation */ + if(hfmpi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance)); + assert_param(IS_FMPI2C_OWN_ADDRESS1(hfmpi2c->Init.OwnAddress1)); + assert_param(IS_FMPI2C_ADDRESSING_MODE(hfmpi2c->Init.AddressingMode)); + assert_param(IS_FMPI2C_DUAL_ADDRESS(hfmpi2c->Init.DualAddressMode)); + assert_param(IS_FMPI2C_OWN_ADDRESS2(hfmpi2c->Init.OwnAddress2)); + assert_param(IS_FMPI2C_OWN_ADDRESS2_MASK(hfmpi2c->Init.OwnAddress2Masks)); + assert_param(IS_FMPI2C_GENERAL_CALL(hfmpi2c->Init.GeneralCallMode)); + assert_param(IS_FMPI2C_NO_STRETCH(hfmpi2c->Init.NoStretchMode)); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hfmpi2c->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_FMPI2C_MspInit(hfmpi2c); + } + + hfmpi2c->State = HAL_FMPI2C_STATE_BUSY; + + /* Disable the selected FMPI2C peripheral */ + __HAL_FMPI2C_DISABLE(hfmpi2c); + + /*---------------------------- FMPI2Cx TIMINGR Configuration ------------------*/ + /* Configure FMPI2Cx: Frequency range */ + hfmpi2c->Instance->TIMINGR = hfmpi2c->Init.Timing & TIMING_CLEAR_MASK; + + /*---------------------------- FMPI2Cx OAR1 Configuration ---------------------*/ + /* Configure FMPI2Cx: Own Address1 and ack own address1 mode */ + hfmpi2c->Instance->OAR1 &= ~FMPI2C_OAR1_OA1EN; + if(hfmpi2c->Init.OwnAddress1 != 0) + { + if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_7BIT) + { + hfmpi2c->Instance->OAR1 = (FMPI2C_OAR1_OA1EN | hfmpi2c->Init.OwnAddress1); + } + else /* FMPI2C_ADDRESSINGMODE_10BIT */ + { + hfmpi2c->Instance->OAR1 = (FMPI2C_OAR1_OA1EN | FMPI2C_OAR1_OA1MODE | hfmpi2c->Init.OwnAddress1); + } + } + + /*---------------------------- FMPI2Cx CR2 Configuration ----------------------*/ + /* Configure FMPI2Cx: Addressing Master mode */ + if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT) + { + hfmpi2c->Instance->CR2 = (FMPI2C_CR2_ADD10); + } + /* Enable the AUTOEND by default, and enable NACK (should be disable only during Slave process */ + hfmpi2c->Instance->CR2 |= (FMPI2C_CR2_AUTOEND | FMPI2C_CR2_NACK); + + /*---------------------------- FMPI2Cx OAR2 Configuration ---------------------*/ + /* Configure FMPI2Cx: Dual mode and Own Address2 */ + hfmpi2c->Instance->OAR2 = (hfmpi2c->Init.DualAddressMode | hfmpi2c->Init.OwnAddress2 | (hfmpi2c->Init.OwnAddress2Masks << 8)); + + /*---------------------------- FMPI2Cx CR1 Configuration ----------------------*/ + /* Configure FMPI2Cx: Generalcall and NoStretch mode */ + hfmpi2c->Instance->CR1 = (hfmpi2c->Init.GeneralCallMode | hfmpi2c->Init.NoStretchMode); + + /* Enable the selected FMPI2C peripheral */ + __HAL_FMPI2C_ENABLE(hfmpi2c); + + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the FMPI2C peripheral. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_DeInit(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* Check the FMPI2C handle allocation */ + if(hfmpi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance)); + + hfmpi2c->State = HAL_FMPI2C_STATE_BUSY; + + /* Disable the FMPI2C Peripheral Clock */ + __HAL_FMPI2C_DISABLE(hfmpi2c); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_FMPI2C_MspDeInit(hfmpi2c); + + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + hfmpi2c->State = HAL_FMPI2C_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + +/** + * @brief FMPI2C MSP Init. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ + __weak void HAL_FMPI2C_MspInit(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_MspInit could be implemented in the user file + */ +} + +/** + * @brief FMPI2C MSP DeInit + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ + __weak void HAL_FMPI2C_MspDeInit(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup FMPI2C_Exported_Functions_Group2 I/O operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the FMPI2C data + transfers. + + (#) There is two mode of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated FMPI2C IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_FMPI2C_Master_Transmit() + (++) HAL_FMPI2C_Master_Receive() + (++) HAL_FMPI2C_Slave_Transmit() + (++) HAL_FMPI2C_Slave_Receive() + (++) HAL_FMPI2C_Mem_Write() + (++) HAL_FMPI2C_Mem_Read() + (++) HAL_FMPI2C_IsDeviceReady() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_FMPI2C_Master_Transmit_IT() + (++) HAL_FMPI2C_Master_Receive_IT() + (++) HAL_FMPI2C_Slave_Transmit_IT() + (++) HAL_FMPI2C_Slave_Receive_IT() + (++) HAL_FMPI2C_Mem_Write_IT() + (++) HAL_FMPI2C_Mem_Read_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_FMPI2C_Master_Transmit_DMA() + (++) HAL_FMPI2C_Master_Receive_DMA() + (++) HAL_FMPI2C_Slave_Transmit_DMA() + (++) HAL_FMPI2C_Slave_Receive_DMA() + (++) HAL_FMPI2C_Mem_Write_DMA() + (++) HAL_FMPI2C_Mem_Read_DMA() + + (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: + (++) HAL_FMPI2C_MemTxCpltCallback() + (++) HAL_FMPI2C_MemRxCpltCallback() + (++) HAL_FMPI2C_MasterTxCpltCallback() + (++) HAL_FMPI2C_MasterRxCpltCallback() + (++) HAL_FMPI2C_SlaveTxCpltCallback() + (++) HAL_FMPI2C_SlaveRxCpltCallback() + (++) HAL_FMPI2C_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmits in master mode an amount of data in blocking mode. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t sizetmp = 0; + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + /* Size > 255, need to set RELOAD bit */ + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE); + sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_WRITE); + sizetmp = Size; + } + + do + { + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + /* Write data to TXDR */ + hfmpi2c->Instance->TXDR = (*pData++); + sizetmp--; + Size--; + + if((sizetmp == 0)&&(Size!=0)) + { + /* Wait until TXE flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + sizetmp = Size; + } + } + + }while(Size > 0); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives in master mode an amount of data in blocking mode. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Master_Receive(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t sizetmp = 0; + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + /* Size > 255, need to set RELOAD bit */ + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ); + sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ); + sizetmp = Size; + } + + do + { + /* Wait until RXNE flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Write data to RXDR */ + (*pData++) =hfmpi2c->Instance->RXDR; + sizetmp--; + Size--; + + if((sizetmp == 0)&&(Size!=0)) + { + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + sizetmp = Size; + } + } + + }while(Size > 0); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmits in slave mode an amount of data in blocking mode. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR); + + /* If 10bit addressing mode is selected */ + if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT) + { + /* Wait until ADDR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR); + } + + /* Wait until DIR flag is set Transmitter mode */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, RESET, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + do + { + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Read data from TXDR */ + hfmpi2c->Instance->TXDR = (*pData++); + Size--; + }while(Size > 0); + + /* Wait until STOP flag is set */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Normal use case for Transmitter mode */ + /* A NACK is generated to confirm the end of transfer */ + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in blocking mode + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR); + + /* Wait until DIR flag is reset Receiver mode */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, SET, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + while(Size > 0) + { + /* Wait until RXNE flag is set */ + if(FMPI2C_WaitOnRXNEFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_TIMEOUT) + { + return HAL_TIMEOUT; + } + else + { + return HAL_ERROR; + } + } + + /* Read data from RXDR */ + (*pData++) = hfmpi2c->Instance->RXDR; + Size--; + } + + /* Wait until STOP flag is set */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, Timeout) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in no-blocking mode with Interrupt + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_WRITE); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Note : The FMPI2C interrupts must be enabled after unlocking current process + to avoid the risk of FMPI2C interrupt handle execution before current + process unlock */ + + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */ + __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_TXI ); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in no-blocking mode with Interrupt + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Master_Receive_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Note : The FMPI2C interrupts must be enabled after unlocking current process + to avoid the risk of FMPI2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */ + __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_RXI ); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in no-blocking mode with Interrupt + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferSize = Size; + hfmpi2c->XferCount = Size; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Note : The FMPI2C interrupts must be enabled after unlocking current process + to avoid the risk of FMPI2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */ + __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_TXI ); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in no-blocking mode with Interrupt + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferSize = Size; + hfmpi2c->XferCount = Size; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Note : The FMPI2C interrupts must be enabled after unlocking current process + to avoid the risk of FMPI2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */ + __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in no-blocking mode with DMA + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Master_Transmit_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Set the FMPI2C DMA transfer complete callback */ + hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_WRITE); + } + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in no-blocking mode with DMA + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Master_Receive_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MASTER_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Set the FMPI2C DMA transfer complete callback */ + hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData, hfmpi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ); + } + + /* Wait until RXNE flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in no-blocking mode with DMA + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Slave_Transmit_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + hfmpi2c->XferSize = Size; + + /* Set the FMPI2C DMA transfer complete callback */ + hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize); + + /* Enable Address Acknowledge */ + hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, FMPI2C_TIMEOUT_ADDR) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR); + + /* If 10bits addressing mode is selected */ + if(hfmpi2c->Init.AddressingMode == FMPI2C_ADDRESSINGMODE_10BIT) + { + /* Wait until ADDR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, FMPI2C_TIMEOUT_ADDR) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR); + } + + /* Wait until DIR flag is set Transmitter mode */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, RESET, FMPI2C_TIMEOUT_BUSY) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in no-blocking mode with DMA + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Slave_Receive_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint8_t *pData, uint16_t Size) +{ + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_SLAVE_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferSize = Size; + hfmpi2c->XferCount = Size; + + /* Set the FMPI2C DMA transfer complete callback */ + hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData, Size); + + /* Enable Address Acknowledge */ + hfmpi2c->Instance->CR2 &= ~FMPI2C_CR2_NACK; + + /* Wait until ADDR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_ADDR, RESET, FMPI2C_TIMEOUT_ADDR) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_ADDR); + + /* Wait until DIR flag is set Receiver mode */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_DIR, SET, FMPI2C_TIMEOUT_DIR) != HAL_OK) + { + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + return HAL_TIMEOUT; + } + + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in blocking mode to a specific memory address + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Mem_Write(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t Sizetmp = 0; + + /* Check the parameters */ + assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize)); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Send Slave Address and Memory Address */ + if(FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + + /* Set NBYTES to write and reload if size > 255 */ + /* Size > 255, need to set RELOAD bit */ + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + Sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + Sizetmp = Size; + } + + do + { + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Write data to DR */ + hfmpi2c->Instance->TXDR = (*pData++); + Sizetmp--; + Size--; + + if((Sizetmp == 0)&&(Size!=0)) + { + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + Sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + Sizetmp = Size; + } + } + + }while(Size > 0); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in blocking mode from a specific memory address + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Mem_Read(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t Sizetmp = 0; + + /* Check the parameters */ + assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize)); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_RX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + /* Send Slave Address and Memory Address */ + if(FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + /* Size > 255, need to set RELOAD bit */ + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ); + Sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ); + Sizetmp = Size; + } + + do + { + /* Wait until RXNE flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Read data from RXDR */ + (*pData++) = hfmpi2c->Instance->RXDR; + + /* Decrement the Size counter */ + Sizetmp--; + Size--; + + if((Sizetmp == 0)&&(Size!=0)) + { + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(Size > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + Sizetmp = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,Size, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + Sizetmp = Size; + } + } + + }while(Size > 0); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in no-blocking mode with Interrupt to a specific memory address + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Mem_Write_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize)); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Send Slave Address and Memory Address */ + if(FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + + /* Set NBYTES to write and reload if size > 255 */ + /* Size > 255, need to set RELOAD bit */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Note : The FMPI2C interrupts must be enabled after unlocking current process + to avoid the risk of FMPI2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, TXI interrupt */ + /* possible to enable all of these */ + /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */ + __HAL_FMPI2C_ENABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_TXI ); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in no-blocking mode with Interrupt from a specific memory address + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Mem_Read_IT(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize)); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_RX; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Send Slave Address and Memory Address */ + if(FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + /* Size > 255, need to set RELOAD bit */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Note : The FMPI2C interrupts must be enabled after unlocking current process + to avoid the risk of FMPI2C interrupt handle execution before current + process unlock */ + + /* Enable ERR, TC, STOP, NACK, RXI interrupt */ + /* possible to enable all of these */ + /* FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI */ + __HAL_FMPI2C_ENABLE_IT(hfmpi2c, FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI ); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in no-blocking mode with DMA to a specific memory address + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Mem_Write_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize)); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_TX; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Set the FMPI2C DMA transfer complete callback */ + hfmpi2c->hdmatx->XferCpltCallback = FMPI2C_DMAMemTransmitCplt; + + /* Set the DMA error callback */ + hfmpi2c->hdmatx->XferErrorCallback = FMPI2C_DMAError; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)pData, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize); + + /* Send Slave Address and Memory Address */ + if(FMPI2C_RequestMemoryWrite(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + } + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Reads an amount of data in no-blocking mode with DMA from a specific memory address. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_Mem_Read_DMA(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_FMPI2C_MEMADD_SIZE(MemAddSize)); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_MEM_BUSY_RX; + + hfmpi2c->pBuffPtr = pData; + hfmpi2c->XferCount = Size; + if(Size > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = Size; + } + + /* Set the FMPI2C DMA transfer complete callback */ + hfmpi2c->hdmarx->XferCpltCallback = FMPI2C_DMAMemReceiveCplt; + + /* Set the DMA error callback */ + hfmpi2c->hdmarx->XferErrorCallback = FMPI2C_DMAError; + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)pData, hfmpi2c->XferSize); + + /* Send Slave Address and Memory Address */ + if(FMPI2C_RequestMemoryRead(hfmpi2c, DevAddress, MemAddress, MemAddSize, FMPI2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + + /* Set NBYTES to write and reload if size > 255 and generate RESTART */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_READ); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_GENERATE_START_READ); + } + + /* Wait until RXNE flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Checks if target device is ready for communication. + * @note This function is used with Memory devices + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param Trials: Number of trials + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2C_IsDeviceReady(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + __IO uint32_t FMPI2C_Trials = 0; + + if(hfmpi2c->State == HAL_FMPI2C_STATE_READY) + { + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BUSY) == SET) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_BUSY; + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + + do + { + /* Generate Start */ + hfmpi2c->Instance->CR2 = __HAL_FMPI2C_GENERATE_START(hfmpi2c->Init.AddressingMode,DevAddress); + + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is set or a NACK flag is set*/ + tickstart = HAL_GetTick(); + while((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == RESET) && (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == RESET) && (hfmpi2c->State != HAL_FMPI2C_STATE_TIMEOUT)) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Device is ready */ + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + } + + /* Check if the NACKF flag has not been set */ + if (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == RESET) + { + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Device is ready */ + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + } + else + { + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear NACK Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF); + + /* Clear STOP Flag, auto generated with autoend*/ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + } + + /* Check if the maximum allowed number of trials has been reached */ + if (FMPI2C_Trials++ == Trials) + { + /* Generate Stop */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP; + + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_STOPF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + } + }while(FMPI2C_Trials < Trials); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_TIMEOUT; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief This function handles FMPI2C event interrupt request. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ +void HAL_FMPI2C_EV_IRQHandler(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* FMPI2C in mode Transmitter ---------------------------------------------------*/ + if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_TXI | FMPI2C_IT_ADDRI)) == SET)) + { + /* Slave mode selected */ + if (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_TX) + { + FMPI2C_SlaveTransmit_ISR(hfmpi2c); + } + } + + if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI | FMPI2C_IT_STOPI | FMPI2C_IT_NACKI | FMPI2C_IT_TXI)) == SET)) + { + /* Master mode selected */ + if ((hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_TX)) + { + FMPI2C_MasterTransmit_ISR(hfmpi2c); + } + } + + /* FMPI2C in mode Receiver ----------------------------------------------------*/ + if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI | FMPI2C_IT_ADDRI)) == SET)) + { + /* Slave mode selected */ + if (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_RX) + { + FMPI2C_SlaveReceive_ISR(hfmpi2c); + } + } + if (((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) || (__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET)) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, (FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI)) == SET)) + { + /* Master mode selected */ + if ((hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_RX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_RX)) + { + FMPI2C_MasterReceive_ISR(hfmpi2c); + } + } +} + +/** + * @brief This function handles FMPI2C error interrupt request. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ +void HAL_FMPI2C_ER_IRQHandler(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* FMPI2C Bus error interrupt occurred ------------------------------------*/ + if((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_BERR) == SET) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, FMPI2C_IT_ERRI) == SET)) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_BERR); + } + + /* FMPI2C Over-Run/Under-Run interrupt occurred ----------------------------------------*/ + if((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_OVR) == SET) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, FMPI2C_IT_ERRI) == SET)) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_OVR; + + /* Clear OVR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_OVR); + } + + /* FMPI2C Arbitration Loss error interrupt occurred -------------------------------------*/ + if((__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ARLO) == SET) && (__HAL_FMPI2C_GET_IT_SOURCE(hfmpi2c, FMPI2C_IT_ERRI) == SET)) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ARLO); + } + + /* Call the Error Callback in case of Error detected */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } +} + +/** + * @brief Master Tx Transfer completed callbacks. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ + __weak void HAL_FMPI2C_MasterTxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Master Rx Transfer completed callbacks. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ +__weak void HAL_FMPI2C_MasterRxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_TxCpltCallback could be implemented in the user file + */ +} + +/** @brief Slave Tx Transfer completed callbacks. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ + __weak void HAL_FMPI2C_SlaveTxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Rx Transfer completed callbacks. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ +__weak void HAL_FMPI2C_SlaveRxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Tx Transfer completed callbacks. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ + __weak void HAL_FMPI2C_MemTxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Rx Transfer completed callbacks. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ +__weak void HAL_FMPI2C_MemRxCpltCallback(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief FMPI2C error callbacks. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval None + */ + __weak void HAL_FMPI2C_ErrorCallback(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_FMPI2C_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup FMPI2C_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection permit to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the FMPI2C state. + * @param hfmpi2c : FMPI2C handle + * @retval HAL state + */ +HAL_FMPI2C_StateTypeDef HAL_FMPI2C_GetState(FMPI2C_HandleTypeDef *hfmpi2c) +{ + return hfmpi2c->State; +} + +/** +* @brief Return the FMPI2C error code +* @param hfmpi2c : pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. +* @retval FMPI2C Error Code +*/ +uint32_t HAL_FMPI2C_GetError(FMPI2C_HandleTypeDef *hfmpi2c) +{ + return hfmpi2c->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Handle Interrupt Flags Master Transmit Mode + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_MasterTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c) +{ + uint16_t DevAddress; + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET) + { + /* Write data to TXDR */ + hfmpi2c->Instance->TXDR = (*hfmpi2c->pBuffPtr++); + hfmpi2c->XferSize--; + hfmpi2c->XferCount--; + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) + { + if((hfmpi2c->XferSize == 0)&&(hfmpi2c->XferCount!=0)) + { + DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD); + + if(hfmpi2c->XferCount > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + hfmpi2c->XferSize = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferCount, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + hfmpi2c->XferSize = hfmpi2c->XferCount; + } + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Wrong size Status regarding TCR flag event */ + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) + { + if(hfmpi2c->XferCount == 0) + { + /* Generate Stop */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Wrong size Status regarding TCR flag event */ + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) + { + /* Disable ERR, TC, STOP, NACK, TXI interrupt */ + __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_TXI ); + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_TX) + { + HAL_FMPI2C_MemTxCpltCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_MasterTxCpltCallback(hfmpi2c); + } + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET) + { + /* Clear NACK Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + +/** + * @brief Handle Interrupt Flags Master Receive Mode + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_MasterReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c) +{ + uint16_t DevAddress; + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET) + { + /* Read data from RXDR */ + (*hfmpi2c->pBuffPtr++) = hfmpi2c->Instance->RXDR; + hfmpi2c->XferSize--; + hfmpi2c->XferCount--; + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TCR) == SET) + { + if((hfmpi2c->XferSize == 0)&&(hfmpi2c->XferCount!=0)) + { + DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD); + + if(hfmpi2c->XferCount > 255) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,255, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + hfmpi2c->XferSize = 255; + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferCount, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + hfmpi2c->XferSize = hfmpi2c->XferCount; + } + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Wrong size Status regarding TCR flag event */ + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TC) == SET) + { + if(hfmpi2c->XferCount == 0) + { + /* Generate Stop */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Wrong size Status regarding TCR flag event */ + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_SIZE; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) + { + /* Disable ERR, TC, STOP, NACK, TXI interrupt */ + __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_RXI ); + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + if(hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_RX) + { + HAL_FMPI2C_MemRxCpltCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_MasterRxCpltCallback(hfmpi2c); + } + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET) + { + /* Clear NACK Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; + +} + +/** + * @brief Handle Interrupt Flags Slave Transmit Mode + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_SlaveTransmit_ISR(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* Process locked */ + __HAL_LOCK(hfmpi2c); + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) != RESET) + { + /* Check that FMPI2C transfer finished */ + /* if yes, normal usecase, a NACK is sent by the MASTER when Transfer is finished */ + /* Mean XferCount == 0*/ + /* So clear Flag NACKF only */ + if(hfmpi2c->XferCount == 0) + { + /* Clear NACK Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + } + else + { + /* if no, error usecase, a Non-Acknowledge of last Data is generated by the MASTER*/ + /* Clear NACK Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF); + + /* Set ErrorCode corresponding to a Non-Acknowledge */ + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + /* Call the Error callback to prevent upper layer */ + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET) + { + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR); + } + /* Check first if STOPF is set */ + /* to prevent a Write Data in TX buffer */ + /* which is stuck in TXDR until next */ + /* communication with Master */ + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) + { + /* Disable ERRI, TCI, STOPI, NACKI, ADDRI, RXI, TXI interrupt */ + __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_TXI ); + + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + HAL_FMPI2C_SlaveTxCpltCallback(hfmpi2c); + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == SET) + { + /* Write data to TXDR only if XferCount not reach "0" */ + /* A TXIS flag can be set, during STOP treatment */ + if(hfmpi2c->XferCount > 0) + { + /* Write data to TXDR */ + hfmpi2c->Instance->TXDR = (*hfmpi2c->pBuffPtr++); + hfmpi2c->XferCount--; + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + +/** + * @brief Handle Interrupt Flags Slave Receive Mode + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_SlaveReceive_ISR(FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) != RESET) + { + /* Clear NACK Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF); + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR) == SET) + { + /* Clear ADDR flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_ADDR); + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == SET) + { + /* Read data from RXDR */ + (*hfmpi2c->pBuffPtr++) = hfmpi2c->Instance->RXDR; + hfmpi2c->XferSize--; + hfmpi2c->XferCount--; + } + else if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) + { + /* Disable ERRI, TCI, STOPI, NACKI, ADDRI, RXI, TXI interrupt */ + __HAL_FMPI2C_DISABLE_IT(hfmpi2c,FMPI2C_IT_ERRI | FMPI2C_IT_TCI| FMPI2C_IT_STOPI| FMPI2C_IT_NACKI | FMPI2C_IT_ADDRI | FMPI2C_IT_RXI | FMPI2C_IT_RXI ); + + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + HAL_FMPI2C_SlaveRxCpltCallback(hfmpi2c); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for write request. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_RequestMemoryWrite(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout) +{ + FMPI2C_TransferConfig(hfmpi2c,DevAddress,MemAddSize, FMPI2C_RELOAD_MODE, FMPI2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* If Memory address size is 8Bit */ + if(MemAddSize == FMPI2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Send LSB of Memory Address */ + hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + +return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for read request. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_RequestMemoryRead(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout) +{ + FMPI2C_TransferConfig(hfmpi2c,DevAddress,MemAddSize, FMPI2C_SOFTEND_MODE, FMPI2C_GENERATE_START_WRITE); + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* If Memory address size is 8Bit */ + if(MemAddSize == FMPI2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress); + } + /* If Mememory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, Timeout) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Send LSB of Memory Address */ + hfmpi2c->Instance->TXDR = __HAL_FMPI2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TC flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TC, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + return HAL_OK; +} + + +/** + * @brief DMA FMPI2C master transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void FMPI2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) +{ + uint16_t DevAddress; + FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Check if last DMA request was done with RELOAD */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + hfmpi2c->pBuffPtr += hfmpi2c->XferSize; + hfmpi2c->XferCount -= hfmpi2c->XferSize; + if(hfmpi2c->XferCount > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = hfmpi2c->XferCount; + } + + DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD); + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)hfmpi2c->pBuffPtr, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + } + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN; + } + } + } + else + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_MasterTxCpltCallback(hfmpi2c); + } + } +} + +/** + * @brief DMA FMPI2C slave transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void FMPI2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) +{ + FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Wait until STOP flag is set */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + /* Normal Use case, a AF is generated by master */ + /* to inform slave the end of transfer */ + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c,FMPI2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_SlaveTxCpltCallback(hfmpi2c); + } +} + +/** + * @brief DMA FMPI2C master receive process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void FMPI2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) +{ + FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + uint16_t DevAddress; + + /* Check if last DMA request was done with RELOAD */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + hfmpi2c->pBuffPtr += hfmpi2c->XferSize; + hfmpi2c->XferCount -= hfmpi2c->XferSize; + if(hfmpi2c->XferCount > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = hfmpi2c->XferCount; + } + + DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD); + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)hfmpi2c->pBuffPtr, hfmpi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + } + + /* Wait until RXNE flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN; + } + } + } + else + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_MasterRxCpltCallback(hfmpi2c); + } + } +} + +/** + * @brief DMA FMPI2C slave receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void FMPI2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) +{ + FMPI2C_HandleTypeDef* hfmpi2c = (FMPI2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOPF flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Wait until BUSY flag is reset */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_BUSY, SET, FMPI2C_TIMEOUT_BUSY) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; + + /* Disable Address Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_SlaveRxCpltCallback(hfmpi2c); + } +} + +/** + * @brief DMA FMPI2C Memory Write process complete callback + * @param hdma : DMA handle + * @retval None + */ +static void FMPI2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma) +{ + uint16_t DevAddress; + FMPI2C_HandleTypeDef* hfmpi2c = ( FMPI2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Check if last DMA request was done with RELOAD */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + hfmpi2c->pBuffPtr += hfmpi2c->XferSize; + hfmpi2c->XferCount -= hfmpi2c->XferSize; + if(hfmpi2c->XferCount > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = hfmpi2c->XferCount; + } + + DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD); + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmatx, (uint32_t)hfmpi2c->pBuffPtr, (uint32_t)&hfmpi2c->Instance->TXDR, hfmpi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + } + + /* Wait until TXIS flag is set */ + if(FMPI2C_WaitOnTXISFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_TXIS) != HAL_OK) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_TXDMAEN; + } + } + } + else + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_TXDMAEN; + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_MemTxCpltCallback(hfmpi2c); + } + } +} + +/** + * @brief DMA FMPI2C Memory Read process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void FMPI2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma) +{ + FMPI2C_HandleTypeDef* hfmpi2c = ( FMPI2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + uint16_t DevAddress; + + /* Check if last DMA request was done with RELOAD */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + /* Wait until TCR flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_TCR, RESET, FMPI2C_TIMEOUT_TCR) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + hfmpi2c->pBuffPtr += hfmpi2c->XferSize; + hfmpi2c->XferCount -= hfmpi2c->XferSize; + if(hfmpi2c->XferCount > 255) + { + hfmpi2c->XferSize = 255; + } + else + { + hfmpi2c->XferSize = hfmpi2c->XferCount; + } + + DevAddress = (hfmpi2c->Instance->CR2 & FMPI2C_CR2_SADD); + + /* Enable the DMA channel */ + HAL_DMA_Start_IT(hfmpi2c->hdmarx, (uint32_t)&hfmpi2c->Instance->RXDR, (uint32_t)hfmpi2c->pBuffPtr, hfmpi2c->XferSize); + + /* Send Slave Address */ + /* Set NBYTES to write and reload if size > 255 */ + if( (hfmpi2c->XferSize == 255) && (hfmpi2c->XferSize < hfmpi2c->XferCount) ) + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_RELOAD_MODE, FMPI2C_NO_STARTSTOP); + } + else + { + FMPI2C_TransferConfig(hfmpi2c,DevAddress,hfmpi2c->XferSize, FMPI2C_AUTOEND_MODE, FMPI2C_NO_STARTSTOP); + } + + /* Wait until RXNE flag is set */ + if(FMPI2C_WaitOnFlagUntilTimeout(hfmpi2c, FMPI2C_FLAG_RXNE, RESET, FMPI2C_TIMEOUT_RXNE) != HAL_OK) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + /* Enable DMA Request */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_RXDMAEN; + } + } + } + else + { + /* No need to Check TC flag, with AUTOEND mode the stop is automatically generated */ + /* Wait until STOPF flag is reset */ + if(FMPI2C_WaitOnSTOPFlagUntilTimeout(hfmpi2c, FMPI2C_TIMEOUT_STOPF) != HAL_OK) + { + if(hfmpi2c->ErrorCode == HAL_FMPI2C_ERROR_AF) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_AF; + } + else + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + } + } + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + /* Disable DMA Request */ + hfmpi2c->Instance->CR1 &= ~FMPI2C_CR1_RXDMAEN; + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hfmpi2c->ErrorCode != HAL_FMPI2C_ERROR_NONE) + { + HAL_FMPI2C_ErrorCallback(hfmpi2c); + } + else + { + HAL_FMPI2C_MemRxCpltCallback(hfmpi2c); + } + } +} + +/** + * @brief DMA FMPI2C communication error callback. + * @param hdma : DMA handle + * @retval None + */ +static void FMPI2C_DMAError(DMA_HandleTypeDef *hdma) +{ + FMPI2C_HandleTypeDef* hfmpi2c = ( FMPI2C_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Acknowledge */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_NACK; + + hfmpi2c->XferCount = 0; + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_DMA; + + HAL_FMPI2C_ErrorCallback(hfmpi2c); +} + +/** + * @brief This function handles FMPI2C Communication Timeout. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param Flag: specifies the FMPI2C flag to check. + * @param Status: The new Flag status (SET or RESET). + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_WaitOnFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles FMPI2C Communication Timeout for specific usage of TXIS flag. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_WaitOnTXISFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_TXIS) == RESET) + { + /* Check if a NACK is detected */ + if(FMPI2C_IsAcknowledgeFailed(hfmpi2c, Timeout) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles FMPI2C Communication Timeout for specific usage of STOP flag. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_WaitOnSTOPFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout) +{ + uint32_t tickstart = 0x00; + tickstart = HAL_GetTick(); + + while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == RESET) + { + /* Check if a NACK is detected */ + if(FMPI2C_IsAcknowledgeFailed(hfmpi2c, Timeout) != HAL_OK) + { + return HAL_ERROR; + } + + /* Check for the Timeout */ + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief This function handles FMPI2C Communication Timeout for specific usage of RXNE flag. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_WaitOnRXNEFlagUntilTimeout(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout) +{ + uint32_t tickstart = 0x00; + tickstart = HAL_GetTick(); + + while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_RXNE) == RESET) + { + /* Check if a STOPF is detected */ + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == SET) + { + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_NONE; + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_ERROR; + } + + /* Check for the Timeout */ + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hfmpi2c->ErrorCode |= HAL_FMPI2C_ERROR_TIMEOUT; + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief This function handles Acknowledge failed detection during an FMPI2C Communication. + * @param hfmpi2c : Pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2C. + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef FMPI2C_IsAcknowledgeFailed(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t Timeout) +{ + uint32_t tickstart = 0x00; + tickstart = HAL_GetTick(); + + if(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_AF) == SET) + { + /* Generate stop if necessary only in case of FMPI2C peripheral in MASTER mode */ + if((hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_TX) + || (hfmpi2c->State == HAL_FMPI2C_STATE_MEM_BUSY_RX)) + { + /* No need to generate the STOP condition if AUTOEND mode is enabled */ + /* Generate the STOP condition only in case of SOFTEND mode is enabled */ + if((hfmpi2c->Instance->CR2 & FMPI2C_AUTOEND_MODE) != FMPI2C_AUTOEND_MODE) + { + /* Generate Stop */ + hfmpi2c->Instance->CR2 |= FMPI2C_CR2_STOP; + } + } + + /* Wait until STOP Flag is reset */ + /* AutoEnd should be initiate after AF */ + while(__HAL_FMPI2C_GET_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + return HAL_TIMEOUT; + } + } + } + + /* Clear NACKF Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_AF); + + /* Clear STOP Flag */ + __HAL_FMPI2C_CLEAR_FLAG(hfmpi2c, FMPI2C_FLAG_STOPF); + + /* Clear Configuration Register 2 */ + __HAL_FMPI2C_RESET_CR2(hfmpi2c); + + hfmpi2c->ErrorCode = HAL_FMPI2C_ERROR_AF; + hfmpi2c->State= HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_ERROR; + } + return HAL_OK; +} + +/** + * @brief Handles FMPI2Cx communication when starting transfer or during transfer (TC or TCR flag are set). + * @param hfmpi2c: FMPI2C handle. + * @param DevAddress: specifies the slave address to be programmed. + * @param Size: specifies the number of bytes to be programmed. + * This parameter must be a value between 0 and 255. + * @param Mode: new state of the FMPI2C START condition generation. + * This parameter can be one of the following values: + * @arg FMPI2C_RELOAD_MODE: Enable Reload mode . + * @arg FMPI2C_AUTOEND_MODE: Enable Automatic end mode. + * @arg FMPI2C_SOFTEND_MODE: Enable Software end mode. + * @param Request: new state of the FMPI2C START condition generation. + * This parameter can be one of the following values: + * @arg FMPI2C_NO_STARTSTOP: Don't Generate stop and start condition. + * @arg FMPI2C_GENERATE_STOP: Generate stop condition (Size should be set to 0). + * @arg FMPI2C_GENERATE_START_READ: Generate Restart for read request. + * @arg FMPI2C_GENERATE_START_WRITE: Generate Restart for write request. + * @retval None + */ +static void FMPI2C_TransferConfig(FMPI2C_HandleTypeDef *hfmpi2c, uint16_t DevAddress, uint8_t Size, uint32_t Mode, uint32_t Request) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance)); + assert_param(IS_TRANSFER_MODE(Mode)); + assert_param(IS_TRANSFER_REQUEST(Request)); + + /* Get the CR2 register value */ + tmpreg = hfmpi2c->Instance->CR2; + + /* clear tmpreg specific bits */ + tmpreg &= (uint32_t)~((uint32_t)(FMPI2C_CR2_SADD | FMPI2C_CR2_NBYTES | FMPI2C_CR2_RELOAD | FMPI2C_CR2_AUTOEND | FMPI2C_CR2_RD_WRN | FMPI2C_CR2_START | FMPI2C_CR2_STOP)); + + /* update tmpreg */ + tmpreg |= (uint32_t)(((uint32_t)DevAddress & FMPI2C_CR2_SADD) | (((uint32_t)Size << 16 ) & FMPI2C_CR2_NBYTES) | \ + (uint32_t)Mode | (uint32_t)Request); + + /* update CR2 register */ + hfmpi2c->Instance->CR2 = tmpreg; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F446xx */ +#endif /* HAL_FMPI2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_fmpi2c_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_fmpi2c_ex.c new file mode 100644 index 0000000..705b115 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_fmpi2c_ex.c @@ -0,0 +1,326 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_fmpi2c_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief Extended FMPI2C HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Inter Integrated Circuit (FMPI2C) peripheral: + * + Extended Control methods + * + @verbatim + ============================================================================== + ##### FMPI2C peripheral extended features ##### + ============================================================================== + + [..] Comparing to other previous devices, the FMPI2C interface for STM32L4XX + devices contains the following additional features + + (+) Possibility to disable or enable Analog Noise Filter + (+) Use of a configured Digital Noise Filter + (+) Disable or enable wakeup from Stop mode + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure Noise Filter + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup FMPI2CEx FMPI2CEx + * @brief FMPI2C HAL module driver + * @{ + */ + +#ifdef HAL_FMPI2C_MODULE_ENABLED + +#if defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup FMPI2CEx_Exported_Functions FMPI2C Extended Exported Functions + * @{ + */ + + +/** @defgroup FMPI2CEx_Exported_Functions_Group1 Peripheral Control methods + * @brief management functions + * +@verbatim + =============================================================================== + ##### Extension features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Noise Filters + +@endverbatim + * @{ + */ + +/** + * @brief Configures FMPI2C Analog noise filter. + * @param hfmpi2c : pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2Cx peripheral. + * @param AnalogFilter : new state of the Analog filter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2CEx_AnalogFilter_Config(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t AnalogFilter) +{ + /* Check the parameters */ + assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance)); + assert_param(IS_FMPI2C_ANALOG_FILTER(AnalogFilter)); + + if((hfmpi2c->State == HAL_FMPI2C_STATE_BUSY) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_RX) + || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_RX)) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_BUSY; + + /* Disable the selected FMPI2C peripheral */ + __HAL_FMPI2C_DISABLE(hfmpi2c); + + /* Reset FMPI2Cx ANOFF bit */ + hfmpi2c->Instance->CR1 &= ~(FMPI2C_CR1_ANFOFF); + + /* Set analog filter bit*/ + hfmpi2c->Instance->CR1 |= AnalogFilter; + + __HAL_FMPI2C_ENABLE(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + +/** + * @brief Configures FMPI2C Digital noise filter. + * @param hfmpi2c : pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2Cx peripheral. + * @param DigitalFilter : Coefficient of digital noise filter between 0x00 and 0x0F. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2CEx_DigitalFilter_Config(FMPI2C_HandleTypeDef *hfmpi2c, uint32_t DigitalFilter) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance)); + assert_param(IS_FMPI2C_DIGITAL_FILTER(DigitalFilter)); + + if((hfmpi2c->State == HAL_FMPI2C_STATE_BUSY) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_RX) + || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_RX)) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_BUSY; + + /* Disable the selected FMPI2C peripheral */ + __HAL_FMPI2C_DISABLE(hfmpi2c); + + /* Get the old register value */ + tmpreg = hfmpi2c->Instance->CR1; + + /* Reset FMPI2Cx DNF bits [11:8] */ + tmpreg &= ~(FMPI2C_CR1_DFN); + + /* Set FMPI2Cx DNF coefficient */ + tmpreg |= DigitalFilter << 8; + + /* Store the new register value */ + hfmpi2c->Instance->CR1 = tmpreg; + + __HAL_FMPI2C_ENABLE(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + +/** + * @brief Enables FMPI2C wakeup from stop mode. + * @param hfmpi2c : pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2CEx_EnableWakeUp (FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* Check the parameters */ + assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance)); + + if((hfmpi2c->State == HAL_FMPI2C_STATE_BUSY) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_RX) + || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_RX)) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_BUSY; + + /* Disable the selected FMPI2C peripheral */ + __HAL_FMPI2C_DISABLE(hfmpi2c); + + /* Enable wakeup from stop mode */ + hfmpi2c->Instance->CR1 |= FMPI2C_CR1_WUPEN; + + __HAL_FMPI2C_ENABLE(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + + +/** + * @brief Disables FMPI2C wakeup from stop mode. + * @param hfmpi2c : pointer to a FMPI2C_HandleTypeDef structure that contains + * the configuration information for the specified FMPI2Cx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_FMPI2CEx_DisableWakeUp (FMPI2C_HandleTypeDef *hfmpi2c) +{ + /* Check the parameters */ + assert_param(IS_FMPI2C_ALL_INSTANCE(hfmpi2c->Instance)); + + if((hfmpi2c->State == HAL_FMPI2C_STATE_BUSY) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_MASTER_BUSY_RX) + || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_TX) || (hfmpi2c->State == HAL_FMPI2C_STATE_SLAVE_BUSY_RX)) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_BUSY; + + /* Disable the selected FMPI2C peripheral */ + __HAL_FMPI2C_DISABLE(hfmpi2c); + + /* Enable wakeup from stop mode */ + hfmpi2c->Instance->CR1 &= ~(FMPI2C_CR1_WUPEN); + + __HAL_FMPI2C_ENABLE(hfmpi2c); + + hfmpi2c->State = HAL_FMPI2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hfmpi2c); + + return HAL_OK; +} + +/** + * @brief Enable the FMPI2C1 fast mode plus driving capability. + * @param ConfigFastModePlus: selects the pin. + * This parameter can be one of the @ref FMPI2CEx_FastModePlus values + * @retval None + */ +void HAL_FMPI2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_FMPI2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Enable SYSCFG clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Enable fast mode plus driving capability for selected pin */ + SET_BIT(SYSCFG->CFGR, (uint32_t)ConfigFastModePlus); +} + +/** + * @brief Disable the FMPI2C1 fast mode plus driving capability. + * @param ConfigFastModePlus: selects the pin. + * This parameter can be one of the @ref FMPI2CEx_FastModePlus values + * @retval None + */ +void HAL_FMPI2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus) +{ + /* Check the parameter */ + assert_param(IS_FMPI2C_FASTMODEPLUS(ConfigFastModePlus)); + + /* Enable SYSCFG clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + /* Disable fast mode plus driving capability for selected pin */ + CLEAR_BIT(SYSCFG->CFGR, (uint32_t)ConfigFastModePlus); +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F446xx */ +#endif /* HAL_FMPI2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_gpio.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_gpio.c new file mode 100644 index 0000000..d7d6899 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_gpio.c @@ -0,0 +1,545 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_gpio.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief GPIO HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the General Purpose Input/Output (GPIO) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + @verbatim + ============================================================================== + ##### GPIO Peripheral features ##### + ============================================================================== + [..] + Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each + port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software + in several modes: + (+) Input mode + (+) Analog mode + (+) Output mode + (+) Alternate function mode + (+) External interrupt/event lines + + [..] + During and just after reset, the alternate functions and external interrupt + lines are not active and the I/O ports are configured in input floating mode. + + [..] + All GPIO pins have weak internal pull-up and pull-down resistors, which can be + activated or not. + + [..] + In Output or Alternate mode, each IO can be configured on open-drain or push-pull + type and the IO speed can be selected depending on the VDD value. + + [..] + All ports have external interrupt/event capability. To use external interrupt + lines, the port must be configured in input mode. All available GPIO pins are + connected to the 16 external interrupt/event lines from EXTI0 to EXTI15. + + [..] + The external interrupt/event controller consists of up to 23 edge detectors + (16 lines are connected to GPIO) for generating event/interrupt requests (each + input line can be independently configured to select the type (interrupt or event) + and the corresponding trigger event (rising or falling or both). Each line can + also be masked independently. + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Enable the GPIO AHB clock using the following function: __HAL_RCC_GPIOx_CLK_ENABLE(). + + (#) Configure the GPIO pin(s) using HAL_GPIO_Init(). + (++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure + (++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef + structure. + (++) In case of Output or alternate function mode selection: the speed is + configured through "Speed" member from GPIO_InitTypeDef structure. + (++) In alternate mode is selection, the alternate function connected to the IO + is configured through "Alternate" member from GPIO_InitTypeDef structure. + (++) Analog mode is required when a pin is to be used as ADC channel + or DAC output. + (++) In case of external interrupt/event selection the "Mode" member from + GPIO_InitTypeDef structure select the type (interrupt or event) and + the corresponding trigger event (rising or falling or both). + + (#) In case of external interrupt/event mode selection, configure NVIC IRQ priority + mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using + HAL_NVIC_EnableIRQ(). + + (#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin(). + + (#) To set/reset the level of a pin configured in output mode use + HAL_GPIO_WritePin()/HAL_GPIO_TogglePin(). + + (#) To lock pin configuration until next reset use HAL_GPIO_LockPin(). + + + (#) During and just after reset, the alternate functions are not + active and the GPIO pins are configured in input floating mode (except JTAG + pins). + + (#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose + (PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has + priority over the GPIO function. + + (#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as + general purpose PH0 and PH1, respectively, when the HSE oscillator is off. + The HSE has priority over the GPIO function. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup GPIO GPIO + * @brief GPIO HAL module driver + * @{ + */ + +#ifdef HAL_GPIO_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup GPIO_Private_Constants GPIO Private Constants + * @{ + */ +#define GPIO_MODE ((uint32_t)0x00000003) +#define EXTI_MODE ((uint32_t)0x10000000) +#define GPIO_MODE_IT ((uint32_t)0x00010000) +#define GPIO_MODE_EVT ((uint32_t)0x00020000) +#define RISING_EDGE ((uint32_t)0x00100000) +#define FALLING_EDGE ((uint32_t)0x00200000) +#define GPIO_OUTPUT_TYPE ((uint32_t)0x00000010) + +#define GPIO_NUMBER ((uint32_t)16) +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup GPIO_Exported_Functions GPIO Exported Functions + * @{ + */ + +/** @defgroup GPIO_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to initialize and de-initialize the GPIOs + to be ready for use. + +@endverbatim + * @{ + */ + + +/** + * @brief Initializes the GPIOx peripheral according to the specified parameters in the GPIO_Init. + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral for STM32F429X device or + * x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices. + * @param GPIO_Init: pointer to a GPIO_InitTypeDef structure that contains + * the configuration information for the specified GPIO peripheral. + * @retval None + */ +void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init) +{ + uint32_t position; + uint32_t ioposition = 0x00; + uint32_t iocurrent = 0x00; + uint32_t temp = 0x00; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + assert_param(IS_GPIO_PIN(GPIO_Init->Pin)); + assert_param(IS_GPIO_MODE(GPIO_Init->Mode)); + assert_param(IS_GPIO_PULL(GPIO_Init->Pull)); + + /* Configure the port pins */ + for(position = 0; position < GPIO_NUMBER; position++) + { + /* Get the IO position */ + ioposition = ((uint32_t)0x01) << position; + /* Get the current IO position */ + iocurrent = (uint32_t)(GPIO_Init->Pin) & ioposition; + + if(iocurrent == ioposition) + { + /*--------------------- GPIO Mode Configuration ------------------------*/ + /* In case of Alternate function mode selection */ + if((GPIO_Init->Mode == GPIO_MODE_AF_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) + { + /* Check the Alternate function parameter */ + assert_param(IS_GPIO_AF(GPIO_Init->Alternate)); + /* Configure Alternate function mapped with the current IO */ + temp = GPIOx->AFR[position >> 3]; + temp &= ~((uint32_t)0xF << ((uint32_t)(position & (uint32_t)0x07) * 4)) ; + temp |= ((uint32_t)(GPIO_Init->Alternate) << (((uint32_t)position & (uint32_t)0x07) * 4)); + GPIOx->AFR[position >> 3] = temp; + } + + /* Configure IO Direction mode (Input, Output, Alternate or Analog) */ + temp = GPIOx->MODER; + temp &= ~(GPIO_MODER_MODER0 << (position * 2)); + temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2)); + GPIOx->MODER = temp; + + /* In case of Output or Alternate function mode selection */ + if((GPIO_Init->Mode == GPIO_MODE_OUTPUT_PP) || (GPIO_Init->Mode == GPIO_MODE_AF_PP) || + (GPIO_Init->Mode == GPIO_MODE_OUTPUT_OD) || (GPIO_Init->Mode == GPIO_MODE_AF_OD)) + { + /* Check the Speed parameter */ + assert_param(IS_GPIO_SPEED(GPIO_Init->Speed)); + /* Configure the IO Speed */ + temp = GPIOx->OSPEEDR; + temp &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2)); + temp |= (GPIO_Init->Speed << (position * 2)); + GPIOx->OSPEEDR = temp; + + /* Configure the IO Output Type */ + temp = GPIOx->OTYPER; + temp &= ~(GPIO_OTYPER_OT_0 << position) ; + temp |= (((GPIO_Init->Mode & GPIO_OUTPUT_TYPE) >> 4) << position); + GPIOx->OTYPER = temp; + } + + /* Activate the Pull-up or Pull down resistor for the current IO */ + temp = GPIOx->PUPDR; + temp &= ~(GPIO_PUPDR_PUPDR0 << (position * 2)); + temp |= ((GPIO_Init->Pull) << (position * 2)); + GPIOx->PUPDR = temp; + + /*--------------------- EXTI Mode Configuration ------------------------*/ + /* Configure the External Interrupt or event for the current IO */ + if((GPIO_Init->Mode & EXTI_MODE) == EXTI_MODE) + { + /* Enable SYSCFG Clock */ + __HAL_RCC_SYSCFG_CLK_ENABLE(); + + temp = SYSCFG->EXTICR[position >> 2]; + temp &= ~(((uint32_t)0x0F) << (4 * (position & 0x03))); + temp |= ((uint32_t)(GPIO_GET_INDEX(GPIOx)) << (4 * (position & 0x03))); + SYSCFG->EXTICR[position >> 2] = temp; + + /* Clear EXTI line configuration */ + temp = EXTI->IMR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & GPIO_MODE_IT) == GPIO_MODE_IT) + { + temp |= iocurrent; + } + EXTI->IMR = temp; + + temp = EXTI->EMR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & GPIO_MODE_EVT) == GPIO_MODE_EVT) + { + temp |= iocurrent; + } + EXTI->EMR = temp; + + /* Clear Rising Falling edge configuration */ + temp = EXTI->RTSR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & RISING_EDGE) == RISING_EDGE) + { + temp |= iocurrent; + } + EXTI->RTSR = temp; + + temp = EXTI->FTSR; + temp &= ~((uint32_t)iocurrent); + if((GPIO_Init->Mode & FALLING_EDGE) == FALLING_EDGE) + { + temp |= iocurrent; + } + EXTI->FTSR = temp; + } + } + } +} + +/** + * @brief De-initializes the GPIOx peripheral registers to their default reset values. + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral for STM32F429X device or + * x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices. + * @param GPIO_Pin: specifies the port bit to be written. + * This parameter can be one of GPIO_PIN_x where x can be (0..15). + * @retval None + */ +void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin) +{ + uint32_t position; + uint32_t ioposition = 0x00; + uint32_t iocurrent = 0x00; + uint32_t tmp = 0x00; + + /* Check the parameters */ + assert_param(IS_GPIO_ALL_INSTANCE(GPIOx)); + + /* Configure the port pins */ + for(position = 0; position < GPIO_NUMBER; position++) + { + /* Get the IO position */ + ioposition = ((uint32_t)0x01) << position; + /* Get the current IO position */ + iocurrent = (GPIO_Pin) & ioposition; + + if(iocurrent == ioposition) + { + /*------------------------- GPIO Mode Configuration --------------------*/ + /* Configure IO Direction in Input Floating Mode */ + GPIOx->MODER &= ~(GPIO_MODER_MODER0 << (position * 2)); + + /* Configure the default Alternate Function in current IO */ + GPIOx->AFR[position >> 3] &= ~((uint32_t)0xF << ((uint32_t)(position & (uint32_t)0x07) * 4)) ; + + /* Configure the default value for IO Speed */ + GPIOx->OSPEEDR &= ~(GPIO_OSPEEDER_OSPEEDR0 << (position * 2)); + + /* Configure the default value IO Output Type */ + GPIOx->OTYPER &= ~(GPIO_OTYPER_OT_0 << position) ; + + /* Deactivate the Pull-up and Pull-down resistor for the current IO */ + GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPDR0 << (position * 2)); + + /*------------------------- EXTI Mode Configuration --------------------*/ + tmp = SYSCFG->EXTICR[position >> 2]; + tmp &= (((uint32_t)0x0F) << (4 * (position & 0x03))); + if(tmp == ((uint32_t)(GPIO_GET_INDEX(GPIOx)) << (4 * (position & 0x03)))) + { + /* Configure the External Interrupt or event for the current IO */ + tmp = ((uint32_t)0x0F) << (4 * (position & 0x03)); + SYSCFG->EXTICR[position >> 2] &= ~tmp; + + /* Clear EXTI line configuration */ + EXTI->IMR &= ~((uint32_t)iocurrent); + EXTI->EMR &= ~((uint32_t)iocurrent); + + /* Clear Rising Falling edge configuration */ + EXTI->RTSR &= ~((uint32_t)iocurrent); + EXTI->FTSR &= ~((uint32_t)iocurrent); + } + } + } +} + +/** + * @} + */ + +/** @defgroup GPIO_Exported_Functions_Group2 IO operation functions + * @brief GPIO Read and Write + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Reads the specified input port pin. + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral for STM32F429X device or + * x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices. + * @param GPIO_Pin: specifies the port bit to read. + * This parameter can be GPIO_PIN_x where x can be (0..15). + * @retval The input port pin value. + */ +GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) +{ + GPIO_PinState bitstatus; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + if((GPIOx->IDR & GPIO_Pin) != (uint32_t)GPIO_PIN_RESET) + { + bitstatus = GPIO_PIN_SET; + } + else + { + bitstatus = GPIO_PIN_RESET; + } + return bitstatus; +} + +/** + * @brief Sets or clears the selected data port bit. + * + * @note This function uses GPIOx_BSRR register to allow atomic read/modify + * accesses. In this way, there is no risk of an IRQ occurring between + * the read and the modify access. + * + * @param GPIOx: where x can be (A..K) to select the GPIO peripheral for STM32F429X device or + * x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices. + * @param GPIO_Pin: specifies the port bit to be written. + * This parameter can be one of GPIO_PIN_x where x can be (0..15). + * @param PinState: specifies the value to be written to the selected bit. + * This parameter can be one of the GPIO_PinState enum values: + * @arg GPIO_PIN_RESET: to clear the port pin + * @arg GPIO_PIN_SET: to set the port pin + * @retval None + */ +void HAL_GPIO_WritePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState) +{ + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + assert_param(IS_GPIO_PIN_ACTION(PinState)); + + if(PinState != GPIO_PIN_RESET) + { + GPIOx->BSRR = GPIO_Pin; + } + else + { + GPIOx->BSRR = (uint32_t)GPIO_Pin << 16; + } +} + +/** + * @brief Toggles the specified GPIO pins. + * @param GPIOx: Where x can be (A..K) to select the GPIO peripheral for STM32F429X device or + * x can be (A..I) to select the GPIO peripheral for STM32F40XX and STM32F427X devices. + * @param GPIO_Pin: Specifies the pins to be toggled. + * @retval None + */ +void HAL_GPIO_TogglePin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) +{ + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + GPIOx->ODR ^= GPIO_Pin; +} + +/** + * @brief Locks GPIO Pins configuration registers. + * @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, + * GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. + * @note The configuration of the locked GPIO pins can no longer be modified + * until the next reset. + * @param GPIOx: where x can be (A..F) to select the GPIO peripheral for STM32F4 family + * @param GPIO_Pin: specifies the port bit to be locked. + * This parameter can be any combination of GPIO_PIN_x where x can be (0..15). + * @retval None + */ +HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) +{ + __IO uint32_t tmp = GPIO_LCKR_LCKK; + + /* Check the parameters */ + assert_param(IS_GPIO_PIN(GPIO_Pin)); + + /* Apply lock key write sequence */ + tmp |= GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */ + GPIOx->LCKR = GPIO_Pin; + /* Set LCKx bit(s): LCKK='1' + LCK[15-0] */ + GPIOx->LCKR = tmp; + /* Read LCKK bit*/ + tmp = GPIOx->LCKR; + + if((GPIOx->LCKR & GPIO_LCKR_LCKK) != RESET) + { + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief This function handles EXTI interrupt request. + * @param GPIO_Pin: Specifies the pins connected EXTI line + * @retval None + */ +void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin) +{ + /* EXTI line interrupt detected */ + if(__HAL_GPIO_EXTI_GET_IT(GPIO_Pin) != RESET) + { + __HAL_GPIO_EXTI_CLEAR_IT(GPIO_Pin); + HAL_GPIO_EXTI_Callback(GPIO_Pin); + } +} + +/** + * @brief EXTI line detection callbacks. + * @param GPIO_Pin: Specifies the pins connected EXTI line + * @retval None + */ +__weak void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_GPIO_EXTI_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + + +/** + * @} + */ + +#endif /* HAL_GPIO_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hash.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hash.c new file mode 100644 index 0000000..fa1ca7b --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hash.c @@ -0,0 +1,1862 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_hash.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief HASH HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the HASH peripheral: + * + Initialization and de-initialization functions + * + HASH/HMAC Processing functions by algorithm using polling mode + * + HASH/HMAC functions by algorithm using interrupt mode + * + HASH/HMAC functions by algorithm using DMA mode + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The HASH HAL driver can be used as follows: + (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit(): + (##) Enable the HASH interface clock using __HAL_RCC_HASH_CLK_ENABLE() + (##) In case of using processing APIs based on interrupts (e.g. HAL_HMAC_SHA1_Start_IT()) + (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_HMAC_SHA1_Start_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable one DMA stream one for managing data transfer from + memory to peripheral (input stream). Managing data transfer from + peripheral to memory can be performed only using CPU + (+++) Associate the initialized DMA handle to the HASH DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Stream using HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + (#)Initialize the HASH HAL using HAL_HASH_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit. + (##) For HMAC, the encryption key. + (##) For HMAC, the key size used for encryption. + (#)Three processing functions are available: + (##) Polling mode: processing APIs are blocking functions + i.e. they process the data and wait till the digest computation is finished + e.g. HAL_HASH_SHA1_Start() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt + e.g. HAL_HASH_SHA1_Start_IT() + (##) DMA mode: processing APIs are not blocking functions and the CPU is + not used for data transfer i.e. the data transfer is ensured by DMA + e.g. HAL_HASH_SHA1_Start_DMA() + (#)When the processing function is called at first time after HAL_HASH_Init() + the HASH peripheral is initialized and processes the buffer in input. + After that, the digest computation is started. + When processing multi-buffer use the accumulate function to write the + data in the peripheral without starting the digest computation. In last + buffer use the start function to input the last buffer ans start the digest + computation. + (##) e.g. HAL_HASH_SHA1_Accumulate() : write 1st data buffer in the peripheral without starting the digest computation + (##) write (n-1)th data buffer in the peripheral without starting the digest computation + (##) HAL_HASH_SHA1_Start() : write (n)th data buffer in the peripheral and start the digest computation + (#)In HMAC mode, there is no Accumulate API. Only Start API is available. + (#)In case of using DMA, call the DMA start processing e.g. HAL_HASH_SHA1_Start_DMA(). + After that, call the finish function in order to get the digest value + e.g. HAL_HASH_SHA1_Finish() + (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup HASH HASH + * @brief HASH HAL module driver. + * @{ + */ + +#ifdef HAL_HASH_MODULE_ENABLED + +#if defined(STM32F415xx) || defined(STM32F417xx) || defined(STM32F437xx) || defined(STM32F439xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup HASH_Private_Functions HASH Private Functions + * @{ + */ +static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma); +static void HASH_DMAError(DMA_HandleTypeDef *hdma); +static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size); +static void HASH_WriteData(uint8_t *pInBuffer, uint32_t Size); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup HASH_Private_Functions + * @{ + */ + +/** + * @brief DMA HASH Input Data complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + uint32_t inputaddr = 0; + uint32_t buffersize = 0; + + if((HASH->CR & HASH_CR_MODE) != HASH_CR_MODE) + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + else + { + /* Increment Interrupt counter */ + hhash->HashInCount++; + /* Disable the DMA transfer before starting the next transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + if(hhash->HashInCount <= 2) + { + /* In case HashInCount = 1, set the DMA to transfer data to HASH DIN register */ + if(hhash->HashInCount == 1) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + buffersize = hhash->HashBuffSize; + } + /* In case HashInCount = 2, set the DMA to transfer key to HASH DIN register */ + else if(hhash->HashInCount == 2) + { + inputaddr = (uint32_t)hhash->Init.pKey; + buffersize = hhash->Init.KeySize; + } + /* Configure the number of valid bits in last word of the message */ + MODIFY_REG(HASH->STR, HASH_STR_NBLW, 8 * (buffersize % 4)); + + /* Set the HASH DMA transfer complete */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (buffersize%4 ? (buffersize+3)/4:buffersize/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + } + else + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Reset the InCount */ + hhash->HashInCount = 0; + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } +} + +/** + * @brief DMA HASH communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASH_DMAError(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hhash->State= HAL_HASH_STATE_READY; + HAL_HASH_ErrorCallback(hhash); +} + +/** + * @brief Writes the input buffer in data register. + * @param pInBuffer: Pointer to input buffer + * @param Size: The size of input buffer + * @retval None + */ +static void HASH_WriteData(uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t buffercounter; + uint32_t inputaddr = (uint32_t) pInBuffer; + + for(buffercounter = 0; buffercounter < Size; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } +} + +/** + * @brief Provides the message digest result. + * @param pMsgDigest: Pointer to the message digest + * @param Size: The size of the message digest in bytes + * @retval None + */ +static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size) +{ + uint32_t msgdigest = (uint32_t)pMsgDigest; + + switch(Size) + { + case 16: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + break; + case 20: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + break; + case 28: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + break; + case 32: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[7]); + break; + default: + break; + } +} + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup HASH_Exported_Functions + * @{ + */ + + +/** @addtogroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the HASH according to the specified parameters + in the HASH_InitTypeDef and creates the associated handle. + (+) DeInitialize the HASH peripheral. + (+) Initialize the HASH MSP. + (+) DeInitialize HASH MSP. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH according to the specified parameters in the + HASH_HandleTypeDef and creates the associated handle. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash) +{ + /* Check the hash handle allocation */ + if(hhash == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_HASH_DATATYPE(hhash->Init.DataType)); + + if(hhash->State == HAL_HASH_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hhash->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_HASH_MspInit(hhash); + } + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Reset HashInCount, HashBuffSize and HashITCounter */ + hhash->HashInCount = 0; + hhash->HashBuffSize = 0; + hhash->HashITCounter = 0; + + /* Set the data type */ + HASH->CR |= (uint32_t) (hhash->Init.DataType); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Set the default HASH phase */ + hhash->Phase = HAL_HASH_PHASE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the HASH peripheral. + * @note This API must be called before starting a new processing. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash) +{ + /* Check the HASH handle allocation */ + if(hhash == NULL) + { + return HAL_ERROR; + } + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Set the default HASH phase */ + hhash->Phase = HAL_HASH_PHASE_READY; + + /* Reset HashInCount, HashBuffSize and HashITCounter */ + hhash->HashInCount = 0; + hhash->HashBuffSize = 0; + hhash->HashITCounter = 0; + + /* DeInit the low level hardware */ + HAL_HASH_MspDeInit(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH MSP. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +__weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes HASH MSP. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +__weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Input data transfer complete callback. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ + __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_InCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Data transfer Error callback. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ + __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Digest computation complete callback. It is used only with interrupt. + * @note This callback is not relevant with DMA. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ + __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_HASH_DgstCpltCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group2 HASH processing functions using polling mode + * @brief processing functions using polling mode + * +@verbatim + =============================================================================== + ##### HASH processing using polling mode functions##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the hash value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in MD5 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is multiple of 64 bytes, appending the input buffer is possible. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware + * and appending the input buffer is no more possible. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 16 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the MD5 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_MD5 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 16); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in MD5 mode then writes the pInBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is multiple of 64 bytes, appending the input buffer is possible. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware + * and appending the input buffer is no more possible. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the MD5 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_MD5 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA1 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 20); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then processes pInBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @note Input buffer size in bytes must be a multiple of 4 otherwise the digest computation is corrupted. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + + /* Check the parameters */ + assert_param(IS_HASH_SHA1_BUFFER_SIZE(Size)); + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA1 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group3 HASH processing functions using interrupt mode + * @brief processing functions using interrupt mode. + * +@verbatim + =============================================================================== + ##### HASH processing using interrupt mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in interrupt mode + the hash value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in MD5 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 16 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode */ + HASH->CR |= HASH_ALGOSELECTION_MD5; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + outputaddr = (uint32_t)hhash->pHashOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = __REV(HASH->HR[0]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[1]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[2]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[3]); + + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t outputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode */ + HASH->CR |= HASH_ALGOSELECTION_SHA1; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + outputaddr = (uint32_t)hhash->pHashOutBuffPtr; + /* Read the Output block from the Output FIFO */ + *(uint32_t*)(outputaddr) = __REV(HASH->HR[0]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[1]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[2]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[3]); + outputaddr+=4; + *(uint32_t*)(outputaddr) = __REV(HASH->HR[4]); + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief This function handles HASH interrupt request. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash) +{ + switch(HASH->CR & HASH_CR_ALGO) + { + case HASH_ALGOSELECTION_MD5: + HAL_HASH_MD5_Start_IT(hhash, NULL, 0, NULL); + break; + + case HASH_ALGOSELECTION_SHA1: + HAL_HASH_SHA1_Start_IT(hhash, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group4 HASH processing functions using DMA mode + * @brief processing functions using DMA mode. + * +@verbatim + =============================================================================== + ##### HASH processing using DMA mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the hash value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in MD5 mode then enables DMA to + control data transfer. Use HAL_HASH_MD5_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the MD5 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_MD5 | HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in MD5 mode + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 16 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 16); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA1 mode then enables DMA to + control data transfer. Use HAL_HASH_SHA1_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA1 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA1; + HASH->CR |= HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in SHA1 mode. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 20); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process UnLock */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group5 HASH-MAC (HMAC) processing functions using polling mode + * @brief HMAC processing functions using polling mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using polling mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the HMAC value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC MD5 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 16); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA1 mode + * then processes pInBuffer. The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASH_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASH_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_SET(HASH->SR, HASH_FLAG_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /* Read the message digest */ + HASH_GetDigest(pOutBuffer, 20); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group6 HASH-MAC (HMAC) processing functions using DMA mode + * @brief HMAC processing functions using DMA mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using DMA mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the HMAC value using one of the following algorithms: + (+) MD5 + (+) SHA1 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC MD5 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC MD5 mode */ + HASH->CR |= (HASH_ALGOSELECTION_MD5 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA1 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA1 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA1 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASH_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASH_Exported_Functions_Group7 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief return the HASH state + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval HAL state + */ +HAL_HASH_STATETypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash) +{ + return hhash->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* STM32F415xx || STM32F417xx || STM32F437xx || STM32F439xx */ +#endif /* HAL_HASH_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hash_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hash_ex.c new file mode 100644 index 0000000..e05c88a --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hash_ex.c @@ -0,0 +1,1642 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_hash_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief HASH HAL Extension module driver. + * This file provides firmware functions to manage the following + * functionalities of HASH peripheral: + * + Extended HASH processing functions based on SHA224 Algorithm + * + Extended HASH processing functions based on SHA256 Algorithm + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The HASH HAL driver can be used as follows: + (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit(): + (##) Enable the HASH interface clock using __HAL_RCC_HASH_CLK_ENABLE() + (##) In case of using processing APIs based on interrupts (e.g. HAL_HMACEx_SHA224_Start()) + (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority() + (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ() + (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() + (##) In case of using DMA to control data transfer (e.g. HAL_HMACEx_SH224_Start_DMA()) + (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE() + (+++) Configure and enable one DMA stream one for managing data transfer from + memory to peripheral (input stream). Managing data transfer from + peripheral to memory can be performed only using CPU + (+++) Associate the initialized DMA handle to the HASH DMA handle + using __HAL_LINKDMA() + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Stream: HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() + (#)Initialize the HASH HAL using HAL_HASH_Init(). This function configures mainly: + (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit. + (##) For HMAC, the encryption key. + (##) For HMAC, the key size used for encryption. + (#)Three processing functions are available: + (##) Polling mode: processing APIs are blocking functions + i.e. they process the data and wait till the digest computation is finished + e.g. HAL_HASHEx_SHA224_Start() + (##) Interrupt mode: encryption and decryption APIs are not blocking functions + i.e. they process the data under interrupt + e.g. HAL_HASHEx_SHA224_Start_IT() + (##) DMA mode: processing APIs are not blocking functions and the CPU is + not used for data transfer i.e. the data transfer is ensured by DMA + e.g. HAL_HASHEx_SHA224_Start_DMA() + (#)When the processing function is called at first time after HAL_HASH_Init() + the HASH peripheral is initialized and processes the buffer in input. + After that, the digest computation is started. + When processing multi-buffer use the accumulate function to write the + data in the peripheral without starting the digest computation. In last + buffer use the start function to input the last buffer ans start the digest + computation. + (##) e.g. HAL_HASHEx_SHA224_Accumulate() : write 1st data buffer in the peripheral without starting the digest computation + (##) write (n-1)th data buffer in the peripheral without starting the digest computation + (##) HAL_HASHEx_SHA224_Start() : write (n)th data buffer in the peripheral and start the digest computation + (#)In HMAC mode, there is no Accumulate API. Only Start API is available. + (#)In case of using DMA, call the DMA start processing e.g. HAL_HASHEx_SHA224_Start_DMA(). + After that, call the finish function in order to get the digest value + e.g. HAL_HASHEx_SHA224_Finish() + (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup HASHEx HASHEx + * @brief HASH Extension HAL module driver. + * @{ + */ + +#ifdef HAL_HASH_MODULE_ENABLED + +#if defined(STM32F437xx) || defined(STM32F439xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup HASHEx_Private_Functions + * @{ + */ +static void HASHEx_DMAXferCplt(DMA_HandleTypeDef *hdma); +static void HASHEx_WriteData(uint8_t *pInBuffer, uint32_t Size); +static void HASHEx_GetDigest(uint8_t *pMsgDigest, uint8_t Size); +static void HASHEx_DMAError(DMA_HandleTypeDef *hdma); +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ + +/** @addtogroup HASHEx_Private_Functions + * @{ + */ + +/** + * @brief Writes the input buffer in data register. + * @param pInBuffer: Pointer to input buffer + * @param Size: The size of input buffer + * @retval None + */ +static void HASHEx_WriteData(uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t buffercounter; + uint32_t inputaddr = (uint32_t) pInBuffer; + + for(buffercounter = 0; buffercounter < Size; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } +} + +/** + * @brief Provides the message digest result. + * @param pMsgDigest: Pointer to the message digest + * @param Size: The size of the message digest in bytes + * @retval None + */ +static void HASHEx_GetDigest(uint8_t *pMsgDigest, uint8_t Size) +{ + uint32_t msgdigest = (uint32_t)pMsgDigest; + + switch(Size) + { + case 16: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + break; + case 20: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + break; + case 28: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + break; + case 32: + /* Read the message digest */ + *(uint32_t*)(msgdigest) = __REV(HASH->HR[0]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[1]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[2]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[3]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH->HR[4]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[5]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[6]); + msgdigest+=4; + *(uint32_t*)(msgdigest) = __REV(HASH_DIGEST->HR[7]); + break; + default: + break; + } +} + +/** + * @brief DMA HASH Input Data complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASHEx_DMAXferCplt(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + uint32_t inputaddr = 0; + uint32_t buffersize = 0; + + if((HASH->CR & HASH_CR_MODE) != HASH_CR_MODE) + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + else + { + /* Increment Interrupt counter */ + hhash->HashInCount++; + /* Disable the DMA transfer before starting the next transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + if(hhash->HashInCount <= 2) + { + /* In case HashInCount = 1, set the DMA to transfer data to HASH DIN register */ + if(hhash->HashInCount == 1) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + buffersize = hhash->HashBuffSize; + } + /* In case HashInCount = 2, set the DMA to transfer key to HASH DIN register */ + else if(hhash->HashInCount == 2) + { + inputaddr = (uint32_t)hhash->Init.pKey; + buffersize = hhash->Init.KeySize; + } + /* Configure the number of valid bits in last word of the message */ + MODIFY_REG(HASH->STR, HASH_STR_NBLW, 8 * (buffersize % 4)); + + /* Set the HASH DMA transfer complete */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (buffersize%4 ? (buffersize+3)/4:buffersize/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + } + else + { + /* Disable the DMA transfer */ + HASH->CR &= (uint32_t)(~HASH_CR_DMAE); + + /* Reset the InCount */ + hhash->HashInCount = 0; + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } +} + +/** + * @brief DMA HASH communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void HASHEx_DMAError(DMA_HandleTypeDef *hdma) +{ + HASH_HandleTypeDef* hhash = ( HASH_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hhash->State= HAL_HASH_STATE_READY; + HAL_HASH_ErrorCallback(hhash); +} + + /** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup HASHEx_Exported_Functions + * @{ + */ + +/** @defgroup HASHEx_Group1 HASH processing functions + * @brief processing functions using polling mode + * +@verbatim + =============================================================================== + ##### HASH processing using polling mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the hash value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in SHA224 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 28 bytes. + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA224 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 28); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 32 bytes. + * @param Timeout: Specify Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA256 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 32); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the HASH peripheral in SHA224 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA224 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then processes pInBuffer. + The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA256 | HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ + +/** @defgroup HASHEx_Group2 HMAC processing functions using polling mode + * @brief HMAC processing functions using polling mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using polling mode functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in polling mode + the HMAC value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC SHA224 mode + * then processes pInBuffer. The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA224_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 28); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA256 mode + * then processes pInBuffer. The digest is available in pOutBuffer + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA256_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY); + } + else + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC); + } + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /************************** STEP 1 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 2 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Write input buffer in data register */ + HASHEx_WriteData(pInBuffer, Size); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /************************** STEP 3 ******************************************/ + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Write input buffer in data register */ + HASHEx_WriteData(hhash->Init.pKey, hhash->Init.KeySize); + + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((HASH->SR & HASH_FLAG_BUSY) == HASH_FLAG_BUSY) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((HAL_GetTick() - tickstart ) > Timeout) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 32); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HASHEx_Group3 HASH processing functions using interrupt mode + * @brief processing functions using interrupt mode. + * +@verbatim + =============================================================================== + ##### HASH processing using interrupt functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in interrupt mode + the hash value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in SHA224 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode */ + HASH->CR |= HASH_ALGOSELECTION_SHA224; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + /* Read the message digest */ + HASHEx_GetDigest(hhash->pHashOutBuffPtr, 28); + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then processes pInBuffer. + * The digest is available in pOutBuffer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @param pOutBuffer: Pointer to the computed digest. Its size must be 20 bytes. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t* pOutBuffer) +{ + uint32_t inputaddr; + uint32_t buffercounter; + uint32_t inputcounter; + + /* Process Locked */ + __HAL_LOCK(hhash); + + if(hhash->State == HAL_HASH_STATE_READY) + { + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + hhash->HashInCount = Size; + hhash->pHashInBuffPtr = pInBuffer; + hhash->pHashOutBuffPtr = pOutBuffer; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode */ + HASH->CR |= HASH_ALGOSELECTION_SHA256; + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Reset interrupt counter */ + hhash->HashITCounter = 0; + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Enable Interrupts */ + HASH->IMR = (HASH_IT_DINI | HASH_IT_DCI); + + /* Return function status */ + return HAL_OK; + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS)) + { + /* Read the message digest */ + HASHEx_GetDigest(hhash->pHashOutBuffPtr, 32); + if(hhash->HashInCount == 0) + { + /* Disable Interrupts */ + HASH->IMR = 0; + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_READY; + /* Call digest computation complete callback */ + HAL_HASH_DgstCpltCallback(hhash); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; + } + } + if(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) + { + if(hhash->HashInCount >= 68) + { + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < 64; buffercounter+=4) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + if(hhash->HashITCounter == 0) + { + HASH->DIN = *(uint32_t*)inputaddr; + + if(hhash->HashInCount >= 68) + { + /* Decrement buffer counter */ + hhash->HashInCount -= 68; + hhash->pHashInBuffPtr+= 68; + } + else + { + hhash->HashInCount = 0; + hhash->pHashInBuffPtr+= hhash->HashInCount; + } + /* Set Interrupt counter */ + hhash->HashITCounter = 1; + } + else + { + /* Decrement buffer counter */ + hhash->HashInCount -= 64; + hhash->pHashInBuffPtr+= 64; + } + } + else + { + /* Get the buffer address */ + inputaddr = (uint32_t)hhash->pHashInBuffPtr; + /* Get the buffer counter */ + inputcounter = hhash->HashInCount; + /* Disable Interrupts */ + HASH->IMR &= ~(HASH_IT_DINI); + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(inputcounter); + + if((inputcounter > 4) && (inputcounter%4)) + { + inputcounter = (inputcounter+4-inputcounter%4); + } + else if ((inputcounter < 4) && (inputcounter != 0)) + { + inputcounter = 4; + } + /* Write the Input block in the Data IN register */ + for(buffercounter = 0; buffercounter < inputcounter/4; buffercounter++) + { + HASH->DIN = *(uint32_t*)inputaddr; + inputaddr+=4; + } + /* Start the digest calculation */ + __HAL_HASH_START_DIGEST(); + /* Reset buffer counter */ + hhash->HashInCount = 0; + + /* Call Input data transfer complete callback */ + HAL_HASH_InCpltCallback(hhash); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief This function handles HASH interrupt request. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @retval None + */ +void HAL_HASHEx_IRQHandler(HASH_HandleTypeDef *hhash) +{ + switch(HASH->CR & HASH_CR_ALGO) + { + + case HASH_ALGOSELECTION_SHA224: + HAL_HASHEx_SHA224_Start_IT(hhash, NULL, 0, NULL); + break; + + case HASH_ALGOSELECTION_SHA256: + HAL_HASHEx_SHA256_Start_IT(hhash, NULL, 0, NULL); + break; + + default: + break; + } +} + +/** + * @} + */ + +/** @defgroup HASHEx_Group4 HASH processing functions using DMA mode + * @brief processing functions using DMA mode. + * +@verbatim + =============================================================================== + ##### HASH processing using DMA functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the hash value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + + +/** + * @brief Initializes the HASH peripheral in SHA224 mode then enables DMA to + control data transfer. Use HAL_HASH_SHA224_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA224 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA224 | HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in SHA224 + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 28 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA224_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 28); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in SHA256 mode then enables DMA to + control data transfer. Use HAL_HASH_SHA256_Finish() to get the digest. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr = (uint32_t)pInBuffer; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Select the SHA256 mode and reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_ALGOSELECTION_SHA256 | HASH_CR_INIT; + } + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(Size); + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (Size%4 ? (Size+3)/4:Size/4)); + + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process UnLock */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Returns the computed digest in SHA256. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pOutBuffer: Pointer to the computed digest. Its size must be 32 bytes. + * @param Timeout: Timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HASHEx_SHA256_Finish(HASH_HandleTypeDef *hhash, uint8_t* pOutBuffer, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(HAL_IS_BIT_CLR(HASH->SR, HASH_FLAG_DCIS)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Change state */ + hhash->State = HAL_HASH_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + return HAL_TIMEOUT; + } + } + } + + /* Read the message digest */ + HASHEx_GetDigest(pOutBuffer, 32); + + /* Change HASH peripheral state */ + hhash->State = HAL_HASH_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + + +/** + * @} + */ +/** @defgroup HASHEx_Group5 HMAC processing functions using DMA mode + * @brief HMAC processing functions using DMA mode . + * +@verbatim + =============================================================================== + ##### HMAC processing using DMA functions ##### + =============================================================================== + [..] This section provides functions allowing to calculate in DMA mode + the HMAC value using one of the following algorithms: + (+) SHA224 + (+) SHA256 + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the HASH peripheral in HMAC SHA224 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA224_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT); + } + else + { + /* Select the HMAC SHA224 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA224 | HASH_ALGOMODE_HMAC | HASH_CR_INIT); + } + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the HASH peripheral in HMAC SHA256 mode + * then enables DMA to control data transfer. + * @param hhash: pointer to a HASH_HandleTypeDef structure that contains + * the configuration information for HASH module + * @param pInBuffer: Pointer to the input buffer (buffer to be hashed). + * @param Size: Length of the input buffer in bytes. + * If the Size is not multiple of 64 bytes, the padding is managed by hardware. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HMACEx_SHA256_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size) +{ + uint32_t inputaddr; + + /* Process Locked */ + __HAL_LOCK(hhash); + + /* Change the HASH state */ + hhash->State = HAL_HASH_STATE_BUSY; + + /* Save buffer pointer and size in handle */ + hhash->pHashInBuffPtr = pInBuffer; + hhash->HashBuffSize = Size; + hhash->HashInCount = 0; + + /* Check if initialization phase has already been performed */ + if(hhash->Phase == HAL_HASH_PHASE_READY) + { + /* Check if key size is greater than 64 bytes */ + if(hhash->Init.KeySize > 64) + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY); + } + else + { + /* Select the HMAC SHA256 mode */ + HASH->CR |= (HASH_ALGOSELECTION_SHA256 | HASH_ALGOMODE_HMAC); + } + /* Reset the HASH processor core, so that the HASH will be ready to compute + the message digest of a new message */ + HASH->CR |= HASH_CR_INIT; + } + + /* Set the phase */ + hhash->Phase = HAL_HASH_PHASE_PROCESS; + + /* Configure the number of valid bits in last word of the message */ + __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); + + /* Get the key address */ + inputaddr = (uint32_t)(hhash->Init.pKey); + + /* Set the HASH DMA transfer complete callback */ + hhash->hdmain->XferCpltCallback = HASHEx_DMAXferCplt; + /* Set the DMA error callback */ + hhash->hdmain->XferErrorCallback = HASHEx_DMAError; + + /* Enable the DMA In DMA Stream */ + HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, (hhash->Init.KeySize%4 ? (hhash->Init.KeySize+3)/4:hhash->Init.KeySize/4)); + /* Enable DMA requests */ + HASH->CR |= (HASH_CR_DMAE); + + /* Process Unlocked */ + __HAL_UNLOCK(hhash); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F437xx || STM32F439xx */ + +#endif /* HAL_HASH_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hcd.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hcd.c new file mode 100644 index 0000000..c441ec2 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_hcd.c @@ -0,0 +1,1215 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_hcd.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief HCD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#)Declare a HCD_HandleTypeDef handle structure, for example: + HCD_HandleTypeDef hhcd; + + (#)Fill parameters of Init structure in HCD handle + + (#)Call HAL_HCD_Init() API to initialize the HCD peripheral (Core, Host core, ...) + + (#)Initialize the HCD low level resources through the HAL_HCD_MspInit() API: + (##) Enable the HCD/USB Low Level interface clock using the following macros + (+++) __HAL_RCC_USB_OTG_FS_CLK_ENABLE(); + (+++) __HAL_RCC_USB_OTG_HS_CLK_ENABLE(); (For High Speed Mode) + (+++) __HAL_RCC_USB_OTG_HS_ULPI_CLK_ENABLE(); (For High Speed Mode) + + (##) Initialize the related GPIO clocks + (##) Configure HCD pin-out + (##) Configure HCD NVIC interrupt + + (#)Associate the Upper USB Host stack to the HAL HCD Driver: + (##) hhcd.pData = phost; + + (#)Enable HCD transmission and reception: + (##) HAL_HCD_Start(); + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup HCD HCD + * @brief HCD HAL module driver + * @{ + */ + +#ifdef HAL_HCD_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @defgroup HCD_Private_Functions HCD Private Functions + * @{ + */ +static void HCD_HC_IN_IRQHandler(HCD_HandleTypeDef *hhcd, uint8_t chnum); +static void HCD_HC_OUT_IRQHandler(HCD_HandleTypeDef *hhcd, uint8_t chnum); +static void HCD_RXQLVL_IRQHandler(HCD_HandleTypeDef *hhcd); +static void HCD_Port_IRQHandler(HCD_HandleTypeDef *hhcd); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup HCD_Exported_Functions HCD Exported Functions + * @{ + */ + +/** @defgroup HCD_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_Init(HCD_HandleTypeDef *hhcd) +{ + /* Check the HCD handle allocation */ + if(hhcd == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_HCD_ALL_INSTANCE(hhcd->Instance)); + + hhcd->State = HAL_HCD_STATE_BUSY; + + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_HCD_MspInit(hhcd); + + /* Disable the Interrupts */ + __HAL_HCD_DISABLE(hhcd); + + /* Init the Core (common init.) */ + USB_CoreInit(hhcd->Instance, hhcd->Init); + + /* Force Host Mode*/ + USB_SetCurrentMode(hhcd->Instance , USB_OTG_HOST_MODE); + + /* Init Host */ + USB_HostInit(hhcd->Instance, hhcd->Init); + + hhcd->State= HAL_HCD_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Initialize a host channel. + * @param hhcd: HCD handle + * @param ch_num: Channel number. + * This parameter can be a value from 1 to 15 + * @param epnum: Endpoint number. + * This parameter can be a value from 1 to 15 + * @param dev_address : Current device address + * This parameter can be a value from 0 to 255 + * @param speed: Current device speed. + * This parameter can be one of these values: + * HCD_SPEED_HIGH: High speed mode, + * HCD_SPEED_FULL: Full speed mode, + * HCD_SPEED_LOW: Low speed mode + * @param ep_type: Endpoint Type. + * This parameter can be one of these values: + * EP_TYPE_CTRL: Control type, + * EP_TYPE_ISOC: Isochronous type, + * EP_TYPE_BULK: Bulk type, + * EP_TYPE_INTR: Interrupt type + * @param mps: Max Packet Size. + * This parameter can be a value from 0 to32K + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_HC_Init(HCD_HandleTypeDef *hhcd, + uint8_t ch_num, + uint8_t epnum, + uint8_t dev_address, + uint8_t speed, + uint8_t ep_type, + uint16_t mps) +{ + HAL_StatusTypeDef status = HAL_OK; + + __HAL_LOCK(hhcd); + + hhcd->hc[ch_num].dev_addr = dev_address; + hhcd->hc[ch_num].max_packet = mps; + hhcd->hc[ch_num].ch_num = ch_num; + hhcd->hc[ch_num].ep_type = ep_type; + hhcd->hc[ch_num].ep_num = epnum & 0x7F; + hhcd->hc[ch_num].ep_is_in = ((epnum & 0x80) == 0x80); + hhcd->hc[ch_num].speed = speed; + + status = USB_HC_Init(hhcd->Instance, + ch_num, + epnum, + dev_address, + speed, + ep_type, + mps); + __HAL_UNLOCK(hhcd); + + return status; +} + +/** + * @brief Halt a host channel. + * @param hhcd: HCD handle + * @param ch_num: Channel number. + * This parameter can be a value from 1 to 15 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_HC_Halt(HCD_HandleTypeDef *hhcd, uint8_t ch_num) +{ + HAL_StatusTypeDef status = HAL_OK; + + __HAL_LOCK(hhcd); + USB_HC_Halt(hhcd->Instance, ch_num); + __HAL_UNLOCK(hhcd); + + return status; +} + +/** + * @brief DeInitialize the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_DeInit(HCD_HandleTypeDef *hhcd) +{ + /* Check the HCD handle allocation */ + if(hhcd == NULL) + { + return HAL_ERROR; + } + + hhcd->State = HAL_HCD_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_HCD_MspDeInit(hhcd); + + __HAL_HCD_DISABLE(hhcd); + + hhcd->State = HAL_HCD_STATE_RESET; + + return HAL_OK; +} + +/** + * @brief Initialize the HCD MSP. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_MspInit(HCD_HandleTypeDef *hhcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitialize the HCD MSP. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_MspDeInit(HCD_HandleTypeDef *hhcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup HCD_Exported_Functions_Group2 Input and Output operation functions + * @brief HCD IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to manage the USB Host Data + Transfer + +@endverbatim + * @{ + */ + +/** + * @brief Submit a new URB for processing. + * @param hhcd: HCD handle + * @param ch_num: Channel number. + * This parameter can be a value from 1 to 15 + * @param direction: Channel number. + * This parameter can be one of these values: + * 0 : Output / 1 : Input + * @param ep_type: Endpoint Type. + * This parameter can be one of these values: + * EP_TYPE_CTRL: Control type/ + * EP_TYPE_ISOC: Isochronous type/ + * EP_TYPE_BULK: Bulk type/ + * EP_TYPE_INTR: Interrupt type/ + * @param token: Endpoint Type. + * This parameter can be one of these values: + * 0: HC_PID_SETUP / 1: HC_PID_DATA1 + * @param pbuff: pointer to URB data + * @param length: Length of URB data + * @param do_ping: activate do ping protocol (for high speed only). + * This parameter can be one of these values: + * 0 : do ping inactive / 1 : do ping active + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_HC_SubmitRequest(HCD_HandleTypeDef *hhcd, + uint8_t ch_num, + uint8_t direction, + uint8_t ep_type, + uint8_t token, + uint8_t* pbuff, + uint16_t length, + uint8_t do_ping) +{ + hhcd->hc[ch_num].ep_is_in = direction; + hhcd->hc[ch_num].ep_type = ep_type; + + if(token == 0) + { + hhcd->hc[ch_num].data_pid = HC_PID_SETUP; + } + else + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + + /* Manage Data Toggle */ + switch(ep_type) + { + case EP_TYPE_CTRL: + if((token == 1) && (direction == 0)) /*send data */ + { + if ( length == 0 ) + { /* For Status OUT stage, Length==0, Status Out PID = 1 */ + hhcd->hc[ch_num].toggle_out = 1; + } + + /* Set the Data Toggle bit as per the Flag */ + if ( hhcd->hc[ch_num].toggle_out == 0) + { /* Put the PID 0 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { /* Put the PID 1 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + if(hhcd->hc[ch_num].urb_state != URB_NOTREADY) + { + hhcd->hc[ch_num].do_ping = do_ping; + } + } + break; + + case EP_TYPE_BULK: + if(direction == 0) + { + /* Set the Data Toggle bit as per the Flag */ + if ( hhcd->hc[ch_num].toggle_out == 0) + { /* Put the PID 0 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { /* Put the PID 1 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + if(hhcd->hc[ch_num].urb_state != URB_NOTREADY) + { + hhcd->hc[ch_num].do_ping = do_ping; + } + } + else + { + if( hhcd->hc[ch_num].toggle_in == 0) + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + } + + break; + case EP_TYPE_INTR: + if(direction == 0) + { + /* Set the Data Toggle bit as per the Flag */ + if ( hhcd->hc[ch_num].toggle_out == 0) + { /* Put the PID 0 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { /* Put the PID 1 */ + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + } + else + { + if( hhcd->hc[ch_num].toggle_in == 0) + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + } + else + { + hhcd->hc[ch_num].data_pid = HC_PID_DATA1; + } + } + break; + + case EP_TYPE_ISOC: + hhcd->hc[ch_num].data_pid = HC_PID_DATA0; + break; + } + + hhcd->hc[ch_num].xfer_buff = pbuff; + hhcd->hc[ch_num].xfer_len = length; + hhcd->hc[ch_num].urb_state = URB_IDLE; + hhcd->hc[ch_num].xfer_count = 0; + hhcd->hc[ch_num].ch_num = ch_num; + hhcd->hc[ch_num].state = HC_IDLE; + + return USB_HC_StartXfer(hhcd->Instance, &(hhcd->hc[ch_num]), hhcd->Init.dma_enable); +} + +/** + * @brief Handle HCD interrupt request. + * @param hhcd: HCD handle + * @retval None + */ +void HAL_HCD_IRQHandler(HCD_HandleTypeDef *hhcd) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint32_t i = 0 , interrupt = 0; + + /* Ensure that we are in device mode */ + if (USB_GetMode(hhcd->Instance) == USB_OTG_MODE_HOST) + { + /* Avoid spurious interrupt */ + if(__HAL_HCD_IS_INVALID_INTERRUPT(hhcd)) + { + return; + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT)) + { + /* Incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT); + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_IISOIXFR)) + { + /* Incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_IISOIXFR); + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_PTXFE)) + { + /* Incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_PTXFE); + } + + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_MMIS)) + { + /* Incorrect mode, acknowledge the interrupt */ + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_MMIS); + } + + /* Handle Host Disconnect Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_DISCINT)) + { + + /* Cleanup HPRT */ + USBx_HPRT0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + /* Handle Host Port Interrupts */ + HAL_HCD_Disconnect_Callback(hhcd); + USB_InitFSLSPClkSel(hhcd->Instance ,HCFG_48_MHZ ); + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_DISCINT); + } + + /* Handle Host Port Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_HPRTINT)) + { + HCD_Port_IRQHandler (hhcd); + } + + /* Handle Host SOF Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_SOF)) + { + HAL_HCD_SOF_Callback(hhcd); + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_SOF); + } + + /* Handle Host channel Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_HCINT)) + { + interrupt = USB_HC_ReadInterrupt(hhcd->Instance); + for (i = 0; i < hhcd->Init.Host_channels; i++) + { + if (interrupt & (1 << i)) + { + if ((USBx_HC(i)->HCCHAR) & USB_OTG_HCCHAR_EPDIR) + { + HCD_HC_IN_IRQHandler(hhcd, i); + } + else + { + HCD_HC_OUT_IRQHandler (hhcd, i); + } + } + } + __HAL_HCD_CLEAR_FLAG(hhcd, USB_OTG_GINTSTS_HCINT); + } + + /* Handle Rx Queue Level Interrupts */ + if(__HAL_HCD_GET_FLAG(hhcd, USB_OTG_GINTSTS_RXFLVL)) + { + USB_MASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_RXFLVL); + + HCD_RXQLVL_IRQHandler (hhcd); + + USB_UNMASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_RXFLVL); + } + } +} + +/** + * @brief SOF callback. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_SOF_Callback(HCD_HandleTypeDef *hhcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_SOF_Callback could be implemented in the user file + */ +} + +/** + * @brief Connection Event callback. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_Connect_Callback(HCD_HandleTypeDef *hhcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_Connect_Callback could be implemented in the user file + */ +} + +/** + * @brief Disconnection Event callback. + * @param hhcd: HCD handle + * @retval None + */ +__weak void HAL_HCD_Disconnect_Callback(HCD_HandleTypeDef *hhcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_Disconnect_Callback could be implemented in the user file + */ +} + +/** + * @brief Notify URB state change callback. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @param urb_state: + * This parameter can be one of these values: + * URB_IDLE/ + * URB_DONE/ + * URB_NOTREADY/ + * URB_NYET/ + * URB_ERROR/ + * URB_STALL/ + * @retval None + */ +__weak void HAL_HCD_HC_NotifyURBChange_Callback(HCD_HandleTypeDef *hhcd, uint8_t chnum, HCD_URBStateTypeDef urb_state) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_HCD_HC_NotifyURBChange_Callback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup HCD_Exported_Functions_Group3 Peripheral Control functions + * @brief Management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the HCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Start the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_Start(HCD_HandleTypeDef *hhcd) +{ + __HAL_LOCK(hhcd); + __HAL_HCD_ENABLE(hhcd); + USB_DriveVbus(hhcd->Instance, 1); + __HAL_UNLOCK(hhcd); + return HAL_OK; +} + +/** + * @brief Stop the host driver. + * @param hhcd: HCD handle + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_HCD_Stop(HCD_HandleTypeDef *hhcd) +{ + __HAL_LOCK(hhcd); + USB_StopHost(hhcd->Instance); + __HAL_UNLOCK(hhcd); + return HAL_OK; +} + +/** + * @brief Reset the host port. + * @param hhcd: HCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HCD_ResetPort(HCD_HandleTypeDef *hhcd) +{ + return (USB_ResetPort(hhcd->Instance)); +} + +/** + * @} + */ + +/** @defgroup HCD_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the HCD handle state. + * @param hhcd: HCD handle + * @retval HAL state + */ +HCD_StateTypeDef HAL_HCD_GetState(HCD_HandleTypeDef *hhcd) +{ + return hhcd->State; +} + +/** + * @brief Return URB state for a channel. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval URB state. + * This parameter can be one of these values: + * URB_IDLE/ + * URB_DONE/ + * URB_NOTREADY/ + * URB_NYET/ + * URB_ERROR/ + * URB_STALL + */ +HCD_URBStateTypeDef HAL_HCD_HC_GetURBState(HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + return hhcd->hc[chnum].urb_state; +} + + +/** + * @brief Return the last host transfer size. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval last transfer size in byte + */ +uint32_t HAL_HCD_HC_GetXferCount(HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + return hhcd->hc[chnum].xfer_count; +} + +/** + * @brief Return the Host Channel state. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval Host channel state + * This parameter can be one of these values: + * HC_IDLE/ + * HC_XFRC/ + * HC_HALTED/ + * HC_NYET/ + * HC_NAK/ + * HC_STALL/ + * HC_XACTERR/ + * HC_BBLERR/ + * HC_DATATGLERR + */ +HCD_HCStateTypeDef HAL_HCD_HC_GetState(HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + return hhcd->hc[chnum].state; +} + +/** + * @brief Return the current Host frame number. + * @param hhcd: HCD handle + * @retval Current Host frame number + */ +uint32_t HAL_HCD_GetCurrentFrame(HCD_HandleTypeDef *hhcd) +{ + return (USB_GetCurrentFrame(hhcd->Instance)); +} + +/** + * @brief Return the Host enumeration speed. + * @param hhcd: HCD handle + * @retval Enumeration speed + */ +uint32_t HAL_HCD_GetCurrentSpeed(HCD_HandleTypeDef *hhcd) +{ + return (USB_GetHostSpeed(hhcd->Instance)); +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup HCD_Private_Functions + * @{ + */ +/** + * @brief Handle Host Channel IN interrupt requests. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval None + */ +static void HCD_HC_IN_IRQHandler(HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint32_t tmpreg = 0; + + if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_AHBERR) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_AHBERR); + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_ACK) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_ACK); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_STALL) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + hhcd->hc[chnum].state = HC_STALL; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_STALL); + USB_HC_Halt(hhcd->Instance, chnum); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_DTERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + hhcd->hc[chnum].state = HC_DATATGLERR; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_DTERR); + } + + if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_FRMOR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_FRMOR); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_XFRC) + { + + if (hhcd->Init.dma_enable) + { + hhcd->hc[chnum].xfer_count = hhcd->hc[chnum].xfer_len - \ + (USBx_HC(chnum)->HCTSIZ & USB_OTG_HCTSIZ_XFRSIZ); + } + + hhcd->hc[chnum].state = HC_XFRC; + hhcd->hc[chnum].ErrCnt = 0; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_XFRC); + + + if ((hhcd->hc[chnum].ep_type == EP_TYPE_CTRL)|| + (hhcd->hc[chnum].ep_type == EP_TYPE_BULK)) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + + } + else if(hhcd->hc[chnum].ep_type == EP_TYPE_INTR) + { + USBx_HC(chnum)->HCCHAR |= USB_OTG_HCCHAR_ODDFRM; + hhcd->hc[chnum].urb_state = URB_DONE; + HAL_HCD_HC_NotifyURBChange_Callback(hhcd, chnum, hhcd->hc[chnum].urb_state); + } + hhcd->hc[chnum].toggle_in ^= 1; + + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_CHH) + { + __HAL_HCD_MASK_HALT_HC_INT(chnum); + + if(hhcd->hc[chnum].state == HC_XFRC) + { + hhcd->hc[chnum].urb_state = URB_DONE; + } + + else if (hhcd->hc[chnum].state == HC_STALL) + { + hhcd->hc[chnum].urb_state = URB_STALL; + } + + else if((hhcd->hc[chnum].state == HC_XACTERR) || + (hhcd->hc[chnum].state == HC_DATATGLERR)) + { + if(hhcd->hc[chnum].ErrCnt++ > 3) + { + hhcd->hc[chnum].ErrCnt = 0; + hhcd->hc[chnum].urb_state = URB_ERROR; + } + else + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + + /* re-activate the channel */ + tmpreg = USBx_HC(chnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(chnum)->HCCHAR = tmpreg; + } + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_CHH); + HAL_HCD_HC_NotifyURBChange_Callback(hhcd, chnum, hhcd->hc[chnum].urb_state); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_TXERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + hhcd->hc[chnum].ErrCnt++; + hhcd->hc[chnum].state = HC_XACTERR; + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_TXERR); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_NAK) + { + if(hhcd->hc[chnum].ep_type == EP_TYPE_INTR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + } + else if ((hhcd->hc[chnum].ep_type == EP_TYPE_CTRL)|| + (hhcd->hc[chnum].ep_type == EP_TYPE_BULK)) + { + /* re-activate the channel */ + tmpreg = USBx_HC(chnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(chnum)->HCCHAR = tmpreg; + } + hhcd->hc[chnum].state = HC_NAK; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + } +} + +/** + * @brief Handle Host Channel OUT interrupt requests. + * @param hhcd: HCD handle + * @param chnum: Channel number. + * This parameter can be a value from 1 to 15 + * @retval None + */ +static void HCD_HC_OUT_IRQHandler (HCD_HandleTypeDef *hhcd, uint8_t chnum) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint32_t tmpreg = 0; + + if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_AHBERR) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_AHBERR); + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + } + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_ACK) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_ACK); + + if( hhcd->hc[chnum].do_ping == 1) + { + hhcd->hc[chnum].state = HC_NYET; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_NYET) + { + hhcd->hc[chnum].state = HC_NYET; + hhcd->hc[chnum].ErrCnt= 0; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NYET); + + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_FRMOR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_FRMOR); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_XFRC) + { + hhcd->hc[chnum].ErrCnt = 0; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_XFRC); + hhcd->hc[chnum].state = HC_XFRC; + + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_STALL) + { + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_STALL); + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].state = HC_STALL; + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_NAK) + { + hhcd->hc[chnum].ErrCnt = 0; + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].state = HC_NAK; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_TXERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + hhcd->hc[chnum].state = HC_XACTERR; + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_TXERR); + } + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_DTERR) + { + __HAL_HCD_UNMASK_HALT_HC_INT(chnum); + USB_HC_Halt(hhcd->Instance, chnum); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_NAK); + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_DTERR); + hhcd->hc[chnum].state = HC_DATATGLERR; + } + + + else if ((USBx_HC(chnum)->HCINT) & USB_OTG_HCINT_CHH) + { + __HAL_HCD_MASK_HALT_HC_INT(chnum); + + if(hhcd->hc[chnum].state == HC_XFRC) + { + hhcd->hc[chnum].urb_state = URB_DONE; + if (hhcd->hc[chnum].ep_type == EP_TYPE_BULK) + { + hhcd->hc[chnum].toggle_out ^= 1; + } + } + else if (hhcd->hc[chnum].state == HC_NAK) + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + + else if (hhcd->hc[chnum].state == HC_NYET) + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + hhcd->hc[chnum].do_ping = 0; + } + + else if (hhcd->hc[chnum].state == HC_STALL) + { + hhcd->hc[chnum].urb_state = URB_STALL; + } + + else if((hhcd->hc[chnum].state == HC_XACTERR) || + (hhcd->hc[chnum].state == HC_DATATGLERR)) + { + if(hhcd->hc[chnum].ErrCnt++ > 3) + { + hhcd->hc[chnum].ErrCnt = 0; + hhcd->hc[chnum].urb_state = URB_ERROR; + } + else + { + hhcd->hc[chnum].urb_state = URB_NOTREADY; + } + + /* re-activate the channel */ + tmpreg = USBx_HC(chnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(chnum)->HCCHAR = tmpreg; + } + + __HAL_HCD_CLEAR_HC_INT(chnum, USB_OTG_HCINT_CHH); + HAL_HCD_HC_NotifyURBChange_Callback(hhcd, chnum, hhcd->hc[chnum].urb_state); + } +} + +/** + * @brief Handle Rx Queue Level interrupt requests. + * @param hhcd: HCD handle + * @retval None + */ +static void HCD_RXQLVL_IRQHandler(HCD_HandleTypeDef *hhcd) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + uint8_t channelnum = 0; + uint32_t pktsts; + uint32_t pktcnt; + uint32_t temp = 0; + uint32_t tmpreg = 0; + + temp = hhcd->Instance->GRXSTSP; + channelnum = temp & USB_OTG_GRXSTSP_EPNUM; + pktsts = (temp & USB_OTG_GRXSTSP_PKTSTS) >> 17; + pktcnt = (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + + switch (pktsts) + { + case GRXSTS_PKTSTS_IN: + /* Read the data into the host buffer. */ + if ((pktcnt > 0) && (hhcd->hc[channelnum].xfer_buff != (void *)0)) + { + + USB_ReadPacket(hhcd->Instance, hhcd->hc[channelnum].xfer_buff, pktcnt); + + /*manage multiple Xfer */ + hhcd->hc[channelnum].xfer_buff += pktcnt; + hhcd->hc[channelnum].xfer_count += pktcnt; + + if((USBx_HC(channelnum)->HCTSIZ & USB_OTG_HCTSIZ_PKTCNT) > 0) + { + /* re-activate the channel when more packets are expected */ + tmpreg = USBx_HC(channelnum)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(channelnum)->HCCHAR = tmpreg; + hhcd->hc[channelnum].toggle_in ^= 1; + } + } + break; + + case GRXSTS_PKTSTS_DATA_TOGGLE_ERR: + break; + case GRXSTS_PKTSTS_IN_XFER_COMP: + case GRXSTS_PKTSTS_CH_HALTED: + default: + break; + } +} + +/** + * @brief Handle Host Port interrupt requests. + * @param hhcd: HCD handle + * @retval None + */ +static void HCD_Port_IRQHandler (HCD_HandleTypeDef *hhcd) +{ + USB_OTG_GlobalTypeDef *USBx = hhcd->Instance; + __IO uint32_t hprt0, hprt0_dup; + + /* Handle Host Port Interrupts */ + hprt0 = USBx_HPRT0; + hprt0_dup = USBx_HPRT0; + + hprt0_dup &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + /* Check whether Port Connect Detected */ + if((hprt0 & USB_OTG_HPRT_PCDET) == USB_OTG_HPRT_PCDET) + { + if((hprt0 & USB_OTG_HPRT_PCSTS) == USB_OTG_HPRT_PCSTS) + { + USB_MASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_DISCINT); + HAL_HCD_Connect_Callback(hhcd); + } + hprt0_dup |= USB_OTG_HPRT_PCDET; + + } + + /* Check whether Port Enable Changed */ + if((hprt0 & USB_OTG_HPRT_PENCHNG) == USB_OTG_HPRT_PENCHNG) + { + hprt0_dup |= USB_OTG_HPRT_PENCHNG; + + if((hprt0 & USB_OTG_HPRT_PENA) == USB_OTG_HPRT_PENA) + { + if(hhcd->Init.phy_itface == USB_OTG_EMBEDDED_PHY) + { + if ((hprt0 & USB_OTG_HPRT_PSPD) == (HPRT0_PRTSPD_LOW_SPEED << 17)) + { + USB_InitFSLSPClkSel(hhcd->Instance ,HCFG_6_MHZ ); + } + else + { + USB_InitFSLSPClkSel(hhcd->Instance ,HCFG_48_MHZ ); + } + } + else + { + if(hhcd->Init.speed == HCD_SPEED_FULL) + { + USBx_HOST->HFIR = (uint32_t)60000; + } + } + HAL_HCD_Connect_Callback(hhcd); + + if(hhcd->Init.speed == HCD_SPEED_HIGH) + { + USB_UNMASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_DISCINT); + } + } + else + { + /* Cleanup HPRT */ + USBx_HPRT0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + USB_UNMASK_INTERRUPT(hhcd->Instance, USB_OTG_GINTSTS_DISCINT); + } + } + + /* Check for an overcurrent */ + if((hprt0 & USB_OTG_HPRT_POCCHNG) == USB_OTG_HPRT_POCCHNG) + { + hprt0_dup |= USB_OTG_HPRT_POCCHNG; + } + + /* Clear Port Interrupts */ + USBx_HPRT0 = hprt0_dup; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_HCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2c.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2c.c new file mode 100644 index 0000000..f7ab5ed --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2c.c @@ -0,0 +1,3649 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_i2c.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief I2C HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Inter Integrated Circuit (I2C) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The I2C HAL driver can be used as follows: + + (#) Declare a I2C_HandleTypeDef handle structure, for example: + I2C_HandleTypeDef hi2c; + + (#)Initialize the I2C low level resources by implement the HAL_I2C_MspInit() API: + (##) Enable the I2Cx interface clock + (##) I2C pins configuration + (+++) Enable the clock for the I2C GPIOs + (+++) Configure I2C pins as alternate function open-drain + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the I2Cx interrupt priority + (+++) Enable the NVIC I2C IRQ Channel + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive stream + (+++) Enable the DMAx interface clock using + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx Stream + (+++) Associate the initialized DMA handle to the hi2c DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on + the DMA Tx or Rx Stream + + (#) Configure the Communication Speed, Duty cycle, Addressing mode, Own Address1, + Dual Addressing mode, Own Address2, General call and Nostretch mode in the hi2c Init structure. + + (#) Initialize the I2C registers by calling the HAL_I2C_Init(), configures also the low level Hardware + (GPIO, CLOCK, NVIC...etc) by calling the customized HAL_I2C_MspInit(&hi2c) API. + + (#) To check if target device is ready for communication, use the function HAL_I2C_IsDeviceReady() + + (#) For I2C IO and IO MEM operations, three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Transmit in master mode an amount of data in blocking mode using HAL_I2C_Master_Transmit() + (+) Receive in master mode an amount of data in blocking mode using HAL_I2C_Master_Receive() + (+) Transmit in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Transmit() + (+) Receive in slave mode an amount of data in blocking mode using HAL_I2C_Slave_Receive() + + *** Polling mode IO MEM operation *** + ===================================== + [..] + (+) Write an amount of data in blocking mode to a specific memory address using HAL_I2C_Mem_Write() + (+) Read an amount of data in blocking mode from a specific memory address using HAL_I2C_Mem_Read() + + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Transmit in master mode an amount of data in non blocking mode using HAL_I2C_Master_Transmit_IT() + (+) At transmission end of transfer HAL_I2C_MasterTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback + (+) Receive in master mode an amount of data in non blocking mode using HAL_I2C_Master_Receive_IT() + (+) At reception end of transfer HAL_I2C_MasterRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback + (+) Transmit in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Transmit_IT() + (+) At transmission end of transfer HAL_I2C_SlaveTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback + (+) Receive in slave mode an amount of data in non blocking mode using HAL_I2C_Slave_Receive_IT() + (+) At reception end of transfer HAL_I2C_SlaveRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback + + *** Interrupt mode IO MEM operation *** + ======================================= + [..] + (+) Write an amount of data in no-blocking mode with Interrupt to a specific memory address using + HAL_I2C_Mem_Write_IT() + (+) At MEM end of write transfer HAL_I2C_MemTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback + (+) Read an amount of data in no-blocking mode with Interrupt from a specific memory address using + HAL_I2C_Mem_Read_IT() + (+) At MEM end of read transfer HAL_I2C_MemRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Transmit in master mode an amount of data in non blocking mode (DMA) using + HAL_I2C_Master_Transmit_DMA() + (+) At transmission end of transfer HAL_I2C_MasterTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterTxCpltCallback + (+) Receive in master mode an amount of data in non blocking mode (DMA) using + HAL_I2C_Master_Receive_DMA() + (+) At reception end of transfer HAL_I2C_MasterRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MasterRxCpltCallback + (+) Transmit in slave mode an amount of data in non blocking mode (DMA) using + HAL_I2C_Slave_Transmit_DMA() + (+) At transmission end of transfer HAL_I2C_SlaveTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveTxCpltCallback + (+) Receive in slave mode an amount of data in non blocking mode (DMA) using + HAL_I2C_Slave_Receive_DMA() + (+) At reception end of transfer HAL_I2C_SlaveRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_SlaveRxCpltCallback + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback + + *** DMA mode IO MEM operation *** + ================================= + [..] + (+) Write an amount of data in no-blocking mode with DMA to a specific memory address using + HAL_I2C_Mem_Write_DMA() + (+) At MEM end of write transfer HAL_I2C_MemTxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MemTxCpltCallback + (+) Read an amount of data in no-blocking mode with DMA from a specific memory address using + HAL_I2C_Mem_Read_DMA() + (+) At MEM end of read transfer HAL_I2C_MemRxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2C_MemRxCpltCallback + (+) In case of transfer Error, HAL_I2C_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2C_ErrorCallback + + + *** I2C HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in I2C HAL driver. + + (+) __HAL_I2C_ENABLE: Enable the I2C peripheral + (+) __HAL_I2C_DISABLE: Disable the I2C peripheral + (+) __HAL_I2C_GET_FLAG : Checks whether the specified I2C flag is set or not + (+) __HAL_I2C_CLEAR_FLAG : Clear the specified I2C pending flag + (+) __HAL_I2C_ENABLE_IT: Enable the specified I2C interrupt + (+) __HAL_I2C_DISABLE_IT: Disable the specified I2C interrupt + + [..] + (@) You can refer to the I2C HAL driver header file for more useful macros + + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup I2C I2C + * @brief I2C HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup I2C_Private_Constants + * @{ + */ +#define I2C_TIMEOUT_FLAG ((uint32_t)35) /* 35 ms */ +#define I2C_TIMEOUT_ADDR_SLAVE ((uint32_t)10000) /* 10 s */ +#define I2C_TIMEOUT_BUSY_FLAG ((uint32_t)10000) /* 10 s */ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup I2C_Private_Functions + * @{ + */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma); +static void I2C_DMAError(DMA_HandleTypeDef *hdma); + +static HAL_StatusTypeDef I2C_MasterRequestWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout); +static HAL_StatusTypeDef I2C_MasterRequestRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout); +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout); +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout); +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +static HAL_StatusTypeDef I2C_WaitOnMasterAddressFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, uint32_t Timeout); + +static HAL_StatusTypeDef I2C_MasterTransmit_TXE(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_MasterTransmit_BTF(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_MasterReceive_RXNE(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_MasterReceive_BTF(I2C_HandleTypeDef *hi2c); + +static HAL_StatusTypeDef I2C_SlaveTransmit_TXE(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_SlaveTransmit_BTF(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_SlaveReceive_RXNE(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_SlaveReceive_BTF(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_Slave_ADDR(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_Slave_STOPF(I2C_HandleTypeDef *hi2c); +static HAL_StatusTypeDef I2C_Slave_AF(I2C_HandleTypeDef *hi2c); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup I2C_Exported_Functions I2C Exported Functions + * @{ + */ + +/** @defgroup I2C_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the I2Cx peripheral: + + (+) User must Implement HAL_I2C_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC). + + (+) Call the function HAL_I2C_Init() to configure the selected device with + the selected configuration: + (++) Communication Speed + (++) Duty cycle + (++) Addressing mode + (++) Own Address 1 + (++) Dual Addressing mode + (++) Own Address 2 + (++) General call mode + (++) Nostretch mode + + (+) Call the function HAL_I2C_DeInit() to restore the default configuration + of the selected I2Cx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the I2C according to the specified parameters + * in the I2C_InitTypeDef and create the associated handle. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Init(I2C_HandleTypeDef *hi2c) +{ + uint32_t freqrange = 0; + uint32_t pclk1 = 0; + + /* Check the I2C handle allocation */ + if(hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_CLOCK_SPEED(hi2c->Init.ClockSpeed)); + assert_param(IS_I2C_DUTY_CYCLE(hi2c->Init.DutyCycle)); + assert_param(IS_I2C_OWN_ADDRESS1(hi2c->Init.OwnAddress1)); + assert_param(IS_I2C_ADDRESSING_MODE(hi2c->Init.AddressingMode)); + assert_param(IS_I2C_DUAL_ADDRESS(hi2c->Init.DualAddressMode)); + assert_param(IS_I2C_OWN_ADDRESS2(hi2c->Init.OwnAddress2)); + assert_param(IS_I2C_GENERAL_CALL(hi2c->Init.GeneralCallMode)); + assert_param(IS_I2C_NO_STRETCH(hi2c->Init.NoStretchMode)); + + if(hi2c->State == HAL_I2C_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2c->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + HAL_I2C_MspInit(hi2c); + } + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Get PCLK1 frequency */ + pclk1 = HAL_RCC_GetPCLK1Freq(); + + /* Calculate frequency range */ + freqrange = I2C_FREQRANGE(pclk1); + + /*---------------------------- I2Cx CR2 Configuration ----------------------*/ + /* Configure I2Cx: Frequency range */ + hi2c->Instance->CR2 = freqrange; + + /*---------------------------- I2Cx TRISE Configuration --------------------*/ + /* Configure I2Cx: Rise Time */ + hi2c->Instance->TRISE = I2C_RISE_TIME(freqrange, hi2c->Init.ClockSpeed); + + /*---------------------------- I2Cx CCR Configuration ----------------------*/ + /* Configure I2Cx: Speed */ + hi2c->Instance->CCR = I2C_SPEED(pclk1, hi2c->Init.ClockSpeed, hi2c->Init.DutyCycle); + + /*---------------------------- I2Cx CR1 Configuration ----------------------*/ + /* Configure I2Cx: Generalcall and NoStretch mode */ + hi2c->Instance->CR1 = (hi2c->Init.GeneralCallMode | hi2c->Init.NoStretchMode); + + /*---------------------------- I2Cx OAR1 Configuration ---------------------*/ + /* Configure I2Cx: Own Address1 and addressing mode */ + hi2c->Instance->OAR1 = (hi2c->Init.AddressingMode | hi2c->Init.OwnAddress1); + + /*---------------------------- I2Cx OAR2 Configuration ---------------------*/ + /* Configure I2Cx: Dual mode and Own Address2 */ + hi2c->Instance->OAR2 = (hi2c->Init.DualAddressMode | hi2c->Init.OwnAddress2); + + /* Enable the selected I2C peripheral */ + __HAL_I2C_ENABLE(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + hi2c->State = HAL_I2C_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the I2C peripheral. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_DeInit(I2C_HandleTypeDef *hi2c) +{ + /* Check the I2C handle allocation */ + if(hi2c == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the I2C Peripheral Clock */ + __HAL_I2C_DISABLE(hi2c); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_I2C_MspDeInit(hi2c); + + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->State = HAL_I2C_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; +} + +/** + * @brief I2C MSP Init. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ + __weak void HAL_I2C_MspInit(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_MspInit could be implemented in the user file + */ +} + +/** + * @brief I2C MSP DeInit + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ + __weak void HAL_I2C_MspDeInit(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2C data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2C IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2C_Master_Transmit() + (++) HAL_I2C_Master_Receive() + (++) HAL_I2C_Slave_Transmit() + (++) HAL_I2C_Slave_Receive() + (++) HAL_I2C_Mem_Write() + (++) HAL_I2C_Mem_Read() + (++) HAL_I2C_IsDeviceReady() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2C_Master_Transmit_IT() + (++) HAL_I2C_Master_Receive_IT() + (++) HAL_I2C_Slave_Transmit_IT() + (++) HAL_I2C_Slave_Receive_IT() + (++) HAL_I2C_Mem_Write_IT() + (++) HAL_I2C_Mem_Read_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2C_Master_Transmit_DMA() + (++) HAL_I2C_Master_Receive_DMA() + (++) HAL_I2C_Slave_Transmit_DMA() + (++) HAL_I2C_Slave_Receive_DMA() + (++) HAL_I2C_Mem_Write_DMA() + (++) HAL_I2C_Mem_Read_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2C_MemTxCpltCallback() + (++) HAL_I2C_MemRxCpltCallback() + (++) HAL_I2C_MasterTxCpltCallback() + (++) HAL_I2C_MasterRxCpltCallback() + (++) HAL_I2C_SlaveTxCpltCallback() + (++) HAL_I2C_SlaveRxCpltCallback() + (++) HAL_I2C_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmits in master mode an amount of data in blocking mode. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Send Slave Address */ + if(I2C_MasterRequestWrite(hi2c, DevAddress, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + while(Size > 0) + { + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Write data to DR */ + hi2c->Instance->DR = (*pData++); + Size--; + + if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (Size != 0)) + { + /* Write data to DR */ + hi2c->Instance->DR = (*pData++); + Size--; + } + } + + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives in master mode an amount of data in blocking mode. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Send Slave Address */ + if(I2C_MasterRequestRead(hi2c, DevAddress, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + if(Size == 1) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + } + else if(Size == 2) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Enable Pos */ + hi2c->Instance->CR1 |= I2C_CR1_POS; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + else + { + /* Enable Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + + while(Size > 0) + { + if(Size <= 3) + { + /* One byte */ + if(Size == 1) + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + /* Two bytes */ + else if(Size == 2) + { + /* Wait until BTF flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + /* 3 Last bytes */ + else + { + /* Wait until BTF flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + /* Wait until BTF flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + } + else + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) + { + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + } + } + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmits in slave mode an amount of data in blocking mode. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* If 10bit addressing mode is selected */ + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_10BIT) + { + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + + while(Size > 0) + { + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Write data to DR */ + hi2c->Instance->DR = (*pData++); + Size--; + + if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (Size != 0)) + { + /* Write data to DR */ + hi2c->Instance->DR = (*pData++); + Size--; + } + } + + /* Wait until AF flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear AF flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Disable Address Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in blocking mode + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + while(Size > 0) + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (Size != 0)) + { + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + } + + /* Wait until STOP flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear STOP flag */ + __HAL_I2C_CLEAR_STOPFLAG(hi2c); + + /* Disable Address Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in no-blocking mode with Interrupt + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Send Slave Address */ + if(I2C_MasterRequestWrite(hi2c, DevAddress, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable EVT, BUF and ERR interrupt */ + __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in no-blocking mode with Interrupt + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Send Slave Address */ + if(I2C_MasterRequestRead(hi2c, DevAddress, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + if(hi2c->XferCount == 1) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + } + else if(hi2c->XferCount == 2) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Enable Pos */ + hi2c->Instance->CR1 |= I2C_CR1_POS; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + else + { + /* Enable Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable EVT, BUF and ERR interrupt */ + __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in no-blocking mode with Interrupt + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable EVT, BUF and ERR interrupt */ + __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in no-blocking mode with Interrupt + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_IT(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable EVT, BUF and ERR interrupt */ + __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in master mode an amount of data in no-blocking mode with DMA + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMasterTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->DR, Size); + + /* Send Slave Address */ + if(I2C_MasterRequestWrite(hi2c, DevAddress, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Enable DMA Request */ + hi2c->Instance->CR2 |= I2C_CR2_DMAEN; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in master mode an amount of data in no-blocking mode with DMA + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Master_Receive_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMasterReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)pData, Size); + + /* Send Slave Address */ + if(I2C_MasterRequestRead(hi2c, DevAddress, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + if(Size == 1) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + } + else + { + /* Enable Last DMA bit */ + hi2c->Instance->CR2 |= I2C_CR2_LAST; + } + + /* Enable DMA Request */ + hi2c->Instance->CR2 |= I2C_CR2_DMAEN; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit in slave mode an amount of data in no-blocking mode with DMA + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Transmit_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMASlaveTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->DR, Size); + + /* Enable DMA Request */ + hi2c->Instance->CR2 |= I2C_CR2_DMAEN; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, I2C_TIMEOUT_ADDR_SLAVE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* If 7bit addressing mode is selected */ + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + else + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, I2C_TIMEOUT_ADDR_SLAVE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive in slave mode an amount of data in no-blocking mode with DMA + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Slave_Receive_DMA(I2C_HandleTypeDef *hi2c, uint8_t *pData, uint16_t Size) +{ + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMASlaveReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)pData, Size); + + /* Enable DMA Request */ + hi2c->Instance->CR2 |= I2C_CR2_DMAEN; + + /* Enable Address Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, RESET, I2C_TIMEOUT_ADDR_SLAVE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in blocking mode to a specific memory address + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_MEM_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + while(Size > 0) + { + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Write data to DR */ + hi2c->Instance->DR = (*pData++); + Size--; + + if((__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) && (Size != 0)) + { + /* Write data to DR */ + hi2c->Instance->DR = (*pData++); + Size--; + } + } + + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in blocking mode from a specific memory address + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_MEM_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + if(Size == 1) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + } + else if(Size == 2) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Enable Pos */ + hi2c->Instance->CR1 |= I2C_CR1_POS; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + else + { + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + + while(Size > 0) + { + if(Size <= 3) + { + /* One byte */ + if(Size== 1) + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + /* Two bytes */ + else if(Size == 2) + { + /* Wait until BTF flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + /* 3 Last bytes */ + else + { + /* Wait until BTF flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + /* Wait until BTF flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + } + else + { + /* Wait until RXNE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF) == SET) + { + /* Read data from DR */ + (*pData++) = hi2c->Instance->DR; + Size--; + } + } + } + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in no-blocking mode with Interrupt to a specific memory address + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_MEM_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable EVT, BUF and ERR interrupt */ + __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Read an amount of data in no-blocking mode with Interrupt from a specific memory address + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_IT(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_MEM_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + if(hi2c->XferCount == 1) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + } + else if(hi2c->XferCount == 2) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Enable Pos */ + hi2c->Instance->CR1 |= I2C_CR1_POS; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + else + { + /* Enable Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + /* Note : The I2C interrupts must be enabled after unlocking current process + to avoid the risk of I2C interrupt handle execution before current + process unlock */ + + /* Enable EVT, BUF and ERR interrupt */ + __HAL_I2C_ENABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Write an amount of data in no-blocking mode with DMA to a specific memory address + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Write_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_MEM_BUSY_TX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmatx->XferCpltCallback = I2C_DMAMemTransmitCplt; + + /* Set the DMA error callback */ + hi2c->hdmatx->XferErrorCallback = I2C_DMAError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hi2c->hdmatx, (uint32_t)pData, (uint32_t)&hi2c->Instance->DR, Size); + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryWrite(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + /* Enable DMA Request */ + hi2c->Instance->CR2 |= I2C_CR2_DMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Reads an amount of data in no-blocking mode with DMA from a specific memory address. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be read + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_Mem_Read_DMA(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size) +{ + /* Check the parameters */ + assert_param(IS_I2C_MEMADD_SIZE(MemAddSize)); + + if(hi2c->State == HAL_I2C_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_MEM_BUSY_RX; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + hi2c->pBuffPtr = pData; + hi2c->XferSize = Size; + hi2c->XferCount = Size; + + /* Set the I2C DMA transfer complete callback */ + hi2c->hdmarx->XferCpltCallback = I2C_DMAMemReceiveCplt; + + /* Set the DMA error callback */ + hi2c->hdmarx->XferErrorCallback = I2C_DMAError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hi2c->hdmarx, (uint32_t)&hi2c->Instance->DR, (uint32_t)pData, Size); + + /* Send Slave Address and Memory Address */ + if(I2C_RequestMemoryRead(hi2c, DevAddress, MemAddress, MemAddSize, I2C_TIMEOUT_FLAG) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_ERROR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + return HAL_TIMEOUT; + } + } + + if(Size == 1) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + } + else + { + /* Enable Last DMA bit */ + hi2c->Instance->CR2 |= I2C_CR2_LAST; + } + + /* Enable DMA Request */ + hi2c->Instance->CR2 |= I2C_CR2_DMAEN; + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Checks if target device is ready for communication. + * @note This function is used with Memory devices + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param Trials: Number of trials + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2C_IsDeviceReady(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Trials, uint32_t Timeout) +{ + uint32_t tickstart = 0, tmp1 = 0, tmp2 = 0, tmp3 = 0, I2C_Trials = 1; + + if(hi2c->State == HAL_I2C_STATE_READY) + { + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_BUSY; + } + + /* Process Locked */ + __HAL_LOCK(hi2c); + + /* Disable Pos */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + hi2c->State = HAL_I2C_STATE_BUSY; + hi2c->ErrorCode = HAL_I2C_ERROR_NONE; + + do + { + /* Generate Start */ + hi2c->Instance->CR1 |= I2C_CR1_START; + + /* Wait until SB flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send slave address */ + hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress); + + /* Wait until ADDR or AF flag are set */ + /* Get tick */ + tickstart = HAL_GetTick(); + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + tmp3 = hi2c->State; + while((tmp1 == RESET) && (tmp2 == RESET) && (tmp3 != HAL_I2C_STATE_TIMEOUT)) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hi2c->State = HAL_I2C_STATE_TIMEOUT; + } + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + tmp2 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + tmp3 = hi2c->State; + } + + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if the ADDR flag has been set */ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR) == SET) + { + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Clear ADDR Flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_TIMEOUT; + } + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_OK; + } + else + { + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Clear AF Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Wait until BUSY flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BUSY, SET, I2C_TIMEOUT_BUSY_FLAG) != HAL_OK) + { + return HAL_TIMEOUT; + } + + } + }while(I2C_Trials++ < Trials); + + hi2c->State = HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief This function handles I2C event interrupt request. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +void HAL_I2C_EV_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0, tmp4 = 0; + /* Master mode selected */ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_MSL) == SET) + { + /* I2C in mode Transmitter -----------------------------------------------*/ + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TRA) == SET) + { + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_BUF); + tmp3 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF); + tmp4 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_EVT); + /* TXE set and BTF reset -----------------------------------------------*/ + if((tmp1 == SET) && (tmp2 == SET) && (tmp3 == RESET)) + { + I2C_MasterTransmit_TXE(hi2c); + } + /* BTF set -------------------------------------------------------------*/ + else if((tmp3 == SET) && (tmp4 == SET)) + { + I2C_MasterTransmit_BTF(hi2c); + } + } + /* I2C in mode Receiver --------------------------------------------------*/ + else + { + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_BUF); + tmp3 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF); + tmp4 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_EVT); + /* RXNE set and BTF reset -----------------------------------------------*/ + if((tmp1 == SET) && (tmp2 == SET) && (tmp3 == RESET)) + { + I2C_MasterReceive_RXNE(hi2c); + } + /* BTF set -------------------------------------------------------------*/ + else if((tmp3 == SET) && (tmp4 == SET)) + { + I2C_MasterReceive_BTF(hi2c); + } + } + } + /* Slave mode selected */ + else + { + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ADDR); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, (I2C_IT_EVT)); + tmp3 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_STOPF); + tmp4 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TRA); + /* ADDR set --------------------------------------------------------------*/ + if((tmp1 == SET) && (tmp2 == SET)) + { + I2C_Slave_ADDR(hi2c); + } + /* STOPF set --------------------------------------------------------------*/ + else if((tmp3 == SET) && (tmp2 == SET)) + { + I2C_Slave_STOPF(hi2c); + } + /* I2C in mode Transmitter -----------------------------------------------*/ + else if(tmp4 == SET) + { + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_TXE); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_BUF); + tmp3 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF); + tmp4 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_EVT); + /* TXE set and BTF reset -----------------------------------------------*/ + if((tmp1 == SET) && (tmp2 == SET) && (tmp3 == RESET)) + { + I2C_SlaveTransmit_TXE(hi2c); + } + /* BTF set -------------------------------------------------------------*/ + else if((tmp3 == SET) && (tmp4 == SET)) + { + I2C_SlaveTransmit_BTF(hi2c); + } + } + /* I2C in mode Receiver --------------------------------------------------*/ + else + { + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_RXNE); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_BUF); + tmp3 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BTF); + tmp4 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_EVT); + /* RXNE set and BTF reset ----------------------------------------------*/ + if((tmp1 == SET) && (tmp2 == SET) && (tmp3 == RESET)) + { + I2C_SlaveReceive_RXNE(hi2c); + } + /* BTF set -------------------------------------------------------------*/ + else if((tmp3 == SET) && (tmp4 == SET)) + { + I2C_SlaveReceive_BTF(hi2c); + } + } + } +} + +/** + * @brief This function handles I2C error interrupt request. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +void HAL_I2C_ER_IRQHandler(I2C_HandleTypeDef *hi2c) +{ + uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0; + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_BERR); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_ERR); + /* I2C Bus error interrupt occurred ----------------------------------------*/ + if((tmp1 == SET) && (tmp2 == SET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_BERR; + + /* Clear BERR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR); + } + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_ARLO); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_ERR); + /* I2C Arbitration Loss error interrupt occurred ---------------------------*/ + if((tmp1 == SET) && (tmp2 == SET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO; + + /* Clear ARLO flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO); + } + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_ERR); + /* I2C Acknowledge failure error interrupt occurred ------------------------*/ + if((tmp1 == SET) && (tmp2 == SET)) + { + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_MSL); + tmp2 = hi2c->XferCount; + tmp3 = hi2c->State; + if((tmp1 == RESET) && (tmp2 == 0) && (tmp3 == HAL_I2C_STATE_BUSY_TX)) + { + I2C_Slave_AF(hi2c); + } + else + { + hi2c->ErrorCode |= HAL_I2C_ERROR_AF; + /* Clear AF flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + } + } + + tmp1 = __HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_OVR); + tmp2 = __HAL_I2C_GET_IT_SOURCE(hi2c, I2C_IT_ERR); + /* I2C Over-Run/Under-Run interrupt occurred -------------------------------*/ + if((tmp1 == SET) && (tmp2 == SET)) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_OVR; + /* Clear OVR flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR); + } + + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + hi2c->State = HAL_I2C_STATE_READY; + + /* Disable Pos bit in I2C CR1 when error occurred in Master/Mem Receive IT Process */ + hi2c->Instance->CR1 &= ~I2C_CR1_POS; + + HAL_I2C_ErrorCallback(hi2c); + } +} + +/** + * @brief Master Tx Transfer completed callbacks. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ + __weak void HAL_I2C_MasterTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Master Rx Transfer completed callbacks. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ +__weak void HAL_I2C_MasterRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_TxCpltCallback could be implemented in the user file + */ +} + +/** @brief Slave Tx Transfer completed callbacks. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ + __weak void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Slave Rx Transfer completed callbacks. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ +__weak void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Tx Transfer completed callbacks. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ + __weak void HAL_I2C_MemTxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Memory Rx Transfer completed callbacks. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ +__weak void HAL_I2C_MemRxCpltCallback(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief I2C error callbacks. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval None + */ + __weak void HAL_I2C_ErrorCallback(I2C_HandleTypeDef *hi2c) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2C_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2C_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the I2C state. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL state + */ +HAL_I2C_StateTypeDef HAL_I2C_GetState(I2C_HandleTypeDef *hi2c) +{ + return hi2c->State; +} + +/** + * @brief Return the I2C error code + * @param hi2c : pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2C. +* @retval I2C Error Code +*/ +uint32_t HAL_I2C_GetError(I2C_HandleTypeDef *hi2c) +{ + return hi2c->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Handle TXE flag for Master + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_MasterTransmit_TXE(I2C_HandleTypeDef *hi2c) +{ + /* Write data to DR */ + hi2c->Instance->DR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + + if(hi2c->XferCount == 0) + { + /* Disable BUF interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF); + } + + return HAL_OK; +} + +/** + * @brief Handle BTF flag for Master transmitter + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_MasterTransmit_BTF(I2C_HandleTypeDef *hi2c) +{ + if(hi2c->XferCount != 0) + { + /* Write data to DR */ + hi2c->Instance->DR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + } + else + { + /* Disable EVT, BUF and ERR interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + if(hi2c->State == HAL_I2C_STATE_MEM_BUSY_TX) + { + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_MemTxCpltCallback(hi2c); + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_MasterTxCpltCallback(hi2c); + } + } + return HAL_OK; +} + +/** + * @brief Handle RXNE flag for Master + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_MasterReceive_RXNE(I2C_HandleTypeDef *hi2c) +{ + uint32_t tmp = 0; + + tmp = hi2c->XferCount; + if(tmp > 3) + { + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + } + else if((tmp == 2) || (tmp == 3)) + { + /* Disable BUF interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_BUF); + } + else + { + /* Disable EVT, BUF and ERR interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + + if(hi2c->State == HAL_I2C_STATE_MEM_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_MemRxCpltCallback(hi2c); + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_MasterRxCpltCallback(hi2c); + } + } + return HAL_OK; +} + +/** + * @brief Handle BTF flag for Master receiver + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_MasterReceive_BTF(I2C_HandleTypeDef *hi2c) +{ + if(hi2c->XferCount == 3) + { + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + } + else if(hi2c->XferCount == 2) + { + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + + /* Disable EVT and ERR interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_ERR); + + if(hi2c->State == HAL_I2C_STATE_MEM_BUSY_RX) + { + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_MemRxCpltCallback(hi2c); + } + else + { + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_MasterRxCpltCallback(hi2c); + } + } + else + { + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + } + return HAL_OK; +} + +/** + * @brief Handle TXE flag for Slave + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_SlaveTransmit_TXE(I2C_HandleTypeDef *hi2c) +{ + if(hi2c->XferCount != 0) + { + /* Write data to DR */ + hi2c->Instance->DR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + } + return HAL_OK; +} + +/** + * @brief Handle BTF flag for Slave transmitter + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_SlaveTransmit_BTF(I2C_HandleTypeDef *hi2c) +{ + if(hi2c->XferCount != 0) + { + /* Write data to DR */ + hi2c->Instance->DR = (*hi2c->pBuffPtr++); + hi2c->XferCount--; + } + return HAL_OK; +} + +/** + * @brief Handle RXNE flag for Slave + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_SlaveReceive_RXNE(I2C_HandleTypeDef *hi2c) +{ + if(hi2c->XferCount != 0) + { + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + } + return HAL_OK; +} + +/** + * @brief Handle BTF flag for Slave receiver + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_SlaveReceive_BTF(I2C_HandleTypeDef *hi2c) +{ + if(hi2c->XferCount != 0) + { + /* Read data from DR */ + (*hi2c->pBuffPtr++) = hi2c->Instance->DR; + hi2c->XferCount--; + } + return HAL_OK; +} + +/** + * @brief Handle ADD flag for Slave + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_ADDR(I2C_HandleTypeDef *hi2c) +{ + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + return HAL_OK; +} + +/** + * @brief Handle STOPF flag for Slave + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_STOPF(I2C_HandleTypeDef *hi2c) +{ + /* Disable EVT, BUF and ERR interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + /* Clear STOPF flag */ + __HAL_I2C_CLEAR_STOPFLAG(hi2c); + + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_SlaveRxCpltCallback(hi2c); + + return HAL_OK; +} + +/** + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_Slave_AF(I2C_HandleTypeDef *hi2c) +{ + /* Disable EVT, BUF and ERR interrupt */ + __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR); + + /* Clear AF flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + hi2c->State = HAL_I2C_STATE_READY; + + HAL_I2C_SlaveTxCpltCallback(hi2c); + + return HAL_OK; +} + +/** + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_MasterRequestWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout) +{ + /* Generate Start */ + hi2c->Instance->CR1 |= I2C_CR1_START; + + /* Wait until SB flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) + { + /* Send slave address */ + hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress); + } + else + { + /* Send header of slave address */ + hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(DevAddress); + + /* Wait until ADD10 flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADD10, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Send slave address */ + hi2c->Instance->DR = I2C_10BIT_ADDRESS(DevAddress); + } + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Master sends target device address for read request. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_MasterRequestRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint32_t Timeout) +{ + /* Enable Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Generate Start */ + hi2c->Instance->CR1 |= I2C_CR1_START; + + /* Wait until SB flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(hi2c->Init.AddressingMode == I2C_ADDRESSINGMODE_7BIT) + { + /* Send slave address */ + hi2c->Instance->DR = I2C_7BIT_ADD_READ(DevAddress); + } + else + { + /* Send header of slave address */ + hi2c->Instance->DR = I2C_10BIT_HEADER_WRITE(DevAddress); + + /* Wait until ADD10 flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADD10, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Send slave address */ + hi2c->Instance->DR = I2C_10BIT_ADDRESS(DevAddress); + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Generate Restart */ + hi2c->Instance->CR1 |= I2C_CR1_START; + + /* Wait until SB flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send header of slave address */ + hi2c->Instance->DR = I2C_10BIT_HEADER_READ(DevAddress); + } + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for write request. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryWrite(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout) +{ + /* Generate Start */ + hi2c->Instance->CR1 |= I2C_CR1_START; + + /* Wait until SB flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send slave address */ + hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress); + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* If Memory address size is 8Bit */ + if(MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->DR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress); + } + + return HAL_OK; +} + +/** + * @brief Master sends target device address followed by internal memory address for read request. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param DevAddress: Target device address + * @param MemAddress: Internal memory address + * @param MemAddSize: Size of internal memory address + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_RequestMemoryRead(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint32_t Timeout) +{ + /* Enable Acknowledge */ + hi2c->Instance->CR1 |= I2C_CR1_ACK; + + /* Generate Start */ + hi2c->Instance->CR1 |= I2C_CR1_START; + + /* Wait until SB flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send slave address */ + hi2c->Instance->DR = I2C_7BIT_ADD_WRITE(DevAddress); + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + /* Clear ADDR flag */ + __HAL_I2C_CLEAR_ADDRFLAG(hi2c); + + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* If Memory address size is 8Bit */ + if(MemAddSize == I2C_MEMADD_SIZE_8BIT) + { + /* Send Memory Address */ + hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress); + } + /* If Memory address size is 16Bit */ + else + { + /* Send MSB of Memory Address */ + hi2c->Instance->DR = I2C_MEM_ADD_MSB(MemAddress); + + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send LSB of Memory Address */ + hi2c->Instance->DR = I2C_MEM_ADD_LSB(MemAddress); + } + + /* Wait until TXE flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Generate Restart */ + hi2c->Instance->CR1 |= I2C_CR1_START; + + /* Wait until SB flag is set */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_SB, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send slave address */ + hi2c->Instance->DR = I2C_7BIT_ADD_READ(DevAddress); + + /* Wait until ADDR flag is set */ + if(I2C_WaitOnMasterAddressFlagUntilTimeout(hi2c, I2C_FLAG_ADDR, Timeout) != HAL_OK) + { + if(hi2c->ErrorCode == HAL_I2C_ERROR_AF) + { + return HAL_ERROR; + } + else + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief DMA I2C master transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAMasterTransmitCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Wait until BTF flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, I2C_TIMEOUT_FLAG) != HAL_OK) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Disable DMA Request */ + hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN; + + hi2c->XferCount = 0; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + HAL_I2C_ErrorCallback(hi2c); + } + else + { + HAL_I2C_MasterTxCpltCallback(hi2c); + } +} + +/** + * @brief DMA I2C slave transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMASlaveTransmitCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Wait until AF flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_AF, RESET, I2C_TIMEOUT_FLAG) != HAL_OK) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + } + + /* Clear AF flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + /* Disable Address Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Disable DMA Request */ + hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN; + + hi2c->XferCount = 0; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + HAL_I2C_ErrorCallback(hi2c); + } + else + { + HAL_I2C_SlaveTxCpltCallback(hi2c); + } +} + +/** + * @brief DMA I2C master receive process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAMasterReceiveCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Disable Last DMA */ + hi2c->Instance->CR2 &= ~I2C_CR2_LAST; + + /* Disable DMA Request */ + hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN; + + hi2c->XferCount = 0; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + HAL_I2C_ErrorCallback(hi2c); + } + else + { + HAL_I2C_MasterRxCpltCallback(hi2c); + } +} + +/** + * @brief DMA I2C slave receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMASlaveReceiveCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Wait until STOPF flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_STOPF, RESET, I2C_TIMEOUT_FLAG) != HAL_OK) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + } + + /* Clear STOPF flag */ + __HAL_I2C_CLEAR_STOPFLAG(hi2c); + + /* Disable Address Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Disable DMA Request */ + hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN; + + hi2c->XferCount = 0; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + HAL_I2C_ErrorCallback(hi2c); + } + else + { + HAL_I2C_SlaveRxCpltCallback(hi2c); + } +} + +/** + * @brief DMA I2C Memory Write process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAMemTransmitCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Wait until BTF flag is reset */ + if(I2C_WaitOnFlagUntilTimeout(hi2c, I2C_FLAG_BTF, RESET, I2C_TIMEOUT_FLAG) != HAL_OK) + { + hi2c->ErrorCode |= HAL_I2C_ERROR_TIMEOUT; + } + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Disable DMA Request */ + hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN; + + hi2c->XferCount = 0; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + HAL_I2C_ErrorCallback(hi2c); + } + else + { + HAL_I2C_MemTxCpltCallback(hi2c); + } +} + +/** + * @brief DMA I2C Memory Read process complete callback + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAMemReceiveCplt(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Disable Last DMA */ + hi2c->Instance->CR2 &= ~I2C_CR2_LAST; + + /* Disable DMA Request */ + hi2c->Instance->CR2 &= ~I2C_CR2_DMAEN; + + hi2c->XferCount = 0; + + hi2c->State = HAL_I2C_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hi2c->ErrorCode != HAL_I2C_ERROR_NONE) + { + HAL_I2C_ErrorCallback(hi2c); + } + else + { + HAL_I2C_MemRxCpltCallback(hi2c); + } +} + +/** + * @brief DMA I2C communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void I2C_DMAError(DMA_HandleTypeDef *hdma) +{ + I2C_HandleTypeDef* hi2c = (I2C_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Disable Acknowledge */ + hi2c->Instance->CR1 &= ~I2C_CR1_ACK; + + hi2c->XferCount = 0; + + hi2c->State = HAL_I2C_STATE_READY; + + hi2c->ErrorCode |= HAL_I2C_ERROR_DMA; + + HAL_I2C_ErrorCallback(hi2c); +} + +/** + * @brief This function handles I2C Communication Timeout. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param Flag: specifies the I2C flag to check. + * @param Status: The new Flag status (SET or RESET). + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_I2C_GET_FLAG(hi2c, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hi2c->State= HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_I2C_GET_FLAG(hi2c, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hi2c->State= HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** + * @brief This function handles I2C Communication Timeout for Master addressing phase. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for I2C module + * @param Flag: specifies the I2C flag to check. + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef I2C_WaitOnMasterAddressFlagUntilTimeout(I2C_HandleTypeDef *hi2c, uint32_t Flag, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_I2C_GET_FLAG(hi2c, Flag) == RESET) + { + if(__HAL_I2C_GET_FLAG(hi2c, I2C_FLAG_AF) == SET) + { + /* Generate Stop */ + hi2c->Instance->CR1 |= I2C_CR1_STOP; + + /* Clear AF Flag */ + __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF); + + hi2c->ErrorCode = HAL_I2C_ERROR_AF; + hi2c->State= HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_ERROR; + } + + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hi2c->State= HAL_I2C_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2c); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_I2C_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2c_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2c_ex.c new file mode 100644 index 0000000..f0427b4 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2c_ex.c @@ -0,0 +1,204 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_i2c_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief I2C Extension HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of I2C extension peripheral: + * + Extension features functions + * + @verbatim + ============================================================================== + ##### I2C peripheral extension features ##### + ============================================================================== + + [..] Comparing to other previous devices, the I2C interface for STM32F427xx/437xx/ + 429xx/439xx devices contains the following additional features : + + (+) Possibility to disable or enable Analog Noise Filter + (+) Use of a configured Digital Noise Filter + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to configure Noise Filter + (#) Configure I2C Analog noise filter using the function HAL_I2C_AnalogFilter_Config() + (#) Configure I2C Digital noise filter using the function HAL_I2C_DigitalFilter_Config() + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup I2CEx I2CEx + * @brief I2C HAL module driver + * @{ + */ + +#ifdef HAL_I2C_MODULE_ENABLED + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup I2CEx_Exported_Functions I2C Exported Functions + * @{ + */ + + +/** @defgroup I2CEx_Exported_Functions_Group1 Extension features functions + * @brief Extension features functions + * +@verbatim + =============================================================================== + ##### Extension features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure Noise Filters + +@endverbatim + * @{ + */ + +/** + * @brief Configures I2C Analog noise filter. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param AnalogFilter: new state of the Analog filter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter)); + + tmp = hi2c->State; + if((tmp == HAL_I2C_STATE_BUSY) || (tmp == HAL_I2C_STATE_BUSY_TX) || (tmp == HAL_I2C_STATE_BUSY_RX)) + { + return HAL_BUSY; + } + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Reset I2Cx ANOFF bit */ + hi2c->Instance->FLTR &= ~(I2C_FLTR_ANOFF); + + /* Disable the analog filter */ + hi2c->Instance->FLTR |= AnalogFilter; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Configures I2C Digital noise filter. + * @param hi2c: pointer to a I2C_HandleTypeDef structure that contains + * the configuration information for the specified I2Cx peripheral. + * @param DigitalFilter: Coefficient of digital noise filter between 0x00 and 0x0F. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter) +{ + uint16_t tmpreg = 0; + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance)); + assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter)); + + tmp = hi2c->State; + if((tmp == HAL_I2C_STATE_BUSY) || (tmp == HAL_I2C_STATE_BUSY_TX) || (tmp == HAL_I2C_STATE_BUSY_RX)) + { + return HAL_BUSY; + } + + hi2c->State = HAL_I2C_STATE_BUSY; + + /* Disable the selected I2C peripheral */ + __HAL_I2C_DISABLE(hi2c); + + /* Get the old register value */ + tmpreg = hi2c->Instance->FLTR; + + /* Reset I2Cx DNF bit [3:0] */ + tmpreg &= ~(I2C_FLTR_DNF); + + /* Set I2Cx DNF coefficient */ + tmpreg |= DigitalFilter; + + /* Store the new register value */ + hi2c->Instance->FLTR = tmpreg; + + __HAL_I2C_ENABLE(hi2c); + + hi2c->State = HAL_I2C_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F427xx || STM32F429xx || STM32F437xx || STM32F439xx || STM32F401xC || STM32F401xE || STM32F446xx */ + +#endif /* HAL_I2C_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s.c new file mode 100644 index 0000000..63e4288 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s.c @@ -0,0 +1,1408 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_i2s.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief I2S HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Integrated Interchip Sound (I2S) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The I2S HAL driver can be used as follow: + + (#) Declare a I2S_HandleTypeDef handle structure. + (#) Initialize the I2S low level resources by implement the HAL_I2S_MspInit() API: + (##) Enable the SPIx interface clock. + (##) I2S pins configuration: + (+++) Enable the clock for the I2S GPIOs. + (+++) Configure these I2S pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_I2S_Transmit_IT() + and HAL_I2S_Receive_IT() APIs). + (+++) Configure the I2Sx interrupt priority. + (+++) Enable the NVIC I2S IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_I2S_Transmit_DMA() + and HAL_I2S_Receive_DMA() APIs: + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the I2S DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the + DMA Tx/Rx Stream. + + (#) Program the Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity + using HAL_I2S_Init() function. + + -@- The specific I2S interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __I2S_ENABLE_IT() and __I2S_DISABLE_IT() inside the transmit and receive process. + -@- Make sure that either: + (+@) I2S PLL is configured or + (+@) External clock source is configured after setting correctly + the define constant EXTERNAL_CLOCK_VALUE in the stm32f4xx_hal_conf.h file. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_I2S_Transmit() + (+) Receive an amount of data in blocking mode using HAL_I2S_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_I2S_Transmit_IT() + (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback + (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_I2S_Receive_IT() + (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback + (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxCpltCallback + (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2S_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_I2S_Transmit_DMA() + (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback + (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_I2S_Receive_DMA() + (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback + (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxCpltCallback + (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2S_ErrorCallback + (+) Pause the DMA Transfer using HAL_I2S_DMAPause() + (+) Resume the DMA Transfer using HAL_I2S_DMAResume() + (+) Stop the DMA Transfer using HAL_I2S_DMAStop() + + *** I2S HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in USART HAL driver. + + (+) __HAL_I2S_ENABLE: Enable the specified SPI peripheral (in I2S mode) + (+) __HAL_I2S_DISABLE: Disable the specified SPI peripheral (in I2S mode) + (+) __HAL_I2S_ENABLE_IT : Enable the specified I2S interrupts + (+) __HAL_I2S_DISABLE_IT : Disable the specified I2S interrupts + (+) __HAL_I2S_GET_FLAG: Check whether the specified I2S flag is set or not + + [..] + (@) You can refer to the I2S HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup I2S I2S + * @brief I2S HAL module driver + * @{ + */ + +#ifdef HAL_I2S_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup I2S_Private_Functions + * @{ + */ + +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup I2S_Exported_Functions I2S Exported Functions + * @{ + */ + +/** @defgroup I2S_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the I2Sx peripheral in simplex mode: + + (+) User must Implement HAL_I2S_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_I2S_Init() to configure the selected device with + the selected configuration: + (++) Mode + (++) Standard + (++) Data Format + (++) MCLK Output + (++) Audio frequency + (++) Polarity + + (+) Call the function HAL_I2S_DeInit() to restore the default configuration + of the selected I2Sx peripheral. +@endverbatim + * @{ + */ + +/** + * @brief Initializes the I2S according to the specified parameters + * in the I2S_InitTypeDef and create the associated handle. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s) +{ + uint32_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1; + uint32_t tmp = 0, i2sclk = 0; + + /* Check the I2S handle allocation */ + if(hi2s == NULL) + { + return HAL_ERROR; + } + + /* Check the I2S parameters */ + assert_param(IS_I2S_ALL_INSTANCE(hi2s->Instance)); + assert_param(IS_I2S_MODE(hi2s->Init.Mode)); + assert_param(IS_I2S_STANDARD(hi2s->Init.Standard)); + assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat)); + assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput)); + assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq)); + assert_param(IS_I2S_CPOL(hi2s->Init.CPOL)); + assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource)); + + if(hi2s->State == HAL_I2S_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2s->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_I2S_MspInit(hi2s); + } + + hi2s->State = HAL_I2S_STATE_BUSY; + + /*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/ + /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ + hi2s->Instance->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \ + SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ + SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD); + hi2s->Instance->I2SPR = 0x0002; + + /* Get the I2SCFGR register value */ + tmpreg = hi2s->Instance->I2SCFGR; + + /* If the default frequency value has to be written, reinitialize i2sdiv and i2sodd */ + /* If the requested audio frequency is not the default, compute the prescaler */ + if(hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT) + { + /* Check the frame length (For the Prescaler computing) *******************/ + if(hi2s->Init.DataFormat != I2S_DATAFORMAT_16B) + { + /* Packet length is 32 bits */ + packetlength = 2; + } + + /* Get I2S source Clock frequency ****************************************/ + /* If an external I2S clock has to be used, the specific define should be set + in the project configuration or in the stm32f4xx_conf.h file */ + i2sclk = I2S_GetInputClock(hi2s); + + /* Compute the Real divider depending on the MCLK output state, with a floating point */ + if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE) + { + /* MCLK output is enabled */ + tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5); + } + else + { + /* MCLK output is disabled */ + tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5); + } + + /* Remove the flatting point */ + tmp = tmp / 10; + + /* Check the parity of the divider */ + i2sodd = (uint32_t)(tmp & (uint32_t)1); + + /* Compute the i2sdiv prescaler */ + i2sdiv = (uint32_t)((tmp - i2sodd) / 2); + + /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */ + i2sodd = (uint32_t) (i2sodd << 8); + } + + /* Test if the divider is 1 or 0 or greater than 0xFF */ + if((i2sdiv < 2) || (i2sdiv > 0xFF)) + { + /* Set the default values */ + i2sdiv = 2; + i2sodd = 0; + } + + /* Write to SPIx I2SPR register the computed value */ + hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput)); + + /* Configure the I2S with the I2S_InitStruct values */ + tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL); + +#if defined(SPI_I2SCFGR_ASTRTEN) + if (hi2s->Init.Standard == I2S_STANDARD_PCM_SHORT) + { + /* Write to SPIx I2SCFGR */ + hi2s->Instance->I2SCFGR = tmpreg | SPI_I2SCFGR_ASTRTEN; + } + else + { + /* Write to SPIx I2SCFGR */ + hi2s->Instance->I2SCFGR = tmpreg; + } +#else + /* Write to SPIx I2SCFGR */ + hi2s->Instance->I2SCFGR = tmpreg; +#endif + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State= HAL_I2S_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the I2S peripheral + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DeInit(I2S_HandleTypeDef *hi2s) +{ + /* Check the I2S handle allocation */ + if(hi2s == NULL) + { + return HAL_ERROR; + } + + hi2s->State = HAL_I2S_STATE_BUSY; + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_I2S_MspDeInit(hi2s); + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State = HAL_I2S_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief I2S MSP Init + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_MspInit(I2S_HandleTypeDef *hi2s) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_MspInit could be implemented in the user file + */ +} + +/** + * @brief I2S MSP DeInit + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_MspDeInit(I2S_HandleTypeDef *hi2s) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_MspDeInit could be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup I2S_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2S data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2S_Transmit() + (++) HAL_I2S_Receive() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2S_Transmit_IT() + (++) HAL_I2S_Receive_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2S_Transmit_DMA() + (++) HAL_I2S_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2S_TxCpltCallback() + (++) HAL_I2S_RxCpltCallback() + (++) HAL_I2S_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmit an amount of data in blocking mode + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @param Timeout: Timeout duration + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Transmit(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tmp1 = 0, tmp2 = 0; + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + if((tmp1 == I2S_DATAFORMAT_24B)|| \ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = Size*2; + hi2s->TxXferCount = Size*2; + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_TX; + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + while(hi2s->TxXferCount > 0) + { + hi2s->Instance->DR = (*pData++); + hi2s->TxXferCount--; + /* Wait until TXE flag is set */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + } + /* Check if Slave mode is selected */ + if(((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_SLAVE_TX) || ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_SLAVE_RX)) + { + /* Wait until Busy flag is reset */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_BSY, SET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + } + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @param Timeout: Timeout duration + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @note In I2S Master Receiver mode, just after enabling the peripheral the clock will be generate + * in continuous way and as the I2S is not disabled at the end of the I2S transaction. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Receive(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tmp1 = 0, tmp2 = 0; + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + if((tmp1 == I2S_DATAFORMAT_24B)|| \ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->RxXferSize = Size*2; + hi2s->RxXferCount = Size*2; + } + else + { + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_RX; + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Check if Master Receiver mode is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read + access to the SPI_SR register. */ + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + } + + /* Receive data */ + while(hi2s->RxXferCount > 0) + { + /* Wait until RXNE flag is set */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*pData++) = hi2s->Instance->DR; + hi2s->RxXferCount--; + } + + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Transmit_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + uint32_t tmp1 = 0, tmp2 = 0; + if(hi2s->State == HAL_I2S_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + hi2s->pTxBuffPtr = pData; + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + if((tmp1 == I2S_DATAFORMAT_24B)|| \ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = Size*2; + hi2s->TxXferCount = Size*2; + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_TX; + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + + /* Enable TXE and ERR interrupt */ + __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @note It is recommended to use DMA for the I2S receiver to avoid de-synchronisation + * between Master and Slave otherwise the I2S interrupt should be optimized. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Receive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + uint32_t tmp1 = 0, tmp2 = 0; + if(hi2s->State == HAL_I2S_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + hi2s->pRxBuffPtr = pData; + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + if((tmp1 == I2S_DATAFORMAT_24B)||\ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->RxXferSize = Size*2; + hi2s->RxXferCount = Size*2; + } + else + { + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_RX; + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + + /* Enable TXE and ERR interrupt */ + __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit an amount of data in non-blocking mode with DMA + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to the Transmit data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Transmit_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0, tmp2 = 0; + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + hi2s->pTxBuffPtr = pData; + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + if((tmp1 == I2S_DATAFORMAT_24B)|| \ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = Size*2; + hi2s->TxXferCount = Size*2; + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_TX; + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + + /* Set the I2S Tx DMA Half transfer complete callback */ + hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt; + + /* Set the I2S Tx DMA transfer complete callback */ + hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt; + + /* Set the DMA error callback */ + hi2s->hdmatx->XferErrorCallback = I2S_DMAError; + + /* Enable the Tx DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Check if the I2S Tx request is already enabled */ + if((hi2s->Instance->CR2 & SPI_CR2_TXDMAEN) != SPI_CR2_TXDMAEN) + { + /* Enable Tx DMA Request */ + hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with DMA + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pData: a 16-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Receive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0, tmp2 = 0; + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + hi2s->pRxBuffPtr = pData; + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + if((tmp1 == I2S_DATAFORMAT_24B)|| \ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->RxXferSize = Size*2; + hi2s->RxXferCount = Size*2; + } + else + { + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_RX; + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + + /* Set the I2S Rx DMA Half transfer complete callback */ + hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt; + + /* Set the I2S Rx DMA transfer complete callback */ + hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt; + + /* Set the DMA error callback */ + hi2s->hdmarx->XferErrorCallback = I2S_DMAError; + + /* Check if Master Receiver mode is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Clear the Overrun Flag by a read operation to the SPI_DR register followed by a read + access to the SPI_SR register. */ + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + } + + /* Enable the Rx DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Check if the I2S Rx request is already enabled */ + if((hi2s->Instance->CR2 &SPI_CR2_RXDMAEN) != SPI_CR2_RXDMAEN) + { + /* Enable Rx DMA Request */ + hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* Disable the I2S DMA Tx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* Disable the I2S DMA Rx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX)) + { + /* Disable the I2S DMA Tx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + } + else + { + /* Disable the I2S DMA Rx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief Resumes the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* Enable the I2S DMA Tx request */ + hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN; + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* Enable the I2S DMA Rx request */ + hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN; + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX)) + { + /* Enable the I2S DMA Tx request */ + hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN; + } + else + { + /* Enable the I2S DMA Rx request */ + hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN; + } + } + + /* If the I2S peripheral is still not enabled, enable it */ + if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief Resumes the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + /* Disable the I2S Tx/Rx DMA requests */ + hi2s->Instance->CR2 &= ~SPI_CR2_TXDMAEN; + hi2s->Instance->CR2 &= ~SPI_CR2_RXDMAEN; + + /* Abort the I2S DMA Stream tx */ + if(hi2s->hdmatx != NULL) + { + HAL_DMA_Abort(hi2s->hdmatx); + } + /* Abort the I2S DMA Stream rx */ + if(hi2s->hdmarx != NULL) + { + HAL_DMA_Abort(hi2s->hdmarx); + } + + /* Disable I2S peripheral */ + __HAL_I2S_DISABLE(hi2s); + + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief This function handles I2S interrupt request. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ +__weak void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE); + /* I2S in mode Receiver ------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + I2S_Receive_IT(hi2s); + } + + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR); + /* I2S Overrun error interrupt occurred ---------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + hi2s->ErrorCode |= HAL_I2S_ERROR_OVR; + } + } + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE); + /* I2S in mode Transmitter -----------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + I2S_Transmit_IT(hi2s); + } + + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR); + /* I2S Underrun error interrupt occurred --------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_I2S_CLEAR_UDRFLAG(hi2s); + hi2s->ErrorCode |= HAL_I2S_ERROR_UDR; + } + } + + /* Call the Error call Back in case of Errors */ + if(hi2s->ErrorCode != HAL_I2S_ERROR_NONE) + { + /* Set the I2S state ready to be able to start again the process */ + hi2s->State= HAL_I2S_STATE_READY; + HAL_I2S_ErrorCallback(hi2s); + } +} + +/** + * @brief Tx Transfer Half completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Transfer completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer half completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ +__weak void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ +__weak void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief I2S error callbacks + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ + __weak void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_I2S_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup I2S_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State functions +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the I2S state + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL state + */ +HAL_I2S_StateTypeDef HAL_I2S_GetState(I2S_HandleTypeDef *hi2s) +{ + return hi2s->State; +} + +/** + * @brief Return the I2S error code + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval I2S Error Code + */ +uint32_t HAL_I2S_GetError(I2S_HandleTypeDef *hi2s) +{ + return hi2s->ErrorCode; +} +/** + * @} + */ + +/** + * @brief DMA I2S transmit process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ + void I2S_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_I2S_TxHalfCpltCallback(hi2s); +} + +/** + * @brief DMA I2S receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void I2S_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_I2S_RxHalfCpltCallback(hi2s); +} + +/** + * @brief DMA I2S communication error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void I2S_DMAError(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + hi2s->TxXferCount = 0; + hi2s->RxXferCount = 0; + + hi2s->State= HAL_I2S_STATE_READY; + + hi2s->ErrorCode |= HAL_I2S_ERROR_DMA; + HAL_I2S_ErrorCallback(hi2s); +} + +/** + * @brief Transmit an amount of data in non-blocking mode with Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef I2S_Transmit_IT(I2S_HandleTypeDef *hi2s) +{ + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* Process Locked */ + __HAL_LOCK(hi2s); + + /* Transmit data */ + hi2s->Instance->DR = (*hi2s->pTxBuffPtr++); + + hi2s->TxXferCount--; + + if(hi2s->TxXferCount == 0) + { + /* Disable TXE and ERR interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); + + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + HAL_I2S_TxCpltCallback(hi2s); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + } + + return HAL_OK; + } + + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non-blocking mode with Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef I2S_Receive_IT(I2S_HandleTypeDef *hi2s) +{ + if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* Process Locked */ + __HAL_LOCK(hi2s); + + /* Receive data */ + (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR; + + hi2s->RxXferCount--; + + /* Check if Master Receiver mode is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read + access to the SPI_SR register. */ + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + } + + if(hi2s->RxXferCount == 0) + { + /* Disable RXNE and ERR interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_RXNE | I2S_IT_ERR); + + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + HAL_I2S_RxCpltCallback(hi2s); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief This function handles I2S Communication Timeout. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param Flag: Flag checked + * @param Status: Value of the flag expected + * @param Timeout: Duration of the timeout + * @retval HAL status + */ +HAL_StatusTypeDef I2S_WaitFlagStateUntilTimeout(I2S_HandleTypeDef *hi2s, uint32_t Flag, uint32_t Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_I2S_GET_FLAG(hi2s, Flag) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Set the I2S State ready */ + hi2s->State= HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_I2S_GET_FLAG(hi2s, Flag) != RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Set the I2S State ready */ + hi2s->State= HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_I2S_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s_ex.c new file mode 100644 index 0000000..3296c13 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_i2s_ex.c @@ -0,0 +1,1479 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_i2s_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief I2S HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of I2S extension peripheral: + * + Extension features Functions + * + @verbatim + ============================================================================== + ##### I2S Extension features ##### + ============================================================================== + [..] + (#) In I2S full duplex mode, each SPI peripheral is able to manage sending and receiving + data simultaneously using two data lines. Each SPI peripheral has an extended block + called I2Sxext (i.e I2S2ext for SPI2 and I2S3ext for SPI3). + (#) The extension block is not a full SPI IP, it is used only as I2S slave to + implement full duplex mode. The extension block uses the same clock sources + as its master. + + (#) Both I2Sx and I2Sx_ext can be configured as transmitters or receivers. + + [..] + (@) Only I2Sx can deliver SCK and WS to I2Sx_ext in full duplex mode, where + I2Sx can be I2S2 or I2S3. + + ##### How to use this driver ##### + =============================================================================== + [..] + Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send and receive in the same time an amount of data in blocking mode using HAL_I2S_TransmitReceive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send and receive in the same time an amount of data in non blocking mode using HAL_I2S_TransmitReceive_IT() + (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback + (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxCpltCallback + (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback + (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxCpltCallback + (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2S_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send and receive an amount of data in non blocking mode (DMA) using HAL_I2S_TransmitReceive_DMA() + (+) At transmission end of half transfer HAL_I2S_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxHalfCpltCallback + (+) At transmission end of transfer HAL_I2S_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_TxCpltCallback + (+) At reception end of half transfer HAL_I2S_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxHalfCpltCallback + (+) At reception end of transfer HAL_I2S_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_I2S_RxCpltCallback + (+) In case of transfer Error, HAL_I2S_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_I2S_ErrorCallback + (+) Pause the DMA Transfer using HAL_I2S_DMAPause() + (+) Resume the DMA Transfer using HAL_I2S_DMAResume() + (+) Stop the DMA Transfer using HAL_I2S_DMAStop() + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup I2SEx I2SEx + * @brief I2S HAL module driver + * @{ + */ + +#ifdef HAL_I2S_MODULE_ENABLED + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup I2SEx_Private_Functions + * @{ + */ +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup I2SEx_Exported_Functions I2S Exported Functions + * @{ + */ + +/** @defgroup I2SEx_Group1 Extension features functions + * @brief Extension features functions + * +@verbatim + =============================================================================== + ##### Extension features Functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the I2S data + transfers. + + (#) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated I2S IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_I2S_TransmitReceive() + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_I2S_TransmitReceive_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_I2S_TransmitReceive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_I2S_TxCpltCallback() + (++) HAL_I2S_RxCpltCallback() + (++) HAL_I2S_ErrorCallback() + +@endverbatim + * @{ + */ +/** + * @brief Initializes the I2S according to the specified parameters + * in the I2S_InitTypeDef and create the associated handle. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_Init(I2S_HandleTypeDef *hi2s) +{ + uint32_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1; + uint32_t tmp = 0, i2sclk = 0; + + /* Check the I2S handle allocation */ + if(hi2s == NULL) + { + return HAL_ERROR; + } + + /* Check the I2S parameters */ + assert_param(IS_I2S_MODE(hi2s->Init.Mode)); + assert_param(IS_I2S_STANDARD(hi2s->Init.Standard)); + assert_param(IS_I2S_DATA_FORMAT(hi2s->Init.DataFormat)); + assert_param(IS_I2S_MCLK_OUTPUT(hi2s->Init.MCLKOutput)); + assert_param(IS_I2S_AUDIO_FREQ(hi2s->Init.AudioFreq)); + assert_param(IS_I2S_CPOL(hi2s->Init.CPOL)); + assert_param(IS_I2S_CLOCKSOURCE(hi2s->Init.ClockSource)); + + if(hi2s->State == HAL_I2S_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hi2s->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX */ + HAL_I2S_MspInit(hi2s); + } + + hi2s->State = HAL_I2S_STATE_BUSY; + + /*----------------------- SPIx I2SCFGR & I2SPR Configuration ---------------*/ + /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ + hi2s->Instance->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \ + SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ + SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD); + hi2s->Instance->I2SPR = 0x0002; + + /* Get the I2SCFGR register value */ + tmpreg = hi2s->Instance->I2SCFGR; + + /* If the default frequency value has to be written, reinitialize i2sdiv and i2sodd */ + /* If the requested audio frequency is not the default, compute the prescaler */ + if(hi2s->Init.AudioFreq != I2S_AUDIOFREQ_DEFAULT) + { + /* Check the frame length (For the Prescaler computing) *******************/ + if(hi2s->Init.DataFormat != I2S_DATAFORMAT_16B) + { + /* Packet length is 32 bits */ + packetlength = 2; + } + + /* Get I2S source Clock frequency ****************************************/ + i2sclk = I2S_GetInputClock(hi2s); + + /* Compute the Real divider depending on the MCLK output state, with a floating point */ + if(hi2s->Init.MCLKOutput == I2S_MCLKOUTPUT_ENABLE) + { + /* MCLK output is enabled */ + tmp = (uint32_t)(((((i2sclk / 256) * 10) / hi2s->Init.AudioFreq)) + 5); + } + else + { + /* MCLK output is disabled */ + tmp = (uint32_t)(((((i2sclk / (32 * packetlength)) *10 ) / hi2s->Init.AudioFreq)) + 5); + } + + /* Remove the flatting point */ + tmp = tmp / 10; + + /* Check the parity of the divider */ + i2sodd = (uint32_t)(tmp & (uint32_t)1); + + /* Compute the i2sdiv prescaler */ + i2sdiv = (uint32_t)((tmp - i2sodd) / 2); + + /* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */ + i2sodd = (uint32_t) (i2sodd << 8); + } + + /* Test if the divider is 1 or 0 or greater than 0xFF */ + if((i2sdiv < 2) || (i2sdiv > 0xFF)) + { + /* Set the default values */ + i2sdiv = 2; + i2sodd = 0; + } + + /* Write to SPIx I2SPR register the computed value */ + hi2s->Instance->I2SPR = (uint32_t)((uint32_t)i2sdiv | (uint32_t)(i2sodd | (uint32_t)hi2s->Init.MCLKOutput)); + + /* Configure the I2S with the I2S_InitStruct values */ + tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | hi2s->Init.Mode | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL); + +#if defined(SPI_I2SCFGR_ASTRTEN) + if (hi2s->Init.Standard == I2S_STANDARD_PCM_SHORT) + { + /* Write to SPIx I2SCFGR */ + hi2s->Instance->I2SCFGR = tmpreg | SPI_I2SCFGR_ASTRTEN; + } + else + { + /* Write to SPIx I2SCFGR */ + hi2s->Instance->I2SCFGR = tmpreg; + } +#else + /* Write to SPIx I2SCFGR */ + hi2s->Instance->I2SCFGR = tmpreg; +#endif + + /* Configure the I2S extended if the full duplex mode is enabled */ + assert_param(IS_I2S_FULLDUPLEX_MODE(hi2s->Init.FullDuplexMode)); + if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE) + { + /* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */ + I2SxEXT(hi2s->Instance)->I2SCFGR &= ~(SPI_I2SCFGR_CHLEN | SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CKPOL | \ + SPI_I2SCFGR_I2SSTD | SPI_I2SCFGR_PCMSYNC | SPI_I2SCFGR_I2SCFG | \ + SPI_I2SCFGR_I2SE | SPI_I2SCFGR_I2SMOD); + I2SxEXT(hi2s->Instance)->I2SPR = 2; + + /* Get the I2SCFGR register value */ + tmpreg = I2SxEXT(hi2s->Instance)->I2SCFGR; + + /* Get the mode to be configured for the extended I2S */ + if((hi2s->Init.Mode == I2S_MODE_MASTER_TX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_TX)) + { + tmp = I2S_MODE_SLAVE_RX; + } + else + { + if((hi2s->Init.Mode == I2S_MODE_MASTER_RX) || (hi2s->Init.Mode == I2S_MODE_SLAVE_RX)) + { + tmp = I2S_MODE_SLAVE_TX; + } + } + + /* Configure the I2S Slave with the I2S Master parameter values */ + tmpreg |= (uint32_t)(SPI_I2SCFGR_I2SMOD | tmp | hi2s->Init.Standard | hi2s->Init.DataFormat | hi2s->Init.CPOL); + + /* Write to SPIx I2SCFGR */ + I2SxEXT(hi2s->Instance)->I2SCFGR = tmpreg; + } + + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + hi2s->State= HAL_I2S_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Full-Duplex Transmit/Receive data in blocking mode. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pTxData: a 16-bit pointer to the Transmit data buffer. + * @param pRxData: a 16-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @param Timeout: Timeout duration + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2SEx_TransmitReceive(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + uint32_t tmp1 = 0, tmp2 = 0; + + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Check the I2S State */ + if(hi2s->State == HAL_I2S_STATE_READY) + { + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended + is selected during the I2S configuration phase, the Size parameter means the number + of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data + frame is selected the Size parameter means the number of 16-bit data length. */ + if((tmp1 == I2S_DATAFORMAT_24B)|| \ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = Size*2; + hi2s->TxXferCount = Size*2; + hi2s->RxXferSize = Size*2; + hi2s->RxXferCount = Size*2; + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + /* Set the I2S State busy TX/RX */ + hi2s->State = HAL_I2S_STATE_BUSY_TX_RX; + + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */ + if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX)) + { + /* Check if the I2S is already enabled: The I2S is kept enabled at the end of transaction + to avoid the clock de-synchronization between Master and Slave. */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2Sext(receiver) before enabling I2Sx peripheral */ + I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE; + + /* Enable I2Sx peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + while(hi2s->TxXferCount > 0) + { + /* Wait until TXE flag is set */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + hi2s->Instance->DR = (*pTxData++); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until RXNE flag is set */ + while((I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE) != SPI_SR_RXNE) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_TIMEOUT; + } + } + } + (*pRxData++) = I2SxEXT(hi2s->Instance)->DR; + + hi2s->TxXferCount--; + hi2s->RxXferCount--; + } + } + /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */ + else + { + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral before the I2Sext*/ + __HAL_I2S_ENABLE(hi2s); + + /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */ + I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE; + } + else + { + /* Check if Master Receiver mode is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read + access to the SPI_SR register. */ + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + } + } + while(hi2s->TxXferCount > 0) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until TXE flag is set */ + while((I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE) != SPI_SR_TXE) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_TIMEOUT; + } + } + } + I2SxEXT(hi2s->Instance)->DR = (*pTxData++); + + /* Wait until RXNE flag is set */ + if (I2S_WaitFlagStateUntilTimeout(hi2s, I2S_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + (*pRxData++) = hi2s->Instance->DR; + + hi2s->TxXferCount--; + hi2s->RxXferCount--; + } + } + + /* Set the I2S State ready */ + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pTxData: a 16-bit pointer to the Transmit data buffer. + * @param pRxData: a 16-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + if(hi2s->State == HAL_I2S_STATE_READY) + { + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + hi2s->pTxBuffPtr = pTxData; + hi2s->pRxBuffPtr = pRxData; + + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended + is selected during the I2S configuration phase, the Size parameter means the number + of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data + frame is selected the Size parameter means the number of 16-bit data length. */ + if((tmp1 == I2S_DATAFORMAT_24B)||\ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = Size*2; + hi2s->TxXferCount = Size*2; + hi2s->RxXferSize = Size*2; + hi2s->RxXferCount = Size*2; + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_TX_RX; + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */ + if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX)) + { + /* Enable I2Sext RXNE and ERR interrupts */ + I2SxEXT(hi2s->Instance)->CR2 |= (I2S_IT_RXNE | I2S_IT_ERR); + + /* Enable I2Sx TXE and ERR interrupts */ + __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_TXE | I2S_IT_ERR)); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2Sext(receiver) before enabling I2Sx peripheral */ + I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE; + + /* Enable I2Sx peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + } + /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */ + else + { + /* Enable I2Sext TXE and ERR interrupts */ + I2SxEXT(hi2s->Instance)->CR2 |= (I2S_IT_TXE |I2S_IT_ERR); + + /* Enable I2Sext RXNE and ERR interrupts */ + __HAL_I2S_ENABLE_IT(hi2s, (I2S_IT_RXNE | I2S_IT_ERR)); + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Check if the I2S_MODE_MASTER_RX is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Prepare the First Data before enabling the I2S */ + if(hi2s->TxXferCount != 0) + { + /* Transmit First data */ + I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++); + hi2s->TxXferCount--; + + if(hi2s->TxXferCount == 0) + { + /* Disable I2Sext TXE interrupt */ + I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_TXE; + } + } + } + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + + /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */ + I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE; + } + } + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Transmit/Receive data in non-blocking mode using DMA + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @param pTxData: a 16-bit pointer to the Transmit data buffer. + * @param pRxData: a 16-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be sent: + * @note When a 16-bit data frame or a 16-bit data frame extended is selected during the I2S + * configuration phase, the Size parameter means the number of 16-bit data length + * in the transaction and when a 24-bit data frame or a 32-bit data frame is selected + * the Size parameter means the number of 16-bit data length. + * @note The I2S is kept enabled at the end of transaction to avoid the clock de-synchronization + * between Master and Slave(example: audio streaming). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2SEx_TransmitReceive_DMA(I2S_HandleTypeDef *hi2s, uint16_t *pTxData, uint16_t *pRxData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0, tmp2 = 0; + + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hi2s->State == HAL_I2S_STATE_READY) + { + hi2s->pTxBuffPtr = pTxData; + hi2s->pRxBuffPtr = pRxData; + + tmp1 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + tmp2 = hi2s->Instance->I2SCFGR & (SPI_I2SCFGR_DATLEN | SPI_I2SCFGR_CHLEN); + /* Check the Data format: When a 16-bit data frame or a 16-bit data frame extended + is selected during the I2S configuration phase, the Size parameter means the number + of 16-bit data length in the transaction and when a 24-bit data frame or a 32-bit data + frame is selected the Size parameter means the number of 16-bit data length. */ + if((tmp1 == I2S_DATAFORMAT_24B)||\ + (tmp2 == I2S_DATAFORMAT_32B)) + { + hi2s->TxXferSize = Size*2; + hi2s->TxXferCount = Size*2; + hi2s->RxXferSize = Size*2; + hi2s->RxXferCount = Size*2; + } + else + { + hi2s->TxXferSize = Size; + hi2s->TxXferCount = Size; + hi2s->RxXferSize = Size; + hi2s->RxXferCount = Size; + } + + /* Process Locked */ + __HAL_LOCK(hi2s); + + hi2s->State = HAL_I2S_STATE_BUSY_TX_RX; + hi2s->ErrorCode = HAL_I2S_ERROR_NONE; + + /* Set the I2S Rx DMA Half transfer complete callback */ + hi2s->hdmarx->XferHalfCpltCallback = I2S_DMARxHalfCplt; + + /* Set the I2S Rx DMA transfer complete callback */ + hi2s->hdmarx->XferCpltCallback = I2S_DMARxCplt; + + /* Set the I2S Rx DMA error callback */ + hi2s->hdmarx->XferErrorCallback = I2S_DMAError; + + /* Set the I2S Tx DMA Half transfer complete callback */ + hi2s->hdmatx->XferHalfCpltCallback = I2S_DMATxHalfCplt; + + /* Set the I2S Tx DMA transfer complete callback */ + hi2s->hdmatx->XferCpltCallback = I2S_DMATxCplt; + + /* Set the I2S Tx DMA error callback */ + hi2s->hdmatx->XferErrorCallback = I2S_DMAError; + + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */ + if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX)) + { + /* Enable the Rx DMA Stream */ + tmp = (uint32_t*)&pRxData; + HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, *(uint32_t*)tmp, hi2s->RxXferSize); + + /* Enable Rx DMA Request */ + I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN; + + /* Enable the Tx DMA Stream */ + tmp = (uint32_t*)&pTxData; + HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&hi2s->Instance->DR, hi2s->TxXferSize); + + /* Enable Tx DMA Request */ + hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN; + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2Sext(receiver) before enabling I2Sx peripheral */ + I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE; + + /* Enable I2S peripheral after the I2Sext */ + __HAL_I2S_ENABLE(hi2s); + } + } + else + { + /* Enable the Tx DMA Stream */ + tmp = (uint32_t*)&pTxData; + HAL_DMA_Start_IT(hi2s->hdmatx, *(uint32_t*)tmp, (uint32_t)&I2SxEXT(hi2s->Instance)->DR, hi2s->TxXferSize); + + /* Enable Tx DMA Request */ + I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN; + + /* Enable the Rx DMA Stream */ + tmp = (uint32_t*)&pRxData; + HAL_DMA_Start_IT(hi2s->hdmarx, (uint32_t)&hi2s->Instance->DR, *(uint32_t*)tmp, hi2s->RxXferSize); + + /* Enable Rx DMA Request */ + hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN; + + /* Check if the I2S is already enabled */ + if((hi2s->Instance->I2SCFGR &SPI_I2SCFGR_I2SE) != SPI_I2SCFGR_I2SE) + { + /* Enable I2S peripheral before the I2Sext */ + __HAL_I2S_ENABLE(hi2s); + + /* Enable I2Sext(transmitter) after enabling I2Sx peripheral */ + I2SxEXT(hi2s->Instance)->I2SCFGR |= SPI_I2SCFGR_I2SE; + } + else + { + /* Check if Master Receiver mode is selected */ + if((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG) == I2S_MODE_MASTER_RX) + { + /* Clear the Overrun Flag by a read operation on the SPI_DR register followed by a read + access to the SPI_SR register. */ + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + } + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DMAPause(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* Disable the I2S DMA Tx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* Disable the I2S DMA Rx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX)) + { + /* Disable the I2S DMA Tx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + /* Disable the I2SEx Rx DMA Request */ + I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } + else + { + /* Disable the I2S DMA Rx request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + /* Disable the I2SEx Tx DMA Request */ + I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + } + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief Resumes the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DMAResume(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + /* Enable the I2S DMA Tx request */ + hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN; + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + /* Enable the I2S DMA Rx request */ + hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN; + } + else if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if((hi2s->Init.Mode == I2S_MODE_SLAVE_TX)||(hi2s->Init.Mode == I2S_MODE_MASTER_TX)) + { + /* Enable the I2S DMA Tx request */ + hi2s->Instance->CR2 |= SPI_CR2_TXDMAEN; + /* Disable the I2SEx Rx DMA Request */ + I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_RXDMAEN; + } + else + { + /* Enable the I2S DMA Rx request */ + hi2s->Instance->CR2 |= SPI_CR2_RXDMAEN; + /* Enable the I2SEx Tx DMA Request */ + I2SxEXT(hi2s->Instance)->CR2 |= SPI_CR2_TXDMAEN; + } + } + + /* If the I2S peripheral is still not enabled, enable it */ + if ((hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SE) == 0) + { + /* Enable I2S peripheral */ + __HAL_I2S_ENABLE(hi2s); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief Resumes the audio stream playing from the Media. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef HAL_I2S_DMAStop(I2S_HandleTypeDef *hi2s) +{ + /* Process Locked */ + __HAL_LOCK(hi2s); + + /* Disable the I2S Tx/Rx DMA requests */ + hi2s->Instance->CR2 &= ~SPI_CR2_TXDMAEN; + hi2s->Instance->CR2 &= ~SPI_CR2_RXDMAEN; + + if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE) + { + /* Disable the I2S extended Tx/Rx DMA requests */ + I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } + + /* Abort the I2S DMA Stream tx */ + if(hi2s->hdmatx != NULL) + { + HAL_DMA_Abort(hi2s->hdmatx); + } + /* Abort the I2S DMA Stream rx */ + if(hi2s->hdmarx != NULL) + { + HAL_DMA_Abort(hi2s->hdmarx); + } + + /* Disable I2S peripheral */ + __HAL_I2S_DISABLE(hi2s); + + if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE) + { + /* Disable the I2Sext peripheral */ + I2SxEXT(hi2s->Instance)->I2SCFGR &= ~SPI_I2SCFGR_I2SE; + } + hi2s->State = HAL_I2S_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; +} + +/** + * @brief This function handles I2S interrupt request. + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval None + */ +void HAL_I2S_IRQHandler(I2S_HandleTypeDef *hi2s) +{ + uint32_t tmp1 = 0, tmp2 = 0; + __IO uint32_t tmpreg1 = 0; + if(hi2s->Init.FullDuplexMode != I2S_FULLDUPLEXMODE_ENABLE) + { + if(hi2s->State == HAL_I2S_STATE_BUSY_RX) + { + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE); + /* I2S in mode Receiver ------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + I2S_Receive_IT(hi2s); + } + + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR); + /* I2S Overrun error interrupt occurred ---------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + hi2s->ErrorCode |= HAL_I2S_ERROR_OVR; + } + } + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX) + { + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE); + /* I2S in mode Tramitter -----------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + I2S_Transmit_IT(hi2s); + } + + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR); + /* I2S Underrun error interrupt occurred --------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_I2S_CLEAR_UDRFLAG(hi2s); + hi2s->ErrorCode |= HAL_I2S_ERROR_UDR; + } + } + } + else + { + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */ + if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX)) + { + tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE; + tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_RXNE; + /* I2Sext in mode Receiver ---------------------------------------------*/ + if((tmp1 == SPI_SR_RXNE) && (tmp2 == I2S_IT_RXNE)) + { + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX, + the I2Sext RXNE interrupt will be generated to manage the full-duplex receive phase. */ + if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX)) + { + I2SEx_TransmitReceive_IT(hi2s); + } + } + + tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_OVR; + tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR; + /* I2Sext Overrun error interrupt occurred ------------------------------*/ + if((tmp1 == SPI_SR_OVR) && (tmp2 == I2S_IT_ERR)) + { + /* Clear I2Sext OVR Flag */ + tmpreg1 = I2SxEXT(hi2s->Instance)->DR; + tmpreg1 = I2SxEXT(hi2s->Instance)->SR; + hi2s->ErrorCode |= HAL_I2SEX_ERROR_OVR; + UNUSED(tmpreg1); + } + + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_TXE); + /* I2S in mode Tramitter -----------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* When the I2S mode is configured as I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX, + the I2S TXE interrupt will be generated to manage the full-duplex transmit phase. */ + if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX)) + { + I2SEx_TransmitReceive_IT(hi2s); + } + } + + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_UDR); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR); + /* I2S Underrun error interrupt occurred --------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_I2S_CLEAR_UDRFLAG(hi2s); + hi2s->ErrorCode |= HAL_I2S_ERROR_UDR; + } + } + /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */ + else + { + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_RXNE); + /* I2S in mode Receiver ------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX, + the I2S RXNE interrupt will be generated to manage the full-duplex receive phase. */ + if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX)) + { + I2SEx_TransmitReceive_IT(hi2s); + } + } + + tmp1 = __HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_OVR); + tmp2 = __HAL_I2S_GET_IT_SOURCE(hi2s, I2S_IT_ERR); + /* I2S Overrun error interrupt occurred ---------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_I2S_CLEAR_OVRFLAG(hi2s); + hi2s->ErrorCode |= HAL_I2S_ERROR_OVR; + } + + tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE; + tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_TXE; + /* I2Sext in mode Tramitter --------------------------------------------*/ + if((tmp1 == SPI_SR_TXE) && (tmp2 == I2S_IT_TXE)) + { + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* When the I2S mode is configured as I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX, + the I2Sext TXE interrupt will be generated to manage the full-duplex transmit phase. */ + if((tmp1 == I2S_MODE_MASTER_RX) || (tmp2 == I2S_MODE_SLAVE_RX)) + { + I2SEx_TransmitReceive_IT(hi2s); + } + } + + tmp1 = I2SxEXT(hi2s->Instance)->SR & SPI_SR_UDR; + tmp2 = I2SxEXT(hi2s->Instance)->CR2 & I2S_IT_ERR; + /* I2Sext Underrun error interrupt occurred -----------------------------*/ + if((tmp1 == SPI_SR_UDR) && (tmp2 == I2S_IT_ERR)) + { + /* Clear I2Sext UDR Flag */ + tmpreg1 = I2SxEXT(hi2s->Instance)->SR; + hi2s->ErrorCode |= HAL_I2SEX_ERROR_UDR; + UNUSED(tmpreg1); + } + } + } + + /* Call the Error call Back in case of Errors */ + if(hi2s->ErrorCode != HAL_I2S_ERROR_NONE) + { + /* Set the I2S state ready to be able to start again the process */ + hi2s->State= HAL_I2S_STATE_READY; + HAL_I2S_ErrorCallback(hi2s); + } +} + +/** + * @} + */ + + +/** + * @brief Full-Duplex Transmit/Receive data in non-blocking mode using Interrupt + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval HAL status + */ +HAL_StatusTypeDef I2SEx_TransmitReceive_IT(I2S_HandleTypeDef *hi2s) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + /* Process Locked */ + __HAL_LOCK(hi2s); + + tmp1 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + tmp2 = hi2s->Instance->I2SCFGR & SPI_I2SCFGR_I2SCFG; + /* Check if the I2S_MODE_MASTER_TX or I2S_MODE_SLAVE_TX Mode is selected */ + if((tmp1 == I2S_MODE_MASTER_TX) || (tmp2 == I2S_MODE_SLAVE_TX)) + { + if(hi2s->TxXferCount != 0) + { + if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_TXE) != RESET) + { + /* Transmit data */ + hi2s->Instance->DR = (*hi2s->pTxBuffPtr++); + hi2s->TxXferCount--; + + if(hi2s->TxXferCount == 0) + { + /* Disable TXE interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_TXE); + } + } + } + + if(hi2s->RxXferCount != 0) + { + if((I2SxEXT(hi2s->Instance)->SR & SPI_SR_RXNE) == SPI_SR_RXNE) + { + /* Receive data */ + (*hi2s->pRxBuffPtr++) = I2SxEXT(hi2s->Instance)->DR; + hi2s->RxXferCount--; + + if(hi2s->RxXferCount == 0) + { + /* Disable I2Sext RXNE interrupt */ + I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_RXNE; + } + } + } + } + /* The I2S_MODE_MASTER_RX or I2S_MODE_SLAVE_RX Mode is selected */ + else + { + if(hi2s->TxXferCount != 0) + { + if((I2SxEXT(hi2s->Instance)->SR & SPI_SR_TXE) == SPI_SR_TXE) + { + /* Transmit data */ + I2SxEXT(hi2s->Instance)->DR = (*hi2s->pTxBuffPtr++); + hi2s->TxXferCount--; + + if(hi2s->TxXferCount == 0) + { + /* Disable I2Sext TXE interrupt */ + I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_TXE; + + HAL_I2S_TxCpltCallback(hi2s); + } + } + } + if(hi2s->RxXferCount != 0) + { + if(__HAL_I2S_GET_FLAG(hi2s, I2S_FLAG_RXNE) != RESET) + { + /* Receive data */ + (*hi2s->pRxBuffPtr++) = hi2s->Instance->DR; + hi2s->RxXferCount--; + + if(hi2s->RxXferCount == 0) + { + /* Disable RXNE interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_RXNE); + + HAL_I2S_RxCpltCallback(hi2s); + } + } + } + } + + tmp1 = hi2s->RxXferCount; + tmp2 = hi2s->TxXferCount; + if((tmp1 == 0) && (tmp2 == 0)) + { + /* Disable I2Sx ERR interrupt */ + __HAL_I2S_DISABLE_IT(hi2s, I2S_IT_ERR); + /* Disable I2Sext ERR interrupt */ + I2SxEXT(hi2s->Instance)->CR2 &= ~I2S_IT_ERR; + + hi2s->State = HAL_I2S_STATE_READY; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hi2s); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +#endif /* STM32F40xxx/ STM32F41xxx/ STM32F42xxx/ STM32F43xxx/ STM32F401xx/ STM32F411xx */ +/** + * @brief DMA I2S transmit process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void I2S_DMATxCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + hi2s->TxXferCount = 0; + + /* Disable Tx DMA Request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) + if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE) + { + /* Disable Rx DMA Request for the slave*/ + I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + } +#endif /* STM32F40xxx/ STM32F41xxx/ STM32F42xxx/ STM32F43xxx/ STM32F401xx/ STM32F411xx */ + if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if(hi2s->RxXferCount == 0) + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + else + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + HAL_I2S_TxCpltCallback(hi2s); +} + +/** + * @brief DMA I2S receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void I2S_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + I2S_HandleTypeDef* hi2s = (I2S_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Disable Rx DMA Request */ + hi2s->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) + if(hi2s->Init.FullDuplexMode == I2S_FULLDUPLEXMODE_ENABLE) + { + /* Disable Tx DMA Request for the slave*/ + I2SxEXT(hi2s->Instance)->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + } +#endif /* STM32F40xxx/ STM32F41xxx/ STM32F42xxx/ STM32F43xxx/ STM32F401xx/ STM32F411xx */ + hi2s->RxXferCount = 0; + if(hi2s->State == HAL_I2S_STATE_BUSY_TX_RX) + { + if(hi2s->TxXferCount == 0) + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + else + { + hi2s->State = HAL_I2S_STATE_READY; + } + } + HAL_I2S_RxCpltCallback(hi2s); +} + +/** + * @brief Get I2S clock Input based on Source clock selection in RCC + * @param hi2s: pointer to a I2S_HandleTypeDef structure that contains + * the configuration information for I2S module + * @retval I2S Clock Input + */ +uint32_t I2S_GetInputClock(I2S_HandleTypeDef *hi2s) +{ + /* This variable used to store the VCO Input (value in Hz) */ + uint32_t vcoinput = 0; + /* This variable used to store the VCO Output (value in Hz) */ + uint32_t vcooutput = 0; + /* This variable used to store the I2S_CK_x (value in Hz) */ + uint32_t i2ssourceclock = 0; + + /* Configure SAI Clock based on SAI source clock selection */ +#if defined(STM32F446xx) + switch(hi2s->Init.ClockSource) + { + case I2S_CLOCK_EXTERNAL : + { + /* Set the I2S clock to the external clock value */ + i2ssourceclock = EXTERNAL_CLOCK_VALUE; + break; + } + case I2S_CLOCK_PLL : + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLI2SM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE) + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM)); + } + else + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM)); + } + + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6))); + /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */ + i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28))); + break; + } + case I2S_CLOCK_PLLR : + { + /* Configure the PLLI2S division factor */ + /* PLL_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE) + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + + /* PLL_VCO Output = PLL_VCO Input * PLLN */ + vcooutput = (uint32_t)(vcoinput * (((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6) & (RCC_PLLCFGR_PLLN >> 6))); + /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */ + i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 28) & (RCC_PLLCFGR_PLLR >> 28))); + break; + } + case I2S_CLOCK_PLLSRC : + { + /* Configure the PLLI2S division factor */ + /* PLL_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE) + { + /* Get the I2S source clock value */ + i2ssourceclock = (uint32_t)(HSE_VALUE); + } + else + { + /* Get the I2S source clock value */ + i2ssourceclock = (uint32_t)(HSI_VALUE); + } + break; + } + default : + { + break; + } + } +#endif /* STM32F446xx */ +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) + + /* If an external I2S clock has to be used, the specific define should be set + in the project configuration or in the stm32f4xx_conf.h file */ + if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL) + { + /* Enable the External Clock selection */ + __HAL_RCC_I2S_CONFIG(RCC_I2SCLKSOURCE_EXT); + + /* Set the I2S clock to the external clock value */ + i2ssourceclock = EXTERNAL_CLOCK_VALUE; + } + else + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE) + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6))); + /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */ + i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28))); + } +#endif /* STM32F40xxx || STM32F41xxx || STM32F42xxx || STM32F43xxx */ + +#if defined(STM32F411xE) + + /* If an external I2S clock has to be used, the specific define should be set + in the project configuration or in the stm32f4xx_conf.h file */ + if(hi2s->Init.ClockSource == I2S_CLOCK_EXTERNAL) + { + /* Enable the External Clock selection */ + __HAL_RCC_I2S_CONFIG(RCC_I2SCLKSOURCE_EXT); + + /* Set the I2S clock to the external clock value */ + i2ssourceclock = EXTERNAL_CLOCK_VALUE; + } + else + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLI2SM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSE) + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM)); + } + else + { + /* Get the I2S source clock value */ + vcoinput = (uint32_t)(HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM)); + } + + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + vcooutput = (uint32_t)(vcoinput * (((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6) & (RCC_PLLI2SCFGR_PLLI2SN >> 6))); + /* I2S_CLK = PLLI2S_VCO Output/PLLI2SR */ + i2ssourceclock = (uint32_t)(vcooutput /(((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> 28) & (RCC_PLLI2SCFGR_PLLI2SR >> 28))); + } +#endif /* STM32F411xE */ + + /* the return result is the value of SAI clock */ + return i2ssourceclock; + +} +/** + * @} + */ + +#endif /* HAL_I2S_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_irda.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_irda.c new file mode 100644 index 0000000..c061ec8 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_irda.c @@ -0,0 +1,1504 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_irda.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief IRDA HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the IrDA SIR ENDEC block (IrDA): + * + Initialization and de-initialization methods + * + IO operation methods + * + Peripheral Control methods + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The IRDA HAL driver can be used as follows: + + (#) Declare a IRDA_HandleTypeDef handle structure. + (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API: + (##) Enable the USARTx interface clock. + (##) IRDA pins configuration: + (+++) Enable the clock for the IRDA GPIOs. + (+++) Configure these IRDA pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT() + and HAL_IRDA_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA() + and HAL_IRDA_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Word Length, Parity, IrDA Mode, Prescaler + and Mode(Receiver/Transmitter) in the hirda Init structure. + + (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_IRDA_MspInit() API. + -@@- The specific IRDA interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() + (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_IRDA_Transmit_IT() + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_IRDA_Receive_IT() + (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback + + *** DMA mode IO operation *** + ============================= + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_IRDA_Transmit_DMA() + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_IRDA_Receive_DMA() + (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback + + *** IRDA HAL driver macros list *** + =================================== + [..] + Below the list of most used macros in IRDA HAL driver. + + (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral + (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral + (+) __HAL_IRDA_GET_FLAG : Checks whether the specified IRDA flag is set or not + (+) __HAL_IRDA_CLEAR_FLAG : Clears the specified IRDA pending flag + (+) __HAL_IRDA_ENABLE_IT: Enables the specified IRDA interrupt + (+) __HAL_IRDA_DISABLE_IT: Disables the specified IRDA interrupt + + (@) You can refer to the IRDA HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup IRDA IRDA + * @brief HAL IRDA module driver + * @{ + */ + +#ifdef HAL_IRDA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup IRDA_Private_Constants + * @{ + */ +#define IRDA_TIMEOUT_VALUE 22000 +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup IRDA_Private_Functions + * @{ + */ +static void IRDA_SetConfig (IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda); +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup IRDA_Exported_Functions IrDA Exported Functions + * @{ + */ + +/** @defgroup IRDA_Exported_Functions_Group1 IrDA Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx or the UARTy + in IrDA mode. + (+) For the asynchronous mode only these parameters can be configured: + (++) BaudRate + (++) WordLength + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + Depending on the frame length defined by the M bit (8-bits or 9-bits), + please refer to Reference manual for possible IRDA frame formats. + (++) Prescaler: A pulse of width less than two and greater than one PSC period(s) may or may + not be rejected. The receiver set up time should be managed by software. The IrDA physical layer + specification specifies a minimum of 10 ms delay between transmission and + reception (IrDA is a half duplex protocol). + (++) Mode: Receiver/transmitter modes + (++) IrDAMode: the IrDA can operate in the Normal mode or in the Low power mode. + [..] + The HAL_IRDA_Init() API follows IRDA configuration procedures (details for the procedures + are available in reference manual). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the IRDA mode according to the specified + * parameters in the IRDA_InitTypeDef and create the associated handle. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if(hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the IRDA instance parameters */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + /* Check the IRDA mode parameter in the IRDA handle */ + assert_param(IS_IRDA_POWERMODE(hirda->Init.IrDAMode)); + + if(hirda->State == HAL_IRDA_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hirda->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_IRDA_MspInit(hirda); + } + + hirda->State = HAL_IRDA_STATE_BUSY; + + /* Disable the IRDA peripheral */ + __HAL_IRDA_DISABLE(hirda); + + /* Set the IRDA communication parameters */ + IRDA_SetConfig(hirda); + + /* In IrDA mode, the following bits must be kept cleared: + - LINEN, STOP and CLKEN bits in the USART_CR2 register, + - SCEN and HDSEL bits in the USART_CR3 register.*/ + hirda->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_STOP | USART_CR2_CLKEN); + hirda->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL); + + /* Enable the IRDA peripheral */ + __HAL_IRDA_ENABLE(hirda); + + /* Set the prescaler */ + MODIFY_REG(hirda->Instance->GTPR, USART_GTPR_PSC, hirda->Init.Prescaler); + + /* Configure the IrDA mode */ + MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.IrDAMode); + + /* Enable the IrDA mode by setting the IREN bit in the CR3 register */ + hirda->Instance->CR3 |= USART_CR3_IREN; + + /* Initialize the IRDA state*/ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->State= HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the IRDA peripheral + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if(hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + + hirda->State = HAL_IRDA_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_IRDA_DISABLE(hirda); + + /* DeInit the low level hardware */ + HAL_IRDA_MspDeInit(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + hirda->State = HAL_IRDA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief IRDA MSP Init. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ + __weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_MspInit could be implemented in the user file + */ +} + +/** + * @brief IRDA MSP DeInit. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ + __weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions + * @brief IRDA Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the IRDA data transfers. + [..] + IrDA is a half duplex communication protocol. If the Transmitter is busy, any data + on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver + is busy, data on the TX from the USART to IrDA will not be encoded by IrDA. + While receiving data, transmission should be avoided as the data to be transmitted + could be corrupted. + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: The communication is performed using Interrupts + or DMA, These APIs return the HAL status. + The end of the data processing will be indicated through the + dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected + + (#) Blocking mode API's are : + (++) HAL_IRDA_Transmit() + (++) HAL_IRDA_Receive() + + (#) Non Blocking mode APIs with Interrupt are : + (++) HAL_IRDA_Transmit_IT() + (++) HAL_IRDA_Receive_IT() + (++) HAL_IRDA_IRQHandler() + + (#) Non Blocking mode functions with DMA are : + (++) HAL_IRDA_Transmit_DMA() + (++) HAL_IRDA_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_IRDA_TxCpltCallback() + (++) HAL_IRDA_RxCpltCallback() + (++) HAL_IRDA_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Sends an amount of data in blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Specify timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_READY) || (tmp1 == HAL_IRDA_STATE_BUSY_RX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + if(hirda->State == HAL_IRDA_STATE_BUSY_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX_RX; + } + else + { + hirda->State = HAL_IRDA_STATE_BUSY_TX; + } + + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + while(hirda->TxXferCount > 0) + { + hirda->TxXferCount--; + if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pData; + hirda->Instance->DR = (*tmp & (uint16_t)0x01FF); + if(hirda->Init.Parity == IRDA_PARITY_NONE) + { + pData +=2; + } + else + { + pData +=1; + } + } + else + { + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + hirda->Instance->DR = (*pData++ & (uint8_t)0xFF); + } + } + + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_RX; + } + else + { + hirda->State = HAL_IRDA_STATE_READY; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Specify timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_READY) || (tmp1 == HAL_IRDA_STATE_BUSY_TX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + if(hirda->State == HAL_IRDA_STATE_BUSY_TX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX_RX; + } + else + { + hirda->State = HAL_IRDA_STATE_BUSY_RX; + } + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + /* Check the remain data to be received */ + while(hirda->RxXferCount > 0) + { + hirda->RxXferCount--; + if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pData ; + if(hirda->Init.Parity == IRDA_PARITY_NONE) + { + *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x01FF); + pData +=2; + } + else + { + *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x00FF); + pData +=1; + } + } + else + { + if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if(hirda->Init.Parity == IRDA_PARITY_NONE) + { + *pData++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x00FF); + } + else + { + *pData++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x007F); + } + } + } + if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX; + } + else + { + hirda->State = HAL_IRDA_STATE_READY; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_READY) || (tmp1 == HAL_IRDA_STATE_BUSY_RX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + if(hirda->State == HAL_IRDA_STATE_BUSY_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX_RX; + } + else + { + hirda->State = HAL_IRDA_STATE_BUSY_TX; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_ERR); + + /* Enable the IRDA Transmit Data Register Empty Interrupt */ + __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TXE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_READY) || (tmp1 == HAL_IRDA_STATE_BUSY_TX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + if(hirda->State == HAL_IRDA_STATE_BUSY_TX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX_RX; + } + else + { + hirda->State = HAL_IRDA_STATE_BUSY_RX; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Data Register not empty Interrupt */ + __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_RXNE); + + /* Enable the IRDA Parity Error Interrupt */ + __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_PE); + + /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sends an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_READY) || (tmp1 == HAL_IRDA_STATE_BUSY_RX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + if(hirda->State == HAL_IRDA_STATE_BUSY_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX_RX; + } + else + { + hirda->State = HAL_IRDA_STATE_BUSY_TX; + } + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmatx->XferErrorCallback = IRDA_DMAError; + + /* Enable the IRDA transmit DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hirda->hdmatx, *(uint32_t*)tmp, (uint32_t)&hirda->Instance->DR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_FLAG_TC); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + hirda->Instance->CR3 |= USART_CR3_DMAT; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @note When the IRDA parity is enabled (PCE = 1) the data received contain the parity bit. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_READY) || (tmp1 == HAL_IRDA_STATE_BUSY_TX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + if(hirda->State == HAL_IRDA_STATE_BUSY_TX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX_RX; + } + else + { + hirda->State = HAL_IRDA_STATE_BUSY_RX; + } + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmarx->XferErrorCallback = IRDA_DMAError; + + /* Enable the DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->DR, *(uint32_t*)tmp, Size); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + hirda->Instance->CR3 |= USART_CR3_DMAR; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the DMA Transfer. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda) +{ + /* Process Locked */ + __HAL_LOCK(hirda); + + if(hirda->State == HAL_IRDA_STATE_BUSY_TX) + { + /* Disable the UART DMA Tx request */ + hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT); + } + else if(hirda->State == HAL_IRDA_STATE_BUSY_RX) + { + /* Disable the UART DMA Rx request */ + hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR); + } + else if (hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) + { + /* Disable the UART DMA Tx & Rx requests */ + hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT); + hirda->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_ERROR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda) +{ + /* Process Locked */ + __HAL_LOCK(hirda); + + if(hirda->State == HAL_IRDA_STATE_BUSY_TX) + { + /* Enable the UART DMA Tx request */ + hirda->Instance->CR3 |= USART_CR3_DMAT; + } + else if(hirda->State == HAL_IRDA_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer */ + __HAL_IRDA_CLEAR_OREFLAG(hirda); + /* Enable the UART DMA Rx request */ + hirda->Instance->CR3 |= USART_CR3_DMAR; + } + else if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer */ + __HAL_IRDA_CLEAR_OREFLAG(hirda); + /* Enable the UART DMA Tx & Rx request */ + hirda->Instance->CR3 |= USART_CR3_DMAT; + hirda->Instance->CR3 |= USART_CR3_DMAR; + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_ERROR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback(): + when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated + and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() + */ + + /* Disable the UART Tx/Rx DMA requests */ + hirda->Instance->CR3 &= ~USART_CR3_DMAT; + hirda->Instance->CR3 &= ~USART_CR3_DMAR; + + /* Abort the UART DMA tx Stream */ + if(hirda->hdmatx != NULL) + { + HAL_DMA_Abort(hirda->hdmatx); + } + /* Abort the UART DMA rx Stream */ + if(hirda->hdmarx != NULL) + { + HAL_DMA_Abort(hirda->hdmarx); + } + + hirda->State = HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles IRDA interrupt request. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda) +{ + uint32_t tmp1 = 0, tmp2 =0; + + tmp1 = __HAL_IRDA_GET_FLAG(hirda, IRDA_FLAG_PE); + tmp2 = __HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_PE); + /* IRDA parity error interrupt occurred -------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_IRDA_CLEAR_PEFLAG(hirda); + hirda->ErrorCode |= HAL_IRDA_ERROR_PE; + } + + tmp1 = __HAL_IRDA_GET_FLAG(hirda, IRDA_FLAG_FE); + tmp2 = __HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR); + /* IRDA frame error interrupt occurred --------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_IRDA_CLEAR_FEFLAG(hirda); + hirda->ErrorCode |= HAL_IRDA_ERROR_FE; + } + + tmp1 = __HAL_IRDA_GET_FLAG(hirda, IRDA_FLAG_NE); + tmp2 = __HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR); + /* IRDA noise error interrupt occurred --------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_IRDA_CLEAR_NEFLAG(hirda); + hirda->ErrorCode |= HAL_IRDA_ERROR_NE; + } + + tmp1 = __HAL_IRDA_GET_FLAG(hirda, IRDA_FLAG_ORE); + tmp2 = __HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_ERR); + /* IRDA Over-Run interrupt occurred -----------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_IRDA_CLEAR_OREFLAG(hirda); + hirda->ErrorCode |= HAL_IRDA_ERROR_ORE; + } + + /* Call the Error call Back in case of Errors */ + if(hirda->ErrorCode != HAL_IRDA_ERROR_NONE) + { + /* Set the IRDA state ready to be able to start again the process */ + hirda->State = HAL_IRDA_STATE_READY; + HAL_IRDA_ErrorCallback(hirda); + } + + tmp1 = __HAL_IRDA_GET_FLAG(hirda, IRDA_FLAG_RXNE); + tmp2 = __HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_RXNE); + /* IRDA in mode Receiver ---------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + IRDA_Receive_IT(hirda); + } + + tmp1 = __HAL_IRDA_GET_FLAG(hirda, IRDA_FLAG_TXE); + tmp2 = __HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_TXE); + /* IRDA in mode Transmitter ------------------------------------------------*/ + if((tmp1 != RESET) &&(tmp2 != RESET)) + { + IRDA_Transmit_IT(hirda); + } + + tmp1 = __HAL_IRDA_GET_FLAG(hirda, IRDA_FLAG_TC); + tmp2 = __HAL_IRDA_GET_IT_SOURCE(hirda, IRDA_IT_TC); + /* IRDA in mode Transmitter (transmission end) -----------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + IRDA_EndTransmit_IT(hirda); + } +} + +/** + * @brief Tx Transfer complete callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ + __weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ + __weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_IRDA_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer complete callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer complete callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_RxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief IRDA error callbacks. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ + __weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IRDA_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief IRDA State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of IrDA + communication process and also return Peripheral Errors occurred during communication process + (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state of the IrDA peripheral. + (+) HAL_IRDA_GetError() check in run-time errors that could be occurred during communication. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the IRDA state. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL state + */ +HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda) +{ + return hirda->State; +} + +/** + * @brief Return the IARDA error code + * @param hirda : pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA. + * @retval IRDA Error Code + */ +uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda) +{ + return hirda->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief DMA IRDA transmit process complete callback. + * @param hdma : DMA handle + * @retval None + */ +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + hirda->TxXferCount = 0; + + /* Disable the DMA transfer for transmit request by setting the DMAT bit + in the IRDA CR3 register */ + hirda->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_DMAT); + + /* Enable the IRDA Transmit Complete Interrupt */ + __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TC); + } + /* DMA Circular mode */ + else + { + HAL_IRDA_TxCpltCallback(hirda); + } +} + +/** + * @brief DMA IRDA receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_IRDA_TxHalfCpltCallback(hirda); +} + +/** + * @brief DMA IRDA receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + hirda->RxXferCount = 0; + + /* Disable the DMA transfer for the receiver request by setting the DMAR bit + in the IRDA CR3 register */ + hirda->Instance->CR3 &= (uint16_t)~((uint16_t)USART_CR3_DMAR); + + if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX; + } + else + { + hirda->State = HAL_IRDA_STATE_READY; + } + } + + HAL_IRDA_RxCpltCallback(hirda); +} + +/** + * @brief DMA IRDA receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_IRDA_RxHalfCpltCallback(hirda); +} + +/** + * @brief DMA IRDA communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void IRDA_DMAError(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + hirda->RxXferCount = 0; + hirda->TxXferCount = 0; + hirda->ErrorCode |= HAL_IRDA_ERROR_DMA; + hirda->State= HAL_IRDA_STATE_READY; + + HAL_IRDA_ErrorCallback(hirda); +} + +/** + * @brief This function handles IRDA Communication Timeout. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param Flag: specifies the IRDA flag to check. + * @param Status: The new Flag status (SET or RESET). + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_IRDA_GET_FLAG(hirda, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE); + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE); + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE); + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR); + + hirda->State= HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_IRDA_GET_FLAG(hirda, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE); + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE); + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE); + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR); + + hirda->State= HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + + /** + * @brief Send an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_BUSY_TX) || (tmp1 == HAL_IRDA_STATE_BUSY_TX_RX)) + { + if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + tmp = (uint16_t*) hirda->pTxBuffPtr; + hirda->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); + if(hirda->Init.Parity == IRDA_PARITY_NONE) + { + hirda->pTxBuffPtr += 2; + } + else + { + hirda->pTxBuffPtr += 1; + } + } + else + { + hirda->Instance->DR = (uint8_t)(*hirda->pTxBuffPtr++ & (uint8_t)0x00FF); + } + + if(--hirda->TxXferCount == 0) + { + /* Disable the IRDA Transmit Data Register Empty Interrupt */ + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TXE); + + /* Enable the IRDA Transmit Complete Interrupt */ + __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TC); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Wraps up transmission in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable the IRDA Transmit Complete Interrupt */ + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_TC); + + /* Check if a receive process is ongoing or not */ + if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_RX; + } + else + { + /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR); + + hirda->State = HAL_IRDA_STATE_READY; + } + + HAL_IRDA_TxCpltCallback(hirda); + + return HAL_OK; +} + +/** + * @brief Receives an amount of data in non blocking mode. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hirda->State; + if((tmp1 == HAL_IRDA_STATE_BUSY_RX) || (tmp1 == HAL_IRDA_STATE_BUSY_TX_RX)) + { + if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + tmp = (uint16_t*) hirda->pRxBuffPtr; + if(hirda->Init.Parity == IRDA_PARITY_NONE) + { + *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x01FF); + hirda->pRxBuffPtr += 2; + } + else + { + *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x00FF); + hirda->pRxBuffPtr += 1; + } + } + else + { + if(hirda->Init.Parity == IRDA_PARITY_NONE) + { + *hirda->pRxBuffPtr++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x00FF); + } + else + { + *hirda->pRxBuffPtr++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x007F); + } + } + + if(--hirda->RxXferCount == 0) + { + + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE); + + if(hirda->State == HAL_IRDA_STATE_BUSY_TX_RX) + { + hirda->State = HAL_IRDA_STATE_BUSY_TX; + } + else + { + /* Disable the IRDA Parity Error Interrupt */ + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE); + + /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR); + + hirda->State = HAL_IRDA_STATE_READY; + } + HAL_IRDA_RxCpltCallback(hirda); + + return HAL_OK; + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configures the IRDA peripheral. + * @param hirda: pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda) +{ + uint32_t tmpreg = 0x00; + + /* Check the parameters */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate)); + assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength)); + assert_param(IS_IRDA_PARITY(hirda->Init.Parity)); + assert_param(IS_IRDA_MODE(hirda->Init.Mode)); + + /*-------------------------- IRDA CR2 Configuration ------------------------*/ + /* Clear STOP[13:12] bits */ + hirda->Instance->CR2 &= (uint32_t)~((uint32_t)USART_CR2_STOP); + + /*-------------------------- USART CR1 Configuration -----------------------*/ + tmpreg = hirda->Instance->CR1; + + /* Clear M, PCE, PS, TE and RE bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \ + USART_CR1_RE)); + + /* Configure the USART Word Length, Parity and mode: + Set the M bits according to hirda->Init.WordLength value + Set PCE and PS bits according to hirda->Init.Parity value + Set TE and RE bits according to hirda->Init.Mode value */ + tmpreg |= (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode; + + /* Write to USART CR1 */ + hirda->Instance->CR1 = (uint32_t)tmpreg; + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Clear CTSE and RTSE bits */ + hirda->Instance->CR3 &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE)); + + /*-------------------------- USART BRR Configuration -----------------------*/ + if((hirda->Instance == USART1) || (hirda->Instance == USART6)) + { + hirda->Instance->BRR = IRDA_BRR(HAL_RCC_GetPCLK2Freq(), hirda->Init.BaudRate); + } + else + { + hirda->Instance->BRR = IRDA_BRR(HAL_RCC_GetPCLK1Freq(), hirda->Init.BaudRate); + } +} +/** + * @} + */ + +#endif /* HAL_IRDA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_iwdg.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_iwdg.c new file mode 100644 index 0000000..7e157f9 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_iwdg.c @@ -0,0 +1,361 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_iwdg.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief IWDG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Independent Watchdog (IWDG) peripheral: + * + Initialization and Configuration functions + * + IO operation functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### IWDG Specific features ##### + ============================================================================== + [..] + (+) The IWDG can be started by either software or hardware (configurable + through option byte). + + (+) The IWDG is clocked by its own dedicated Low-Speed clock (LSI) and + thus stays active even if the main clock fails. + Once the IWDG is started, the LSI is forced ON and cannot be disabled + (LSI cannot be disabled too), and the counter starts counting down from + the reset value of 0xFFF. When it reaches the end of count value (0x000) + a system reset is generated. + + (+) The IWDG counter should be refreshed at regular intervals, otherwise the + watchdog generates an MCU reset when the counter reaches 0. + + (+) The IWDG is implemented in the VDD voltage domain that is still functional + in STOP and STANDBY mode (IWDG reset can wake-up from STANDBY). + IWDGRST flag in RCC_CSR register can be used to inform when an IWDG + reset occurs. + + (+) Min-max timeout value @32KHz (LSI): ~125us / ~32.7s + The IWDG timeout may vary due to LSI frequency dispersion. STM32F4xx + devices provide the capability to measure the LSI frequency (LSI clock + connected internally to TIM5 CH4 input capture). The measured value + can be used to have an IWDG timeout with an acceptable accuracy. + + + ##### How to use this driver ##### + ============================================================================== + [..] + If Window option is disabled + (+) Use IWDG using HAL_IWDG_Init() function to : + (++) Enable write access to IWDG_PR, IWDG_RLR. + (++) Configure the IWDG prescaler, counter reload value. + This reload value will be loaded in the IWDG counter each time the counter + is reloaded, then the IWDG will start counting down from this value. + [..] + (+) Use IWDG using HAL_IWDG_Start() function to: + (++) Reload IWDG counter with value defined in the IWDG_RLR register. + (++) Start the IWDG, when the IWDG is used in software mode (no need + to enable the LSI, it will be enabled by hardware). + (+) Then the application program must refresh the IWDG counter at regular + intervals during normal operation to prevent an MCU reset, using + HAL_IWDG_Refresh() function. + [..] + if Window option is enabled: + + (+) Use IWDG using HAL_IWDG_Start() function to enable IWDG downcounter + (+) Use IWDG using HAL_IWDG_Init() function to : + (++) Enable write access to IWDG_PR, IWDG_RLR and IWDG_WINR registers. + (++) Configure the IWDG prescaler, reload value and window value. + (+) Then the application program must refresh the IWDG counter at regular + intervals during normal operation to prevent an MCU reset, using + HAL_IWDG_Refresh() function. + + *** IWDG HAL driver macros list *** + ==================================== + [..] + Below the list of most used macros in IWDG HAL driver. + + (+) __HAL_IWDG_START: Enable the IWDG peripheral + (+) __HAL_IWDG_RELOAD_COUNTER: Reloads IWDG counter with value defined in the reload register + (+) __HAL_IWDG_GET_FLAG: Get the selected IWDG's flag status + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup IWDG IWDG + * @brief IWDG HAL module driver. + * @{ + */ + +#ifdef HAL_IWDG_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + /** @addtogroup IWDG_Private_Constants + * @{ + */ +#define IWDG_TIMEOUT_FLAG ((uint32_t)1000) /* 1 s */ +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup IWDG_Exported_Functions IWDG Exported Functions + * @{ + */ + +/** @defgroup IWDG_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the IWDG according to the specified parameters + in the IWDG_InitTypeDef and create the associated handle + (+) Initialize the IWDG MSP + (+) DeInitialize IWDG MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the IWDG according to the specified + * parameters in the IWDG_InitTypeDef and creates the associated handle. + * @param hiwdg: pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IWDG_Init(IWDG_HandleTypeDef *hiwdg) +{ + /* Check the IWDG handle allocation */ + if(hiwdg == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_IWDG_ALL_INSTANCE(hiwdg->Instance)); + assert_param(IS_IWDG_PRESCALER(hiwdg->Init.Prescaler)); + assert_param(IS_IWDG_RELOAD(hiwdg->Init.Reload)); + + if(hiwdg->State == HAL_IWDG_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hiwdg->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_IWDG_MspInit(hiwdg); + } + + /* Change IWDG peripheral state */ + hiwdg->State = HAL_IWDG_STATE_BUSY; + + /* Enable write access to IWDG_PR and IWDG_RLR registers */ + IWDG_ENABLE_WRITE_ACCESS(hiwdg); + + /* Write to IWDG registers the IWDG_Prescaler & IWDG_Reload values to work with */ + MODIFY_REG(hiwdg->Instance->PR, IWDG_PR_PR, hiwdg->Init.Prescaler); + MODIFY_REG(hiwdg->Instance->RLR, IWDG_RLR_RL, hiwdg->Init.Reload); + + /* Change IWDG peripheral state */ + hiwdg->State = HAL_IWDG_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the IWDG MSP. + * @param hiwdg: pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval None + */ +__weak void HAL_IWDG_MspInit(IWDG_HandleTypeDef *hiwdg) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_IWDG_MspInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup IWDG_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Start the IWDG. + (+) Refresh the IWDG. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the IWDG. + * @param hiwdg: pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IWDG_Start(IWDG_HandleTypeDef *hiwdg) +{ + /* Process Locked */ + __HAL_LOCK(hiwdg); + + /* Change IWDG peripheral state */ + hiwdg->State = HAL_IWDG_STATE_BUSY; + + /* Start the IWDG peripheral */ + __HAL_IWDG_START(hiwdg); + + /* Reload IWDG counter with value defined in the RLR register */ + __HAL_IWDG_RELOAD_COUNTER(hiwdg); + + /* Change IWDG peripheral state */ + hiwdg->State = HAL_IWDG_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hiwdg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Refreshes the IWDG. + * @param hiwdg: pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IWDG_Refresh(IWDG_HandleTypeDef *hiwdg) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hiwdg); + + /* Change IWDG peripheral state */ + hiwdg->State = HAL_IWDG_STATE_BUSY; + + tickstart = HAL_GetTick(); + + /* Wait until RVU flag is RESET */ + while(__HAL_IWDG_GET_FLAG(hiwdg, IWDG_FLAG_RVU) != RESET) + { + if((HAL_GetTick() - tickstart ) > IWDG_TIMEOUT_FLAG) + { + /* Set IWDG state */ + hiwdg->State = HAL_IWDG_STATE_TIMEOUT; + + /* Process unlocked */ + __HAL_UNLOCK(hiwdg); + + return HAL_TIMEOUT; + } + } + + /* Reload IWDG counter with value defined in the reload register */ + __HAL_IWDG_RELOAD_COUNTER(hiwdg); + + /* Change IWDG peripheral state */ + hiwdg->State = HAL_IWDG_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hiwdg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup IWDG_Exported_Functions_Group3 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the IWDG state. + * @param hiwdg: pointer to a IWDG_HandleTypeDef structure that contains + * the configuration information for the specified IWDG module. + * @retval HAL state + */ +HAL_IWDG_StateTypeDef HAL_IWDG_GetState(IWDG_HandleTypeDef *hiwdg) +{ + return hiwdg->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_IWDG_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_ltdc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_ltdc.c new file mode 100644 index 0000000..eb69b1c --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_ltdc.c @@ -0,0 +1,1191 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_ltdc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief LTDC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the LTDC peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Program the required configuration through the following parameters: + the LTDC timing, the horizontal and vertical polarity, + the pixel clock polarity, Data Enable polarity and the LTDC background color value + using HAL_LTDC_Init() function + + (#) Program the required configuration through the following parameters: + the pixel format, the blending factors, input alpha value, the window size + and the image size using HAL_LTDC_ConfigLayer() function for foreground + or/and background layer. + + (#) Optionally, configure and enable the CLUT using HAL_LTDC_ConfigCLUT() and + HAL_LTDC_EnableCLUT functions. + + (#) Optionally, enable the Dither using HAL_LTDC_EnableDither(). + + (#) Optionally, configure and enable the Color keying using HAL_LTDC_ConfigColorKeying() + and HAL_LTDC_EnableColorKeying functions. + + (#) Optionally, configure LineInterrupt using HAL_LTDC_ProgramLineEvent() + function + + (#) If needed, reconfigure and change the pixel format value, the alpha value + value, the window size, the window position and the layer start address + for foreground or/and background layer using respectively the following + functions: HAL_LTDC_SetPixelFormat(), HAL_LTDC_SetAlpha(), HAL_LTDC_SetWindowSize(), + HAL_LTDC_SetWindowPosition(), HAL_LTDC_SetAddress. + + (#) To control LTDC state you can use the following function: HAL_LTDC_GetState() + + *** LTDC HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in LTDC HAL driver. + + (+) __HAL_LTDC_ENABLE: Enable the LTDC. + (+) __HAL_LTDC_DISABLE: Disable the LTDC. + (+) __HAL_LTDC_LAYER_ENABLE: Enable the LTDC Layer. + (+) __HAL_LTDC_LAYER_DISABLE: Disable the LTDC Layer. + (+) __HAL_LTDC_RELOAD_CONFIG: Reload Layer Configuration. + (+) __HAL_LTDC_GET_FLAG: Get the LTDC pending flags. + (+) __HAL_LTDC_CLEAR_FLAG: Clear the LTDC pending flags. + (+) __HAL_LTDC_ENABLE_IT: Enable the specified LTDC interrupts. + (+) __HAL_LTDC_DISABLE_IT: Disable the specified LTDC interrupts. + (+) __HAL_LTDC_GET_IT_SOURCE: Check whether the specified LTDC interrupt has occurred or not. + + [..] + (@) You can refer to the LTDC HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ +/** @defgroup LTDC LTDC + * @brief LTDC HAL module driver + * @{ + */ + +#ifdef HAL_LTDC_MODULE_ENABLED + +#if defined(STM32F429xx) || defined(STM32F439xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void LTDC_SetConfig(LTDC_HandleTypeDef *hltdc, LTDC_LayerCfgTypeDef *pLayerCfg, uint32_t LayerIdx); +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup LTDC_Exported_Functions LTDC Exported Functions + * @{ + */ + +/** @defgroup LTDC_Exported_Functions_Group1 Initialization and Configuration functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize and configure the LTDC + (+) De-initialize the LTDC + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the LTDC according to the specified + * parameters in the LTDC_InitTypeDef and create the associated handle. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_Init(LTDC_HandleTypeDef *hltdc) +{ + uint32_t tmp = 0, tmp1 = 0; + + /* Check the LTDC peripheral state */ + if(hltdc == NULL) + { + return HAL_ERROR; + } + + /* Check function parameters */ + assert_param(IS_LTDC_ALL_INSTANCE(hltdc->Instance)); + assert_param(IS_LTDC_HSYNC(hltdc->Init.HorizontalSync)); + assert_param(IS_LTDC_VSYNC(hltdc->Init.VerticalSync)); + assert_param(IS_LTDC_AHBP(hltdc->Init.AccumulatedHBP)); + assert_param(IS_LTDC_AVBP(hltdc->Init.AccumulatedVBP)); + assert_param(IS_LTDC_AAH(hltdc->Init.AccumulatedActiveH)); + assert_param(IS_LTDC_AAW(hltdc->Init.AccumulatedActiveW)); + assert_param(IS_LTDC_TOTALH(hltdc->Init.TotalHeigh)); + assert_param(IS_LTDC_TOTALW(hltdc->Init.TotalWidth)); + assert_param(IS_LTDC_HSPOL(hltdc->Init.HSPolarity)); + assert_param(IS_LTDC_VSPOL(hltdc->Init.VSPolarity)); + assert_param(IS_LTDC_DEPOL(hltdc->Init.DEPolarity)); + assert_param(IS_LTDC_PCPOL(hltdc->Init.PCPolarity)); + + if(hltdc->State == HAL_LTDC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hltdc->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_LTDC_MspInit(hltdc); + } + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Configures the HS, VS, DE and PC polarity */ + hltdc->Instance->GCR &= ~(LTDC_GCR_HSPOL | LTDC_GCR_VSPOL | LTDC_GCR_DEPOL | LTDC_GCR_PCPOL); + hltdc->Instance->GCR |= (uint32_t)(hltdc->Init.HSPolarity | hltdc->Init.VSPolarity | \ + hltdc->Init.DEPolarity | hltdc->Init.PCPolarity); + + /* Sets Synchronization size */ + hltdc->Instance->SSCR &= ~(LTDC_SSCR_VSH | LTDC_SSCR_HSW); + tmp = (hltdc->Init.HorizontalSync << 16); + hltdc->Instance->SSCR |= (tmp | hltdc->Init.VerticalSync); + + /* Sets Accumulated Back porch */ + hltdc->Instance->BPCR &= ~(LTDC_BPCR_AVBP | LTDC_BPCR_AHBP); + tmp = (hltdc->Init.AccumulatedHBP << 16); + hltdc->Instance->BPCR |= (tmp | hltdc->Init.AccumulatedVBP); + + /* Sets Accumulated Active Width */ + hltdc->Instance->AWCR &= ~(LTDC_AWCR_AAH | LTDC_AWCR_AAW); + tmp = (hltdc->Init.AccumulatedActiveW << 16); + hltdc->Instance->AWCR |= (tmp | hltdc->Init.AccumulatedActiveH); + + /* Sets Total Width */ + hltdc->Instance->TWCR &= ~(LTDC_TWCR_TOTALH | LTDC_TWCR_TOTALW); + tmp = (hltdc->Init.TotalWidth << 16); + hltdc->Instance->TWCR |= (tmp | hltdc->Init.TotalHeigh); + + /* Sets the background color value */ + tmp = ((uint32_t)(hltdc->Init.Backcolor.Green) << 8); + tmp1 = ((uint32_t)(hltdc->Init.Backcolor.Red) << 16); + hltdc->Instance->BCCR &= ~(LTDC_BCCR_BCBLUE | LTDC_BCCR_BCGREEN | LTDC_BCCR_BCRED); + hltdc->Instance->BCCR |= (tmp1 | tmp | hltdc->Init.Backcolor.Blue); + + /* Enable the transfer Error interrupt */ + __HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_TE); + + /* Enable the FIFO underrun interrupt */ + __HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_FU); + + /* Enable LTDC by setting LTDCEN bit */ + __HAL_LTDC_ENABLE(hltdc); + + /* Initialize the error code */ + hltdc->ErrorCode = HAL_LTDC_ERROR_NONE; + + /* Initialize the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Deinitializes the LTDC peripheral registers to their default reset + * values. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ + +HAL_StatusTypeDef HAL_LTDC_DeInit(LTDC_HandleTypeDef *hltdc) +{ + /* DeInit the low level hardware */ + HAL_LTDC_MspDeInit(hltdc); + + /* Initialize the error code */ + hltdc->ErrorCode = HAL_LTDC_ERROR_NONE; + + /* Initialize the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Initializes the LTDC MSP. + * @param hltdc : pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_MspInit(LTDC_HandleTypeDef* hltdc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the LTDC MSP. + * @param hltdc : pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_MspDeInit(LTDC_HandleTypeDef* hltdc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LTDC_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] This section provides function allowing to: + (+) Handle LTDC interrupt request + +@endverbatim + * @{ + */ +/** + * @brief Handles LTDC interrupt request. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ +void HAL_LTDC_IRQHandler(LTDC_HandleTypeDef *hltdc) +{ + /* Transfer Error Interrupt management ***************************************/ + if(__HAL_LTDC_GET_FLAG(hltdc, LTDC_FLAG_TE) != RESET) + { + if(__HAL_LTDC_GET_IT_SOURCE(hltdc, LTDC_IT_TE) != RESET) + { + /* Disable the transfer Error interrupt */ + __HAL_LTDC_DISABLE_IT(hltdc, LTDC_IT_TE); + + /* Clear the transfer error flag */ + __HAL_LTDC_CLEAR_FLAG(hltdc, LTDC_FLAG_TE); + + /* Update error code */ + hltdc->ErrorCode |= HAL_LTDC_ERROR_TE; + + /* Change LTDC state */ + hltdc->State = HAL_LTDC_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + /* Transfer error Callback */ + HAL_LTDC_ErrorCallback(hltdc); + } + } + /* FIFO underrun Interrupt management ***************************************/ + if(__HAL_LTDC_GET_FLAG(hltdc, LTDC_FLAG_FU) != RESET) + { + if(__HAL_LTDC_GET_IT_SOURCE(hltdc, LTDC_IT_FU) != RESET) + { + /* Disable the FIFO underrun interrupt */ + __HAL_LTDC_DISABLE_IT(hltdc, LTDC_IT_FU); + + /* Clear the FIFO underrun flag */ + __HAL_LTDC_CLEAR_FLAG(hltdc, LTDC_FLAG_FU); + + /* Update error code */ + hltdc->ErrorCode |= HAL_LTDC_ERROR_FU; + + /* Change LTDC state */ + hltdc->State = HAL_LTDC_STATE_ERROR; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + /* Transfer error Callback */ + HAL_LTDC_ErrorCallback(hltdc); + } + } + /* Line Interrupt management ************************************************/ + if(__HAL_LTDC_GET_FLAG(hltdc, LTDC_FLAG_LI) != RESET) + { + if(__HAL_LTDC_GET_IT_SOURCE(hltdc, LTDC_IT_LI) != RESET) + { + /* Disable the Line interrupt */ + __HAL_LTDC_DISABLE_IT(hltdc, LTDC_IT_LI); + + /* Clear the Line interrupt flag */ + __HAL_LTDC_CLEAR_FLAG(hltdc, LTDC_FLAG_LI); + + /* Change LTDC state */ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + /* Line interrupt Callback */ + HAL_LTDC_LineEvenCallback(hltdc); + } + } +} + +/** + * @brief Error LTDC callback. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_ErrorCallback(LTDC_HandleTypeDef *hltdc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Line Event callback. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval None + */ +__weak void HAL_LTDC_LineEvenCallback(LTDC_HandleTypeDef *hltdc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_LTDC_LineEvenCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup LTDC_Exported_Functions_Group3 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Configure the LTDC foreground or/and background parameters. + (+) Set the active layer. + (+) Configure the color keying. + (+) Configure the C-LUT. + (+) Enable / Disable the color keying. + (+) Enable / Disable the C-LUT. + (+) Update the layer position. + (+) Update the layer size. + (+) Update pixel format on the fly. + (+) Update transparency on the fly. + (+) Update address on the fly. + +@endverbatim + * @{ + */ + +/** + * @brief Configure the LTDC Layer according to the specified + * parameters in the LTDC_InitTypeDef and create the associated handle. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param pLayerCfg: pointer to a LTDC_LayerCfgTypeDef structure that contains + * the configuration information for the Layer. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigLayer(LTDC_HandleTypeDef *hltdc, LTDC_LayerCfgTypeDef *pLayerCfg, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_PIXEL_FORMAT(pLayerCfg->PixelFormat)); + assert_param(IS_LTDC_BLENDING_FACTOR1(pLayerCfg->BlendingFactor1)); + assert_param(IS_LTDC_BLENDING_FACTOR2(pLayerCfg->BlendingFactor2)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + assert_param(IS_LTDC_ALPHA(pLayerCfg->Alpha0)); + assert_param(IS_LTDC_CFBLL(pLayerCfg->ImageWidth)); + assert_param(IS_LTDC_CFBLNBR(pLayerCfg->ImageHeight)); + + /* Copy new layer configuration into handle structure */ + hltdc->LayerCfg[LayerIdx] = *pLayerCfg; + + /* Configure the LTDC Layer */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Initialize the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Configure the color keying. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param RGBValue: the color key value + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigColorKeying(LTDC_HandleTypeDef *hltdc, uint32_t RGBValue, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Configures the default color values */ + LTDC_LAYER(hltdc, LayerIdx)->CKCR &= ~(LTDC_LxCKCR_CKBLUE | LTDC_LxCKCR_CKGREEN | LTDC_LxCKCR_CKRED); + LTDC_LAYER(hltdc, LayerIdx)->CKCR = RGBValue; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Load the color lookup table. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param pCLUT: pointer to the color lookup table address. + * @param CLUTSize: the color lookup table size. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ConfigCLUT(LTDC_HandleTypeDef *hltdc, uint32_t *pCLUT, uint32_t CLUTSize, uint32_t LayerIdx) +{ + uint32_t tmp = 0; + uint32_t counter = 0; + uint32_t pcounter = 0; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + for(counter = 0; (counter < CLUTSize); counter++) + { + if(hltdc->LayerCfg[LayerIdx].PixelFormat == LTDC_PIXEL_FORMAT_AL44) + { + tmp = (((counter + 16*counter) << 24) | ((uint32_t)(*pCLUT) & 0xFF) | ((uint32_t)(*pCLUT) & 0xFF00) | ((uint32_t)(*pCLUT) & 0xFF0000)); + } + else + { + tmp = ((counter << 24) | ((uint32_t)(*pCLUT) & 0xFF) | ((uint32_t)(*pCLUT) & 0xFF00) | ((uint32_t)(*pCLUT) & 0xFF0000)); + } + pcounter = (uint32_t)pCLUT + sizeof(*pCLUT); + pCLUT = (uint32_t *)pcounter; + + /* Specifies the C-LUT address and RGB value */ + LTDC_LAYER(hltdc, LayerIdx)->CLUTWR = tmp; + } + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enable the color keying. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_EnableColorKeying(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Enable LTDC color keying by setting COLKEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_COLKEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disable the color keying. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_DisableColorKeying(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color keying by setting COLKEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR &= ~(uint32_t)LTDC_LxCR_COLKEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enable the color lookup table. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_EnableCLUT(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color lookup table by setting CLUTEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_CLUTEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disable the color lookup table. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_DisableCLUT(LTDC_HandleTypeDef *hltdc, uint32_t LayerIdx) +{ + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Disable LTDC color lookup table by setting CLUTEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR &= ~(uint32_t)LTDC_LxCR_CLUTEN; + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Enables Dither. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_LTDC_EnableDither(LTDC_HandleTypeDef *hltdc) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Enable Dither by setting DTEN bit */ + LTDC->GCR |= (uint32_t)LTDC_GCR_DTEN; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Disables Dither. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_LTDC_DisableDither(LTDC_HandleTypeDef *hltdc) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Disable Dither by setting DTEN bit */ + LTDC->GCR &= ~(uint32_t)LTDC_GCR_DTEN; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Set the LTDC window size. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param XSize: LTDC Pixel per line + * @param YSize: LTDC Line number + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetWindowSize(LTDC_HandleTypeDef *hltdc, uint32_t XSize, uint32_t YSize, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Check the parameters (Layers parameters)*/ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + assert_param(IS_LTDC_CFBLL(XSize)); + assert_param(IS_LTDC_CFBLNBR(YSize)); + + /* update horizontal start/stop */ + pLayerCfg->WindowX0 = 0; + pLayerCfg->WindowX1 = XSize + pLayerCfg->WindowX0; + + /* update vertical start/stop */ + pLayerCfg->WindowY0 = 0; + pLayerCfg->WindowY1 = YSize + pLayerCfg->WindowY0; + + /* Reconfigures the color frame buffer pitch in byte */ + pLayerCfg->ImageWidth = XSize; + + /* Reconfigures the frame buffer line number */ + pLayerCfg->ImageHeight = YSize; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Set the LTDC window position. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param X0: LTDC window X offset + * @param Y0: LTDC window Y offset + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetWindowPosition(LTDC_HandleTypeDef *hltdc, uint32_t X0, uint32_t Y0, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_HCONFIGST(pLayerCfg->WindowX0)); + assert_param(IS_LTDC_HCONFIGSP(pLayerCfg->WindowX1)); + assert_param(IS_LTDC_VCONFIGST(pLayerCfg->WindowY0)); + assert_param(IS_LTDC_VCONFIGSP(pLayerCfg->WindowY1)); + + /* update horizontal start/stop */ + pLayerCfg->WindowX0 = X0; + pLayerCfg->WindowX1 = X0 + pLayerCfg->ImageWidth; + + /* update vertical start/stop */ + pLayerCfg->WindowY0 = Y0; + pLayerCfg->WindowY1 = Y0 + pLayerCfg->ImageHeight; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Reconfigure the pixel format. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Pixelformat: new pixel format value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetPixelFormat(LTDC_HandleTypeDef *hltdc, uint32_t Pixelformat, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + assert_param(IS_LTDC_PIXEL_FORMAT(Pixelformat)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the pixel format */ + pLayerCfg->PixelFormat = Pixelformat; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Reconfigure the layer alpha value. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Alpha: new alpha value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1 + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetAlpha(LTDC_HandleTypeDef *hltdc, uint32_t Alpha, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_ALPHA(Alpha)); + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the Alpha value */ + pLayerCfg->Alpha = Alpha; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} +/** + * @brief Reconfigure the frame buffer Address. + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Address: new address value. + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: + * 0 or 1. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_SetAddress(LTDC_HandleTypeDef *hltdc, uint32_t Address, uint32_t LayerIdx) +{ + LTDC_LayerCfgTypeDef *pLayerCfg; + + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LAYER(LayerIdx)); + + /* Get layer configuration from handle structure */ + pLayerCfg = &hltdc->LayerCfg[LayerIdx]; + + /* Reconfigure the Address */ + pLayerCfg->FBStartAdress = Address; + + /* Set LTDC parameters */ + LTDC_SetConfig(hltdc, pLayerCfg, LayerIdx); + + /* Sets the Reload type */ + hltdc->Instance->SRCR = LTDC_SRCR_IMR; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @brief Define the position of the line interrupt . + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param Line: Line Interrupt Position. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LTDC_ProgramLineEvent(LTDC_HandleTypeDef *hltdc, uint32_t Line) +{ + /* Process locked */ + __HAL_LOCK(hltdc); + + /* Change LTDC peripheral state */ + hltdc->State = HAL_LTDC_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_LTDC_LIPOS(Line)); + + /* Enable the Line interrupt */ + __HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_LI); + + /* Sets the Line Interrupt position */ + LTDC->LIPCR = (uint32_t)Line; + + /* Change the LTDC state*/ + hltdc->State = HAL_LTDC_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hltdc); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup LTDC_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief Peripheral State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Check the LTDC state. + (+) Get error code. + +@endverbatim + * @{ + */ + +/** + * @brief Return the LTDC state + * @param hltdc: pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @retval HAL state + */ +HAL_LTDC_StateTypeDef HAL_LTDC_GetState(LTDC_HandleTypeDef *hltdc) +{ + return hltdc->State; +} + +/** +* @brief Return the LTDC error code +* @param hltdc : pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. +* @retval LTDC Error Code +*/ +uint32_t HAL_LTDC_GetError(LTDC_HandleTypeDef *hltdc) +{ + return hltdc->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief Configures the LTDC peripheral + * @param hltdc : Pointer to a LTDC_HandleTypeDef structure that contains + * the configuration information for the LTDC. + * @param pLayerCfg: Pointer LTDC Layer Configuration structure + * @param LayerIdx: LTDC Layer index. + * This parameter can be one of the following values: 0 or 1 + * @retval None + */ +static void LTDC_SetConfig(LTDC_HandleTypeDef *hltdc, LTDC_LayerCfgTypeDef *pLayerCfg, uint32_t LayerIdx) +{ + uint32_t tmp = 0; + uint32_t tmp1 = 0; + uint32_t tmp2 = 0; + + /* Configures the horizontal start and stop position */ + tmp = ((pLayerCfg->WindowX1 + ((hltdc->Instance->BPCR & LTDC_BPCR_AHBP) >> 16)) << 16); + LTDC_LAYER(hltdc, LayerIdx)->WHPCR &= ~(LTDC_LxWHPCR_WHSTPOS | LTDC_LxWHPCR_WHSPPOS); + LTDC_LAYER(hltdc, LayerIdx)->WHPCR = ((pLayerCfg->WindowX0 + ((hltdc->Instance->BPCR & LTDC_BPCR_AHBP) >> 16) + 1) | tmp); + + /* Configures the vertical start and stop position */ + tmp = ((pLayerCfg->WindowY1 + (hltdc->Instance->BPCR & LTDC_BPCR_AVBP)) << 16); + LTDC_LAYER(hltdc, LayerIdx)->WVPCR &= ~(LTDC_LxWVPCR_WVSTPOS | LTDC_LxWVPCR_WVSPPOS); + LTDC_LAYER(hltdc, LayerIdx)->WVPCR = ((pLayerCfg->WindowY0 + (hltdc->Instance->BPCR & LTDC_BPCR_AVBP) + 1) | tmp); + + /* Specifies the pixel format */ + LTDC_LAYER(hltdc, LayerIdx)->PFCR &= ~(LTDC_LxPFCR_PF); + LTDC_LAYER(hltdc, LayerIdx)->PFCR = (pLayerCfg->PixelFormat); + + /* Configures the default color values */ + tmp = ((uint32_t)(pLayerCfg->Backcolor.Green) << 8); + tmp1 = ((uint32_t)(pLayerCfg->Backcolor.Red) << 16); + tmp2 = (pLayerCfg->Alpha0 << 24); + LTDC_LAYER(hltdc, LayerIdx)->DCCR &= ~(LTDC_LxDCCR_DCBLUE | LTDC_LxDCCR_DCGREEN | LTDC_LxDCCR_DCRED | LTDC_LxDCCR_DCALPHA); + LTDC_LAYER(hltdc, LayerIdx)->DCCR = (pLayerCfg->Backcolor.Blue | tmp | tmp1 | tmp2); + + /* Specifies the constant alpha value */ + LTDC_LAYER(hltdc, LayerIdx)->CACR &= ~(LTDC_LxCACR_CONSTA); + LTDC_LAYER(hltdc, LayerIdx)->CACR = (pLayerCfg->Alpha); + + /* Specifies the blending factors */ + LTDC_LAYER(hltdc, LayerIdx)->BFCR &= ~(LTDC_LxBFCR_BF2 | LTDC_LxBFCR_BF1); + LTDC_LAYER(hltdc, LayerIdx)->BFCR = (pLayerCfg->BlendingFactor1 | pLayerCfg->BlendingFactor2); + + /* Configures the color frame buffer start address */ + LTDC_LAYER(hltdc, LayerIdx)->CFBAR &= ~(LTDC_LxCFBAR_CFBADD); + LTDC_LAYER(hltdc, LayerIdx)->CFBAR = (pLayerCfg->FBStartAdress); + + if(pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_ARGB8888) + { + tmp = 4; + } + else if (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_RGB888) + { + tmp = 3; + } + else if((pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_ARGB4444) || \ + (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_RGB565) || \ + (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_ARGB1555) || \ + (pLayerCfg->PixelFormat == LTDC_PIXEL_FORMAT_AL88)) + { + tmp = 2; + } + else + { + tmp = 1; + } + + /* Configures the color frame buffer pitch in byte */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLR &= ~(LTDC_LxCFBLR_CFBLL | LTDC_LxCFBLR_CFBP); + LTDC_LAYER(hltdc, LayerIdx)->CFBLR = (((pLayerCfg->ImageWidth * tmp) << 16) | (((pLayerCfg->WindowX1 - pLayerCfg->WindowX0) * tmp) + 3)); + + /* Configures the frame buffer line number */ + LTDC_LAYER(hltdc, LayerIdx)->CFBLNR &= ~(LTDC_LxCFBLNR_CFBLNBR); + LTDC_LAYER(hltdc, LayerIdx)->CFBLNR = (pLayerCfg->ImageHeight); + + /* Enable LTDC_Layer by setting LEN bit */ + LTDC_LAYER(hltdc, LayerIdx)->CR |= (uint32_t)LTDC_LxCR_LEN; +} + +/** + * @} + */ +#endif /* STM32F429xx || STM32F439xx */ +#endif /* HAL_LTDC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_msp_template.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_msp_template.c new file mode 100644 index 0000000..62e8973 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_msp_template.c @@ -0,0 +1,119 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_msp_template.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief This file contains the HAL System and Peripheral (PPP) MSP initialization + * and de-initialization functions. + * It should be copied to the application folder and renamed into 'stm32f4xx_hal_msp.c'. + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup HAL_MSP HAL MSP + * @brief HAL MSP module. + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup HAL_MSP_Private_Functions HAL MSP Private Functions + * @{ + */ + +/** + * @brief Initializes the Global MSP. + * @note This function is called from HAL_Init() function to perform system + * level initialization (GPIOs, clock, DMA, interrupt). + * @retval None + */ +void HAL_MspInit(void) +{ + +} + +/** + * @brief DeInitializes the Global MSP. + * @note This functiona is called from HAL_DeInit() function to perform system + * level de-initialization (GPIOs, clock, DMA, interrupt). + * @retval None + */ +void HAL_MspDeInit(void) +{ + +} + +/** + * @brief Initializes the PPP MSP. + * @note This functiona is called from HAL_PPP_Init() function to perform + * peripheral(PPP) system level initialization (GPIOs, clock, DMA, interrupt) + * @retval None + */ +void HAL_PPP_MspInit(void) +{ + +} + +/** + * @brief DeInitializes the PPP MSP. + * @note This functiona is called from HAL_PPP_DeInit() function to perform + * peripheral(PPP) system level de-initialization (GPIOs, clock, DMA, interrupt) + * @retval None + */ +void HAL_PPP_MspDeInit(void) +{ + +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_nand.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_nand.c new file mode 100644 index 0000000..4b0a4dc --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_nand.c @@ -0,0 +1,1125 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_nand.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief NAND HAL module driver. + * This file provides a generic firmware to drive NAND memories mounted + * as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control NAND flash memories. It uses the FMC/FSMC layer functions to interface + with NAND devices. This driver is used as follows: + + (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() + with control and timing parameters for both common and attribute spaces. + + (+) Read NAND flash memory maker and device IDs using the function + HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef + structure declared by the function caller. + + (+) Access NAND flash memory by read/write operations using the functions + HAL_NAND_Read_Page()/HAL_NAND_Read_SpareArea(), HAL_NAND_Write_Page()/HAL_NAND_Write_SpareArea() + to read/write page(s)/spare area(s). These functions use specific device + information (Block, page size..) predefined by the user in the HAL_NAND_Info_TypeDef + structure. The read/write address information is contained by the Nand_Address_Typedef + structure passed as parameter. + + (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset(). + + (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block(). + The erase block address information is contained in the Nand_Address_Typedef + structure passed as parameter. + + (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status(). + + (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/ + HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction + feature or the function HAL_NAND_GetECC() to get the ECC correction code. + + (+) You can monitor the NAND device HAL state by calling the function + HAL_NAND_GetState() + + [..] + (@) This driver is a set of generic APIs which handle standard NAND flash operations. + If a NAND flash device contains different operations and/or implementations, + it should be implemented separately. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + + +#ifdef HAL_NAND_MODULE_ENABLED + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F446xx) + +/** @defgroup NAND NAND + * @brief NAND HAL module driver + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @defgroup NAND_Private_Constants NAND Private Constants + * @{ + */ + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/** @defgroup NAND_Private_Macros NAND Private Macros + * @{ + */ + +/** + * @} + */ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup NAND_Exported_Functions NAND Exported Functions + * @{ + */ + +/** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### NAND Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the NAND memory + +@endverbatim + * @{ + */ + +/** + * @brief Perform NAND memory Initialization sequence + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param ComSpace_Timing: pointer to Common space timing structure + * @param AttSpace_Timing: pointer to Attribute space timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing) +{ + /* Check the NAND handle state */ + if(hnand == NULL) + { + return HAL_ERROR; + } + + if(hnand->State == HAL_NAND_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hnand->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_NAND_MspInit(hnand); + } + + /* Initialize NAND control Interface */ + FMC_NAND_Init(hnand->Instance, &(hnand->Init)); + + /* Initialize NAND common space timing Interface */ + FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank); + + /* Initialize NAND attribute space timing Interface */ + FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank); + + /* Enable the NAND device */ + __FMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Perform NAND memory De-Initialization sequence + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand) +{ + /* Initialize the low level hardware (MSP) */ + HAL_NAND_MspDeInit(hnand); + + /* Configure the NAND registers with their reset values */ + FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank); + + /* Reset the NAND controller state */ + hnand->State = HAL_NAND_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND MSP Init + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_MspInit could be implemented in the user file + */ +} + +/** + * @brief NAND MSP DeInit + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_MspDeInit could be implemented in the user file + */ +} + + +/** + * @brief This function handles NAND device interrupt request. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status +*/ +void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand) +{ + /* Check NAND interrupt Rising edge flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt Rising edge pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE); + } + + /* Check NAND interrupt Level flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt Level pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL); + } + + /* Check NAND interrupt Falling edge flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt Falling edge pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE); + } + + /* Check NAND interrupt FIFO empty flag */ + if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT)) + { + /* NAND interrupt callback*/ + HAL_NAND_ITCallback(hnand); + + /* Clear NAND interrupt FIFO empty pending bit */ + __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT); + } + +} + +/** + * @brief NAND interrupt feature callback + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval None + */ +__weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NAND_ITCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup NAND_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### NAND Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the NAND + memory + +@endverbatim + * @{ + */ + +/** + * @brief Read the NAND memory electronic signature + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pNAND_ID: NAND ID structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID) +{ + __IO uint32_t data = 0; + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Send Read ID command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_READID; + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; + + /* Read the electronic signature from NAND flash */ + data = *(__IO uint32_t *)deviceaddress; + + /* Return the data read */ + pNAND_ID->Maker_Id = ADDR_1ST_CYCLE(data); + pNAND_ID->Device_Id = ADDR_2ND_CYCLE(data); + pNAND_ID->Third_Id = ADDR_3RD_CYCLE(data); + pNAND_ID->Fourth_Id = ADDR_4TH_CYCLE(data); + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND memory reset + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Send NAND reset command */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF; + + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; + +} + +/** + * @brief Read Page(s) from NAND memory block + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to destination read buffer + * @param NumPageToRead : number of pages to read from block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Read_Page(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead) +{ + __IO uint32_t index = 0; + uint32_t deviceaddress = 0, size = 0, numpagesread = 0, addressstatus = NAND_VALID_ADDRESS; + NAND_AddressTypeDef nandaddress; + uint32_t addressoffset = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Save the content of pAddress as it will be modified */ + nandaddress.Block = pAddress->Block; + nandaddress.Page = pAddress->Page; + nandaddress.Zone = pAddress->Zone; + + /* Page(s) read loop */ + while((NumPageToRead != 0) && (addressstatus == NAND_VALID_ADDRESS)) + { + /* update the buffer size */ + size = hnand->Info.PageSize + ((hnand->Info.PageSize) * numpagesread); + + /* Get the address offset */ + addressoffset = ARRAY_ADDRESS(&nandaddress, hnand); + + /* Send read page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset); + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + + /* Get Data into Buffer */ + for(index = size; index != 0; index--) + { + *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress; + } + + /* Increment read pages number */ + numpagesread++; + + /* Decrement pages to read */ + NumPageToRead--; + + /* Increment the NAND address */ + addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; + +} + +/** + * @brief Write Page(s) to NAND memory block + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to source buffer to write + * @param NumPageToWrite : number of pages to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_Page(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite) +{ + __IO uint32_t index = 0; + uint32_t tickstart = 0; + uint32_t deviceaddress = 0 , size = 0, numpageswritten = 0, addressstatus = NAND_VALID_ADDRESS; + NAND_AddressTypeDef nandaddress; + uint32_t addressoffset = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Save the content of pAddress as it will be modified */ + nandaddress.Block = pAddress->Block; + nandaddress.Page = pAddress->Page; + nandaddress.Zone = pAddress->Zone; + + /* Page(s) write loop */ + while((NumPageToWrite != 0) && (addressstatus == NAND_VALID_ADDRESS)) + { + /* update the buffer size */ + size = hnand->Info.PageSize + ((hnand->Info.PageSize) * numpageswritten); + + /* Get the address offset */ + addressoffset = ARRAY_ADDRESS(&nandaddress, hnand); + + /* Send write page command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A; + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset); + } + + /* Write data to memory */ + for(index = size; index != 0; index--) + { + *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++; + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while(HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Increment written pages number */ + numpageswritten++; + + /* Decrement pages to write */ + NumPageToWrite--; + + /* Increment the NAND address */ + addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Read Spare area(s) from NAND memory + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer: pointer to source buffer to write + * @param NumSpareAreaToRead: Number of spare area to read + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_NAND_Read_SpareArea(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead) +{ + __IO uint32_t index = 0; + uint32_t deviceaddress = 0, size = 0, num_spare_area_read = 0, addressstatus = NAND_VALID_ADDRESS; + NAND_AddressTypeDef nandaddress; + uint32_t addressoffset = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Save the content of pAddress as it will be modified */ + nandaddress.Block = pAddress->Block; + nandaddress.Page = pAddress->Page; + nandaddress.Zone = pAddress->Zone; + + /* Spare area(s) read loop */ + while((NumSpareAreaToRead != 0) && (addressstatus == NAND_VALID_ADDRESS)) + { + /* update the buffer size */ + size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * num_spare_area_read); + + /* Get the address offset */ + addressoffset = ARRAY_ADDRESS(&nandaddress, hnand); + + /* Send read spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; + + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset); + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1; + + /* Get Data into Buffer */ + for (index = size ;index != 0; index--) + { + *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress; + } + + /* Increment read spare areas number */ + num_spare_area_read++; + + /* Decrement spare areas to read */ + NumSpareAreaToRead--; + + /* Increment the NAND address */ + addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief Write Spare area(s) to NAND memory + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @param pBuffer : pointer to source buffer to write + * @param NumSpareAreaTowrite : number of spare areas to write to block + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Write_SpareArea(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite) +{ + __IO uint32_t index = 0; + uint32_t tickstart = 0; + uint32_t deviceaddress = 0, size = 0, num_spare_area_written = 0, addressstatus = NAND_VALID_ADDRESS; + NAND_AddressTypeDef nandaddress; + uint32_t addressoffset = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Update the FMC_NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Save the content of pAddress as it will be modified */ + nandaddress.Block = pAddress->Block; + nandaddress.Page = pAddress->Page; + nandaddress.Zone = pAddress->Zone; + + /* Spare area(s) write loop */ + while((NumSpareAreaTowrite != 0) && (addressstatus == NAND_VALID_ADDRESS)) + { + /* update the buffer size */ + size = (hnand->Info.SpareAreaSize) + ((hnand->Info.SpareAreaSize) * num_spare_area_written); + + /* Get the address offset */ + addressoffset = ARRAY_ADDRESS(&nandaddress, hnand); + + /* Send write Spare area command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C; + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0; + + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00; + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(addressoffset); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(addressoffset); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(addressoffset); + } + + /* Write data to memory */ + for(; index < size; index++) + { + *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++; + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while(HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) + { + return HAL_TIMEOUT; + } + } + + /* Increment written spare areas number */ + num_spare_area_written++; + + /* Decrement spare areas to write */ + NumSpareAreaTowrite--; + + /* Increment the NAND address */ + addressstatus = HAL_NAND_Address_Inc(hnand, &nandaddress); + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND memory Block erase + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress : pointer to NAND address structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) +{ + uint32_t deviceaddress = 0; + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hnand); + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Send Erase block command sequence */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0; + + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + + /* for 512 and 1 GB devices, 4th cycle is required */ + if(hnand->Info.BlockNbr >= 1024) + { + *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_4TH_CYCLE(ARRAY_ADDRESS(pAddress, hnand)); + } + + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; + + /* Update the NAND controller state */ + hnand->State = HAL_NAND_STATE_READY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Read status until NAND is ready */ + while(HAL_NAND_Read_Status(hnand) != NAND_READY) + { + if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT) + { + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_TIMEOUT; + } + } + + /* Process unlocked */ + __HAL_UNLOCK(hnand); + + return HAL_OK; +} + +/** + * @brief NAND memory read status + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval NAND status + */ +uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand) +{ + uint32_t data = 0; + uint32_t deviceaddress = 0; + + /* Identify the device address */ + if(hnand->Init.NandBank == FMC_NAND_BANK2) + { + deviceaddress = NAND_DEVICE1; + } + else + { + deviceaddress = NAND_DEVICE2; + } + + /* Send Read status operation command */ + *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS; + + /* Read status register data */ + data = *(__IO uint8_t *)deviceaddress; + + /* Return the status */ + if((data & NAND_ERROR) == NAND_ERROR) + { + return NAND_ERROR; + } + else if((data & NAND_READY) == NAND_READY) + { + return NAND_READY; + } + + return NAND_BUSY; +} + +/** + * @brief Increment the NAND memory address + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param pAddress: pointer to NAND address structure + * @retval The new status of the increment address operation. It can be: + * - NAND_VALID_ADDRESS: When the new address is valid address + * - NAND_INVALID_ADDRESS: When the new address is invalid address + */ +uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress) +{ + uint32_t status = NAND_VALID_ADDRESS; + + /* Increment page address */ + pAddress->Page++; + + /* Check NAND address is valid */ + if(pAddress->Page == hnand->Info.BlockSize) + { + pAddress->Page = 0; + pAddress->Block++; + + if(pAddress->Block == hnand->Info.ZoneSize) + { + pAddress->Block = 0; + pAddress->Zone++; + + if(pAddress->Zone == (hnand->Info.ZoneSize/ hnand->Info.BlockNbr)) + { + status = NAND_INVALID_ADDRESS; + } + } + } + + return (status); +} +/** + * @} + */ + +/** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### NAND Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the NAND interface. + +@endverbatim + * @{ + */ + + +/** + * @brief Enables dynamically NAND ECC feature. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand) +{ + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Enable ECC feature */ + FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand) +{ + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Disable ECC feature */ + FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Disables dynamically NAND ECC feature. + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @param ECCval: pointer to ECC value + * @param Timeout: maximum timeout to wait + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the NAND controller state */ + if(hnand->State == HAL_NAND_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_BUSY; + + /* Get NAND ECC value */ + status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout); + + /* Update the NAND state */ + hnand->State = HAL_NAND_STATE_READY; + + return status; +} + +/** + * @} + */ + + +/** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### NAND State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the NAND controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief return the NAND state + * @param hnand: pointer to a NAND_HandleTypeDef structure that contains + * the configuration information for NAND module. + * @retval HAL state + */ +HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand) +{ + return hnand->State; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx ||\ + STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx ||\ + STM32F446xx */ + +#endif /* HAL_NAND_MODULE_ENABLED */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_nor.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_nor.c new file mode 100644 index 0000000..13800c3 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_nor.c @@ -0,0 +1,1007 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_nor.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief NOR HAL module driver. + * This file provides a generic firmware to drive NOR memories mounted + * as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control NOR flash memories. It uses the FMC/FSMC layer functions to interface + with NOR devices. This driver is used as follows: + + (+) NOR flash memory configuration sequence using the function HAL_NOR_Init() + with control and timing parameters for both normal and extended mode. + + (+) Read NOR flash memory manufacturer code and device IDs using the function + HAL_NOR_Read_ID(). The read information is stored in the NOR_ID_TypeDef + structure declared by the function caller. + + (+) Access NOR flash memory by read/write data unit operations using the functions + HAL_NOR_Read(), HAL_NOR_Program(). + + (+) Perform NOR flash erase block/chip operations using the functions + HAL_NOR_Erase_Block() and HAL_NOR_Erase_Chip(). + + (+) Read the NOR flash CFI (common flash interface) IDs using the function + HAL_NOR_Read_CFI(). The read information is stored in the NOR_CFI_TypeDef + structure declared by the function caller. + + (+) You can also control the NOR device by calling the control APIs HAL_NOR_WriteOperation_Enable()/ + HAL_NOR_WriteOperation_Disable() to respectively enable/disable the NOR write operation + + (+) You can monitor the NOR device HAL state by calling the function + HAL_NOR_GetState() + [..] + (@) This driver is a set of generic APIs which handle standard NOR flash operations. + If a NOR flash device contains different operations and/or implementations, + it should be implemented separately. + + *** NOR HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in NOR HAL driver. + + (+) NOR_WRITE : NOR memory write data to specified address + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup NOR NOR + * @brief NOR driver modules + * @{ + */ +#ifdef HAL_NOR_MODULE_ENABLED +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F446xx) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup NOR_Private_Defines NOR Private Defines + * @{ + */ + +/* Constants to define address to set to write a command */ +#define NOR_CMD_ADDRESS_FIRST (uint16_t)0x0555 +#define NOR_CMD_ADDRESS_FIRST_CFI (uint16_t)0x0055 +#define NOR_CMD_ADDRESS_SECOND (uint16_t)0x02AA +#define NOR_CMD_ADDRESS_THIRD (uint16_t)0x0555 +#define NOR_CMD_ADDRESS_FOURTH (uint16_t)0x0555 +#define NOR_CMD_ADDRESS_FIFTH (uint16_t)0x02AA +#define NOR_CMD_ADDRESS_SIXTH (uint16_t)0x0555 + +/* Constants to define data to program a command */ +#define NOR_CMD_DATA_READ_RESET (uint16_t)0x00F0 +#define NOR_CMD_DATA_FIRST (uint16_t)0x00AA +#define NOR_CMD_DATA_SECOND (uint16_t)0x0055 +#define NOR_CMD_DATA_AUTO_SELECT (uint16_t)0x0090 +#define NOR_CMD_DATA_PROGRAM (uint16_t)0x00A0 +#define NOR_CMD_DATA_CHIP_BLOCK_ERASE_THIRD (uint16_t)0x0080 +#define NOR_CMD_DATA_CHIP_BLOCK_ERASE_FOURTH (uint16_t)0x00AA +#define NOR_CMD_DATA_CHIP_BLOCK_ERASE_FIFTH (uint16_t)0x0055 +#define NOR_CMD_DATA_CHIP_ERASE (uint16_t)0x0010 +#define NOR_CMD_DATA_CFI (uint16_t)0x0098 + +#define NOR_CMD_DATA_BUFFER_AND_PROG (uint8_t)0x25 +#define NOR_CMD_DATA_BUFFER_AND_PROG_CONFIRM (uint8_t)0x29 +#define NOR_CMD_DATA_BLOCK_ERASE (uint8_t)0x30 + +/* Mask on NOR STATUS REGISTER */ +#define NOR_MASK_STATUS_DQ5 (uint16_t)0x0020 +#define NOR_MASK_STATUS_DQ6 (uint16_t)0x0040 + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup NOR_Exported_Functions NOR Exported Functions + * @{ + */ + +/** @defgroup NOR_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### NOR Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the NOR memory + +@endverbatim + * @{ + */ + +/** + * @brief Perform the NOR memory Initialization sequence + * @param hnor: pointer to the NOR handle + * @param Timing: pointer to NOR control timing structure + * @param ExtTiming: pointer to NOR extended mode timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Init(NOR_HandleTypeDef *hnor, FMC_NORSRAM_TimingTypeDef *Timing, FMC_NORSRAM_TimingTypeDef *ExtTiming) +{ + /* Check the NOR handle parameter */ + if(hnor == NULL) + { + return HAL_ERROR; + } + + if(hnor->State == HAL_NOR_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hnor->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_NOR_MspInit(hnor); + } + + /* Initialize NOR control Interface */ + FMC_NORSRAM_Init(hnor->Instance, &(hnor->Init)); + + /* Initialize NOR timing Interface */ + FMC_NORSRAM_Timing_Init(hnor->Instance, Timing, hnor->Init.NSBank); + + /* Initialize NOR extended mode timing Interface */ + FMC_NORSRAM_Extended_Timing_Init(hnor->Extended, ExtTiming, hnor->Init.NSBank, hnor->Init.ExtendedMode); + + /* Enable the NORSRAM device */ + __FMC_NORSRAM_ENABLE(hnor->Instance, hnor->Init.NSBank); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Perform NOR memory De-Initialization sequence + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_DeInit(NOR_HandleTypeDef *hnor) +{ + /* De-Initialize the low level hardware (MSP) */ + HAL_NOR_MspDeInit(hnor); + + /* Configure the NOR registers with their reset values */ + FMC_NORSRAM_DeInit(hnor->Instance, hnor->Extended, hnor->Init.NSBank); + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief NOR MSP Init + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval None + */ +__weak void HAL_NOR_MspInit(NOR_HandleTypeDef *hnor) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NOR_MspInit could be implemented in the user file + */ +} + +/** + * @brief NOR MSP DeInit + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @retval None + */ +__weak void HAL_NOR_MspDeInit(NOR_HandleTypeDef *hnor) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NOR_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief NOR BSP Wait for Ready/Busy signal + * @param hnor: pointer to a NOR_HandleTypeDef structure that contains + * the configuration information for NOR module. + * @param Timeout: Maximum timeout value + * @retval None + */ +__weak void HAL_NOR_MspWait(NOR_HandleTypeDef *hnor, uint32_t Timeout) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_NOR_BspWait could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup NOR_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### NOR Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the NOR memory + +@endverbatim + * @{ + */ + +/** + * @brief Read NOR flash IDs + * @param hnor: pointer to the NOR handle + * @param pNOR_ID : pointer to NOR ID structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Read_ID(NOR_HandleTypeDef *hnor, NOR_IDTypeDef *pNOR_ID) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read ID command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_AUTO_SELECT); + + /* Read the NOR IDs */ + pNOR_ID->Manufacturer_Code = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, MC_ADDRESS); + pNOR_ID->Device_Code1 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, DEVICE_CODE1_ADDR); + pNOR_ID->Device_Code2 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, DEVICE_CODE2_ADDR); + pNOR_ID->Device_Code3 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, DEVICE_CODE3_ADDR); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Returns the NOR memory to Read mode. + * @param hnor: pointer to the NOR handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_ReturnToReadMode(NOR_HandleTypeDef *hnor) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + NOR_WRITE(deviceaddress, NOR_CMD_DATA_READ_RESET); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Read data from NOR memory + * @param hnor: pointer to the NOR handle + * @param pAddress: pointer to Device address + * @param pData : pointer to read data + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Read(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read data command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE((uint32_t)pAddress, NOR_CMD_DATA_READ_RESET); + + /* Read the data */ + *pData = *(__IO uint32_t *)(uint32_t)pAddress; + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Program data to NOR memory + * @param hnor: pointer to the NOR handle + * @param pAddress: Device address + * @param pData : pointer to the data to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Program(NOR_HandleTypeDef *hnor, uint32_t *pAddress, uint16_t *pData) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send program data command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_PROGRAM); + + /* Write the data */ + NOR_WRITE(pAddress, *pData); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Reads a half-word buffer from the NOR memory. + * @param hnor: pointer to the NOR handle + * @param uwAddress: NOR memory internal address to read from. + * @param pData: pointer to the buffer that receives the data read from the + * NOR memory. + * @param uwBufferSize : number of Half word to read. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_ReadBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData, uint32_t uwBufferSize) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read data command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(uwAddress, 0x00F0); + + /* Read buffer */ + while( uwBufferSize > 0) + { + *pData++ = *(__IO uint16_t *)uwAddress; + uwAddress += 2; + uwBufferSize--; + } + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Writes a half-word buffer to the NOR memory. This function must be used + only with S29GL128P NOR memory. + * @param hnor: pointer to the NOR handle + * @param uwAddress: NOR memory internal start write address + * @param pData: pointer to source data buffer. + * @param uwBufferSize: Size of the buffer to write + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_ProgramBuffer(NOR_HandleTypeDef *hnor, uint32_t uwAddress, uint16_t *pData, uint32_t uwBufferSize) +{ + uint16_t * p_currentaddress = (uint16_t *)NULL; + uint16_t * p_endaddress = (uint16_t *)NULL; + uint32_t lastloadedaddress = 0, deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Initialize variables */ + p_currentaddress = (uint16_t*)((uint32_t)(uwAddress)); + p_endaddress = p_currentaddress + (uwBufferSize-1); + lastloadedaddress = (uint32_t)(uwAddress); + + /* Issue unlock command sequence */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + + /* Write Buffer Load Command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, uwAddress), NOR_CMD_DATA_BUFFER_AND_PROG); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, uwAddress), (uwBufferSize - 1)); + + /* Load Data into NOR Buffer */ + while(p_currentaddress <= p_endaddress) + { + /* Store last loaded address & data value (for polling) */ + lastloadedaddress = (uint32_t)p_currentaddress; + + NOR_WRITE(p_currentaddress, *pData++); + + p_currentaddress ++; + } + + NOR_WRITE((uint32_t)(lastloadedaddress), NOR_CMD_DATA_BUFFER_AND_PROG_CONFIRM); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; + +} + +/** + * @brief Erase the specified block of the NOR memory + * @param hnor: pointer to the NOR handle + * @param BlockAddress : Block to erase address + * @param Address: Device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Erase_Block(NOR_HandleTypeDef *hnor, uint32_t BlockAddress, uint32_t Address) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send block erase command sequence */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_CHIP_BLOCK_ERASE_THIRD); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FOURTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FOURTH); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIFTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FIFTH); + NOR_WRITE((uint32_t)(BlockAddress + Address), NOR_CMD_DATA_BLOCK_ERASE); + + /* Check the NOR memory status and update the controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; + +} + +/** + * @brief Erase the entire NOR chip. + * @param hnor: pointer to the NOR handle + * @param Address : Device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Erase_Chip(NOR_HandleTypeDef *hnor, uint32_t Address) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send NOR chip erase command sequence */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST), NOR_CMD_DATA_FIRST); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SECOND), NOR_CMD_DATA_SECOND); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_THIRD), NOR_CMD_DATA_CHIP_BLOCK_ERASE_THIRD); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FOURTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FOURTH); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIFTH), NOR_CMD_DATA_CHIP_BLOCK_ERASE_FIFTH); + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_SIXTH), NOR_CMD_DATA_CHIP_ERASE); + + /* Check the NOR memory status and update the controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Read NOR flash CFI IDs + * @param hnor: pointer to the NOR handle + * @param pNOR_CFI : pointer to NOR CFI IDs structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_Read_CFI(NOR_HandleTypeDef *hnor, NOR_CFITypeDef *pNOR_CFI) +{ + uint32_t deviceaddress = 0; + + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Check the NOR controller state */ + if(hnor->State == HAL_NOR_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Select the NOR device address */ + if (hnor->Init.NSBank == FMC_NORSRAM_BANK1) + { + deviceaddress = NOR_MEMORY_ADRESS1; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK2) + { + deviceaddress = NOR_MEMORY_ADRESS2; + } + else if (hnor->Init.NSBank == FMC_NORSRAM_BANK3) + { + deviceaddress = NOR_MEMORY_ADRESS3; + } + else /* FMC_NORSRAM_BANK4 */ + { + deviceaddress = NOR_MEMORY_ADRESS4; + } + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Send read CFI query command */ + NOR_WRITE(NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, NOR_CMD_ADDRESS_FIRST_CFI), NOR_CMD_DATA_CFI); + + /* read the NOR CFI information */ + pNOR_CFI->CFI_1 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, CFI1_ADDRESS); + pNOR_CFI->CFI_2 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, CFI2_ADDRESS); + pNOR_CFI->CFI_3 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, CFI3_ADDRESS); + pNOR_CFI->CFI_4 = *(__IO uint16_t *) NOR_ADDR_SHIFT(deviceaddress, NOR_MEMORY_8B, CFI4_ADDRESS); + + /* Check the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup NOR_Exported_Functions_Group3 Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### NOR Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the NOR interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically NOR write operation. + * @param hnor: pointer to the NOR handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_WriteOperation_Enable(NOR_HandleTypeDef *hnor) +{ + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Enable write operation */ + FMC_NORSRAM_WriteOperation_Enable(hnor->Instance, hnor->Init.NSBank); + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @brief Disables dynamically NOR write operation. + * @param hnor: pointer to the NOR handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_NOR_WriteOperation_Disable(NOR_HandleTypeDef *hnor) +{ + /* Process Locked */ + __HAL_LOCK(hnor); + + /* Update the SRAM controller state */ + hnor->State = HAL_NOR_STATE_BUSY; + + /* Disable write operation */ + FMC_NORSRAM_WriteOperation_Disable(hnor->Instance, hnor->Init.NSBank); + + /* Update the NOR controller state */ + hnor->State = HAL_NOR_STATE_PROTECTED; + + /* Process unlocked */ + __HAL_UNLOCK(hnor); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup NOR_Exported_Functions_Group4 State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### NOR State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the NOR controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief return the NOR controller state + * @param hnor: pointer to the NOR handle + * @retval NOR controller state + */ +HAL_NOR_StateTypeDef HAL_NOR_GetState(NOR_HandleTypeDef *hnor) +{ + return hnor->State; +} + +/** + * @brief Returns the NOR operation status. + * @param hnor: pointer to the NOR handle + * @param Address: Device address + * @param Timeout: NOR programming Timeout + * @retval NOR_Status: The returned value can be: HAL_NOR_STATUS_SUCCESS, HAL_NOR_STATUS_ERROR + * or HAL_NOR_STATUS_TIMEOUT + */ +HAL_NOR_StatusTypeDef HAL_NOR_GetStatus(NOR_HandleTypeDef *hnor, uint32_t Address, uint32_t Timeout) +{ + HAL_NOR_StatusTypeDef status = HAL_NOR_STATUS_ONGOING; + uint16_t tmpSR1 = 0, tmpSR2 = 0; + uint32_t tickstart = 0; + + /* Poll on NOR memory Ready/Busy signal ------------------------------------*/ + HAL_NOR_MspWait(hnor, Timeout); + + /* Get the NOR memory operation status -------------------------------------*/ + + /* Get tick */ + tickstart = HAL_GetTick(); + while((status != HAL_NOR_STATUS_SUCCESS ) && (status != HAL_NOR_STATUS_TIMEOUT)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + status = HAL_NOR_STATUS_TIMEOUT; + } + } + + /* Read NOR status register (DQ6 and DQ5) */ + tmpSR1 = *(__IO uint16_t *)Address; + tmpSR2 = *(__IO uint16_t *)Address; + + /* If DQ6 did not toggle between the two reads then return HAL_NOR_STATUS_SUCCESS */ + if((tmpSR1 & NOR_MASK_STATUS_DQ6) == (tmpSR2 & NOR_MASK_STATUS_DQ6)) + { + return HAL_NOR_STATUS_SUCCESS ; + } + + if((tmpSR1 & NOR_MASK_STATUS_DQ5) == NOR_MASK_STATUS_DQ5) + { + status = HAL_NOR_STATUS_ONGOING; + } + + tmpSR1 = *(__IO uint16_t *)Address; + tmpSR2 = *(__IO uint16_t *)Address; + + /* If DQ6 did not toggle between the two reads then return HAL_NOR_STATUS_SUCCESS */ + if((tmpSR1 & NOR_MASK_STATUS_DQ6) == (tmpSR2 & NOR_MASK_STATUS_DQ6)) + { + return HAL_NOR_STATUS_SUCCESS; + } + if((tmpSR1 & NOR_MASK_STATUS_DQ5) == NOR_MASK_STATUS_DQ5) + { + return HAL_NOR_STATUS_ERROR; + } + } + + /* Return the operation status */ + return status; +} + +/** + * @} + */ + + +/** + * @} + */ +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx ||\ + STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_NOR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pccard.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pccard.c new file mode 100644 index 0000000..290e6fc --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pccard.c @@ -0,0 +1,742 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_pccard.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief PCCARD HAL module driver. + * This file provides a generic firmware to drive PCCARD memories mounted + * as external device. + * + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control PCCARD/compact flash memories. It uses the FMC/FSMC layer functions + to interface with PCCARD devices. This driver is used for: + + (+) PCCARD/Compact Flash memory configuration sequence using the function + HAL_PCCARD_Init()/HAL_CF_Init() with control and timing parameters for + both common and attribute spaces. + + (+) Read PCCARD/Compact Flash memory maker and device IDs using the function + HAL_PCCARD_Read_ID()/HAL_CF_Read_ID(). The read information is stored in + the CompactFlash_ID structure declared by the function caller. + + (+) Access PCCARD/Compact Flash memory by read/write operations using the functions + HAL_PCCARD_Read_Sector()/ HAL_PCCARD_Write_Sector() - + HAL_CF_Read_Sector()/HAL_CF_Write_Sector(), to read/write sector. + + (+) Perform PCCARD/Compact Flash Reset chip operation using the function + HAL_PCCARD_Reset()/HAL_CF_Reset. + + (+) Perform PCCARD/Compact Flash erase sector operation using the function + HAL_PCCARD_Erase_Sector()/HAL_CF_Erase_Sector. + + (+) Read the PCCARD/Compact Flash status operation using the function + HAL_PCCARD_ReadStatus()/HAL_CF_ReadStatus(). + + (+) You can monitor the PCCARD/Compact Flash device HAL state by calling + the function HAL_PCCARD_GetState()/HAL_CF_GetState() + + [..] + (@) This driver is a set of generic APIs which handle standard PCCARD/compact flash + operations. If a PCCARD/Compact Flash device contains different operations + and/or implementations, it should be implemented separately. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +#ifdef HAL_PCCARD_MODULE_ENABLED +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) +/** @defgroup PCCARD PCCARD + * @brief PCCARD HAL module driver + * @{ + */ +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/** @defgroup PCCARD_Private_Defines PCCARD Private Defines + * @{ + */ +#define PCCARD_TIMEOUT_READ_ID (uint32_t)0x0000FFFF +#define PCCARD_TIMEOUT_READ_WRITE_SECTOR (uint32_t)0x0000FFFF +#define PCCARD_TIMEOUT_ERASE_SECTOR (uint32_t)0x00000400 +#define PCCARD_TIMEOUT_STATUS (uint32_t)0x01000000 + +#define PCCARD_STATUS_OK (uint8_t)0x58 +#define PCCARD_STATUS_WRITE_OK (uint8_t)0x50 +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function ----------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup PCCARD_Exported_Functions PCCARD Exported Functions + * @{ + */ + +/** @defgroup PCCARD_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### PCCARD Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the PCCARD memory + +@endverbatim + * @{ + */ + +/** + * @brief Perform the PCCARD memory Initialization sequence + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @param ComSpaceTiming: Common space timing structure + * @param AttSpaceTiming: Attribute space timing structure + * @param IOSpaceTiming: IO space timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCCARD_Init(PCCARD_HandleTypeDef *hpccard, FMC_NAND_PCC_TimingTypeDef *ComSpaceTiming, FMC_NAND_PCC_TimingTypeDef *AttSpaceTiming, FMC_NAND_PCC_TimingTypeDef *IOSpaceTiming) +{ + /* Check the PCCARD controller state */ + if(hpccard == NULL) + { + return HAL_ERROR; + } + + if(hpccard->State == HAL_PCCARD_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hpccard->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_PCCARD_MspInit(hpccard); + } + + /* Initialize the PCCARD state */ + hpccard->State = HAL_PCCARD_STATE_BUSY; + + /* Initialize PCCARD control Interface */ + FMC_PCCARD_Init(hpccard->Instance, &(hpccard->Init)); + + /* Init PCCARD common space timing Interface */ + FMC_PCCARD_CommonSpace_Timing_Init(hpccard->Instance, ComSpaceTiming); + + /* Init PCCARD attribute space timing Interface */ + FMC_PCCARD_AttributeSpace_Timing_Init(hpccard->Instance, AttSpaceTiming); + + /* Init PCCARD IO space timing Interface */ + FMC_PCCARD_IOSpace_Timing_Init(hpccard->Instance, IOSpaceTiming); + + /* Enable the PCCARD device */ + __FMC_PCCARD_ENABLE(hpccard->Instance); + + /* Update the PCCARD state */ + hpccard->State = HAL_PCCARD_STATE_READY; + + return HAL_OK; + +} + +/** + * @brief Perform the PCCARD memory De-initialization sequence + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCCARD_DeInit(PCCARD_HandleTypeDef *hpccard) +{ + /* De-Initialize the low level hardware (MSP) */ + HAL_PCCARD_MspDeInit(hpccard); + + /* Configure the PCCARD registers with their reset values */ + FMC_PCCARD_DeInit(hpccard->Instance); + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hpccard); + + return HAL_OK; +} + +/** + * @brief PCCARD MSP Init + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval None + */ +__weak void HAL_PCCARD_MspInit(PCCARD_HandleTypeDef *hpccard) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCCARD_MspInit could be implemented in the user file + */ +} + +/** + * @brief PCCARD MSP DeInit + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval None + */ +__weak void HAL_PCCARD_MspDeInit(PCCARD_HandleTypeDef *hpccard) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCCARD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup PCCARD_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### PCCARD Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the PCCARD memory + +@endverbatim + * @{ + */ + +/** + * @brief Read Compact Flash's ID. + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @param CompactFlash_ID: Compact flash ID structure. + * @param pStatus: pointer to compact flash status + * @retval HAL status + * + */ +HAL_StatusTypeDef HAL_PCCARD_Read_ID(PCCARD_HandleTypeDef *hpccard, uint8_t CompactFlash_ID[], uint8_t *pStatus) +{ + uint32_t timeout = PCCARD_TIMEOUT_READ_ID, index = 0; + uint8_t status = 0; + + /* Process Locked */ + __HAL_LOCK(hpccard); + + /* Check the PCCARD controller state */ + if(hpccard->State == HAL_PCCARD_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_BUSY; + + /* Initialize the PCCARD status */ + *pStatus = PCCARD_READY; + + /* Send the Identify Command */ + *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = 0xECEC; + + /* Read PCCARD IDs and timeout treatment */ + do + { + /* Read the PCCARD status */ + status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + + timeout--; + }while((status != PCCARD_STATUS_OK) && timeout); + + if(timeout == 0) + { + *pStatus = PCCARD_TIMEOUT_ERROR; + } + else + { + /* Read PCCARD ID bytes */ + for(index = 0; index < 16; index++) + { + CompactFlash_ID[index] = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_DATA); + } + } + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hpccard); + + return HAL_OK; +} + +/** + * @brief Read sector from PCCARD memory + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @param pBuffer: pointer to destination read buffer + * @param SectorAddress: Sector address to read + * @param pStatus: pointer to PCCARD status + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCCARD_Read_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t *pBuffer, uint16_t SectorAddress, uint8_t *pStatus) +{ + uint32_t timeout = PCCARD_TIMEOUT_READ_WRITE_SECTOR, index = 0; + uint8_t status = 0; + + /* Process Locked */ + __HAL_LOCK(hpccard); + + /* Check the PCCARD controller state */ + if(hpccard->State == HAL_PCCARD_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_BUSY; + + /* Initialize PCCARD status */ + *pStatus = PCCARD_READY; + + /* Set the parameters to write a sector */ + *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_HIGH) = (uint16_t)0x00; + *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_COUNT) = ((uint16_t)0x0100 ) | ((uint16_t)SectorAddress); + *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = (uint16_t)0xE4A0; + + do + { + /* wait till the Status = 0x80 */ + status = *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + timeout--; + }while((status == 0x80) && timeout); + + if(timeout == 0) + { + *pStatus = PCCARD_TIMEOUT_ERROR; + } + + timeout = PCCARD_TIMEOUT_READ_WRITE_SECTOR; + + do + { + /* wait till the Status = PCCARD_STATUS_OK */ + status = *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + timeout--; + }while((status != PCCARD_STATUS_OK) && timeout); + + if(timeout == 0) + { + *pStatus = PCCARD_TIMEOUT_ERROR; + } + + /* Read bytes */ + for(; index < PCCARD_SECTOR_SIZE; index++) + { + *(uint16_t *)pBuffer++ = *(uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR); + } + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hpccard); + + return HAL_OK; +} + + +/** + * @brief Write sector to PCCARD memory + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @param pBuffer: pointer to source write buffer + * @param SectorAddress: Sector address to write + * @param pStatus: pointer to PCCARD status + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCCARD_Write_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t *pBuffer, uint16_t SectorAddress, uint8_t *pStatus) +{ + uint32_t timeout = PCCARD_TIMEOUT_READ_WRITE_SECTOR, index = 0; + uint8_t status = 0; + + /* Process Locked */ + __HAL_LOCK(hpccard); + + /* Check the PCCARD controller state */ + if(hpccard->State == HAL_PCCARD_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_BUSY; + + /* Initialize PCCARD status */ + *pStatus = PCCARD_READY; + + /* Set the parameters to write a sector */ + *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_HIGH) = (uint16_t)0x00; + *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_COUNT) = ((uint16_t)0x0100 ) | ((uint16_t)SectorAddress); + *(__IO uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = (uint16_t)0x30A0; + + do + { + /* Wait till the Status = PCCARD_STATUS_OK */ + status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + timeout--; + }while((status != PCCARD_STATUS_OK) && timeout); + + if(timeout == 0) + { + *pStatus = PCCARD_TIMEOUT_ERROR; + } + + /* Write bytes */ + for(; index < PCCARD_SECTOR_SIZE; index++) + { + *(uint16_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR) = *(uint16_t *)pBuffer++; + } + + do + { + /* Wait till the Status = PCCARD_STATUS_WRITE_OK */ + status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + timeout--; + }while((status != PCCARD_STATUS_WRITE_OK) && timeout); + + if(timeout == 0) + { + *pStatus = PCCARD_TIMEOUT_ERROR; + } + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hpccard); + + return HAL_OK; +} + + +/** + * @brief Erase sector from PCCARD memory + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @param SectorAddress: Sector address to erase + * @param pStatus: pointer to PCCARD status + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCCARD_Erase_Sector(PCCARD_HandleTypeDef *hpccard, uint16_t SectorAddress, uint8_t *pStatus) +{ + uint32_t timeout = PCCARD_TIMEOUT_ERASE_SECTOR; + uint8_t status = 0; + + /* Process Locked */ + __HAL_LOCK(hpccard); + + /* Check the PCCARD controller state */ + if(hpccard->State == HAL_PCCARD_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_BUSY; + + /* Initialize PCCARD status */ + *pStatus = PCCARD_READY; + + /* Set the parameters to write a sector */ + *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_LOW) = 0x00; + *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CYLINDER_HIGH) = 0x00; + *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_NUMBER) = SectorAddress; + *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_SECTOR_COUNT) = 0x01; + *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_CARD_HEAD) = 0xA0; + *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD) = ATA_ERASE_SECTOR_CMD; + + /* wait till the PCCARD is ready */ + status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + + while((status != PCCARD_STATUS_WRITE_OK) && timeout) + { + status = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + timeout--; + } + + if(timeout == 0) + { + *pStatus = PCCARD_TIMEOUT_ERROR; + } + + /* Check the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hpccard); + + return HAL_OK; +} + +/** + * @brief Reset the PCCARD memory + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCCARD_Reset(PCCARD_HandleTypeDef *hpccard) +{ + /* Process Locked */ + __HAL_LOCK(hpccard); + + /* Check the PCCARD controller state */ + if(hpccard->State == HAL_PCCARD_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Provide a SW reset and Read and verify the: + - PCCard Configuration Option Register at address 0x98000200 --> 0x80 + - Card Configuration and Status Register at address 0x98000202 --> 0x00 + - Pin Replacement Register at address 0x98000204 --> 0x0C + - Socket and Copy Register at address 0x98000206 --> 0x00 + */ + + /* Check the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_BUSY; + + *(__IO uint8_t *)(PCCARD_ATTRIBUTE_SPACE_ADDRESS | ATA_CARD_CONFIGURATION ) = 0x01; + + /* Check the PCCARD controller state */ + hpccard->State = HAL_PCCARD_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hpccard); + + return HAL_OK; +} + +/** + * @brief This function handles PCCARD device interrupt request. + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval HAL status +*/ +void HAL_PCCARD_IRQHandler(PCCARD_HandleTypeDef *hpccard) +{ + /* Check PCCARD interrupt Rising edge flag */ + if(__FMC_PCCARD_GET_FLAG(hpccard->Instance, FMC_FLAG_RISING_EDGE)) + { + /* PCCARD interrupt callback*/ + HAL_PCCARD_ITCallback(hpccard); + + /* Clear PCCARD interrupt Rising edge pending bit */ + __FMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FMC_FLAG_RISING_EDGE); + } + + /* Check PCCARD interrupt Level flag */ + if(__FMC_PCCARD_GET_FLAG(hpccard->Instance, FMC_FLAG_LEVEL)) + { + /* PCCARD interrupt callback*/ + HAL_PCCARD_ITCallback(hpccard); + + /* Clear PCCARD interrupt Level pending bit */ + __FMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FMC_FLAG_LEVEL); + } + + /* Check PCCARD interrupt Falling edge flag */ + if(__FMC_PCCARD_GET_FLAG(hpccard->Instance, FMC_FLAG_FALLING_EDGE)) + { + /* PCCARD interrupt callback*/ + HAL_PCCARD_ITCallback(hpccard); + + /* Clear PCCARD interrupt Falling edge pending bit */ + __FMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FMC_FLAG_FALLING_EDGE); + } + + /* Check PCCARD interrupt FIFO empty flag */ + if(__FMC_PCCARD_GET_FLAG(hpccard->Instance, FMC_FLAG_FEMPT)) + { + /* PCCARD interrupt callback*/ + HAL_PCCARD_ITCallback(hpccard); + + /* Clear PCCARD interrupt FIFO empty pending bit */ + __FMC_PCCARD_CLEAR_FLAG(hpccard->Instance, FMC_FLAG_FEMPT); + } +} + +/** + * @brief PCCARD interrupt feature callback + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval None + */ +__weak void HAL_PCCARD_ITCallback(PCCARD_HandleTypeDef *hpccard) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCCARD_ITCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup PCCARD_Exported_Functions_Group3 State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### PCCARD State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the PCCARD controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief return the PCCARD controller state + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval HAL state + */ +HAL_PCCARD_StateTypeDef HAL_PCCARD_GetState(PCCARD_HandleTypeDef *hpccard) +{ + return hpccard->State; +} + +/** + * @brief Get the compact flash memory status + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval New status of the PCCARD operation. This parameter can be: + * - CompactFlash_TIMEOUT_ERROR: when the previous operation generate + * a Timeout error + * - CompactFlash_READY: when memory is ready for the next operation + */ +HAL_PCCARD_StatusTypeDef HAL_PCCARD_GetStatus(PCCARD_HandleTypeDef *hpccard) +{ + uint32_t timeout = PCCARD_TIMEOUT_STATUS, status_pccard = 0; + + /* Check the PCCARD controller state */ + if(hpccard->State == HAL_PCCARD_STATE_BUSY) + { + return HAL_PCCARD_STATUS_ONGOING; + } + + status_pccard = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + + while((status_pccard == PCCARD_BUSY) && timeout) + { + status_pccard = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + timeout--; + } + + if(timeout == 0) + { + status_pccard = PCCARD_TIMEOUT_ERROR; + } + + /* Return the operation status */ + return (HAL_PCCARD_StatusTypeDef) status_pccard; +} + +/** + * @brief Reads the Compact Flash memory status using the Read status command + * @param hpccard: pointer to a PCCARD_HandleTypeDef structure that contains + * the configuration information for PCCARD module. + * @retval The status of the Compact Flash memory. This parameter can be: + * - CompactFlash_BUSY: when memory is busy + * - CompactFlash_READY: when memory is ready for the next operation + * - CompactFlash_ERROR: when the previous operation generates error + */ +HAL_PCCARD_StatusTypeDef HAL_PCCARD_ReadStatus(PCCARD_HandleTypeDef *hpccard) +{ + uint8_t data = 0, status_pccard = PCCARD_BUSY; + + /* Check the PCCARD controller state */ + if(hpccard->State == HAL_PCCARD_STATE_BUSY) + { + return HAL_PCCARD_STATUS_ONGOING; + } + + /* Read status operation */ + data = *(__IO uint8_t *)(PCCARD_IO_SPACE_PRIMARY_ADDR | ATA_STATUS_CMD_ALTERNATE); + + if((data & PCCARD_TIMEOUT_ERROR) == PCCARD_TIMEOUT_ERROR) + { + status_pccard = PCCARD_TIMEOUT_ERROR; + } + else if((data & PCCARD_READY) == PCCARD_READY) + { + status_pccard = PCCARD_READY; + } + + return (HAL_PCCARD_StatusTypeDef) status_pccard; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx ||\ + STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ +#endif /* HAL_PCCARD_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pcd.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pcd.c new file mode 100644 index 0000000..21c5033 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pcd.c @@ -0,0 +1,1208 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_pcd.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief PCD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The PCD HAL driver can be used as follows: + + (#) Declare a PCD_HandleTypeDef handle structure, for example: + PCD_HandleTypeDef hpcd; + + (#) Fill parameters of Init structure in HCD handle + + (#) Call HAL_PCD_Init() API to initialize the PCD peripheral (Core, Device core, ...) + + (#) Initialize the PCD low level resources through the HAL_PCD_MspInit() API: + (##) Enable the PCD/USB Low Level interface clock using + (+++) __HAL_RCC_USB_OTG_FS_CLK_ENABLE(); + (+++) __HAL_RCC_USB_OTG_HS_CLK_ENABLE(); (For High Speed Mode) + + (##) Initialize the related GPIO clocks + (##) Configure PCD pin-out + (##) Configure PCD NVIC interrupt + + (#)Associate the Upper USB device stack to the HAL PCD Driver: + (##) hpcd.pData = pdev; + + (#)Enable PCD transmission and reception: + (##) HAL_PCD_Start(); + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup PCD PCD + * @brief PCD HAL module driver + * @{ + */ + +#ifdef HAL_PCD_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/** @defgroup PCD_Private_Macros PCD Private Macros + * @{ + */ +#define PCD_MIN(a, b) (((a) < (b)) ? (a) : (b)) +#define PCD_MAX(a, b) (((a) > (b)) ? (a) : (b)) +/** + * @} + */ + +/* Private functions prototypes ----------------------------------------------*/ +/** @defgroup PCD_Private_Functions PCD Private Functions + * @{ + */ +static HAL_StatusTypeDef PCD_WriteEmptyTxFifo(PCD_HandleTypeDef *hpcd, uint32_t epnum); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup PCD_Exported_Functions PCD Exported Functions + * @{ + */ + +/** @defgroup PCD_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the PCD according to the specified + * parameters in the PCD_InitTypeDef and initialize the associated handle. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Init(PCD_HandleTypeDef *hpcd) +{ + uint32_t i = 0; + + /* Check the PCD handle allocation */ + if(hpcd == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_PCD_ALL_INSTANCE(hpcd->Instance)); + + hpcd->State = HAL_PCD_STATE_BUSY; + + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_PCD_MspInit(hpcd); + + /* Disable the Interrupts */ + __HAL_PCD_DISABLE(hpcd); + + /*Init the Core (common init.) */ + USB_CoreInit(hpcd->Instance, hpcd->Init); + + /* Force Device Mode*/ + USB_SetCurrentMode(hpcd->Instance , USB_OTG_DEVICE_MODE); + + /* Init endpoints structures */ + for (i = 0; i < 15 ; i++) + { + /* Init ep structure */ + hpcd->IN_ep[i].is_in = 1; + hpcd->IN_ep[i].num = i; + hpcd->IN_ep[i].tx_fifo_num = i; + /* Control until ep is activated */ + hpcd->IN_ep[i].type = EP_TYPE_CTRL; + hpcd->IN_ep[i].maxpacket = 0; + hpcd->IN_ep[i].xfer_buff = 0; + hpcd->IN_ep[i].xfer_len = 0; + } + + for (i = 0; i < 15 ; i++) + { + hpcd->OUT_ep[i].is_in = 0; + hpcd->OUT_ep[i].num = i; + hpcd->IN_ep[i].tx_fifo_num = i; + /* Control until ep is activated */ + hpcd->OUT_ep[i].type = EP_TYPE_CTRL; + hpcd->OUT_ep[i].maxpacket = 0; + hpcd->OUT_ep[i].xfer_buff = 0; + hpcd->OUT_ep[i].xfer_len = 0; + + hpcd->Instance->DIEPTXF[i] = 0; + } + + /* Init Device */ + USB_DevInit(hpcd->Instance, hpcd->Init); + + hpcd->State= HAL_PCD_STATE_READY; + +#ifdef USB_OTG_GLPMCFG_LPMEN + /* Activate LPM */ + if (hpcd->Init.lpm_enable == 1) + { + HAL_PCDEx_ActivateLPM(hpcd); + } +#endif /* USB_OTG_GLPMCFG_LPMEN */ + + USB_DevDisconnect (hpcd->Instance); + return HAL_OK; +} + +/** + * @brief DeInitializes the PCD peripheral. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DeInit(PCD_HandleTypeDef *hpcd) +{ + /* Check the PCD handle allocation */ + if(hpcd == NULL) + { + return HAL_ERROR; + } + + hpcd->State = HAL_PCD_STATE_BUSY; + + /* Stop Device */ + HAL_PCD_Stop(hpcd); + + /* DeInit the low level hardware */ + HAL_PCD_MspDeInit(hpcd); + + hpcd->State = HAL_PCD_STATE_RESET; + + return HAL_OK; +} + +/** + * @brief Initializes the PCD MSP. + * @param hpcd: PCD handle + * @retval None + */ +__weak void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes PCD MSP. + * @param hpcd: PCD handle + * @retval None + */ +__weak void HAL_PCD_MspDeInit(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group2 Input and Output operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the PCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Start The USB OTG Device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Start(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + USB_DevConnect (hpcd->Instance); + __HAL_PCD_ENABLE(hpcd); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Stop The USB OTG Device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_Stop(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + __HAL_PCD_DISABLE(hpcd); + USB_StopDevice(hpcd->Instance); + USB_DevDisconnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Handles PCD interrupt request. + * @param hpcd: PCD handle + * @retval HAL status + */ +void HAL_PCD_IRQHandler(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + uint32_t i = 0, ep_intr = 0, epint = 0, epnum = 0; + uint32_t fifoemptymsk = 0, temp = 0; + USB_OTG_EPTypeDef *ep; + + /* ensure that we are in device mode */ + if (USB_GetMode(hpcd->Instance) == USB_OTG_MODE_DEVICE) + { + /* avoid spurious interrupt */ + if(__HAL_PCD_IS_INVALID_INTERRUPT(hpcd)) + { + return; + } + + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_MMIS)) + { + /* incorrect mode, acknowledge the interrupt */ + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_MMIS); + } + + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_OEPINT)) + { + epnum = 0; + + /* Read in the device interrupt bits */ + ep_intr = USB_ReadDevAllOutEpInterrupt(hpcd->Instance); + + while ( ep_intr ) + { + if (ep_intr & 0x1) + { + epint = USB_ReadDevOutEPInterrupt(hpcd->Instance, epnum); + + if(( epint & USB_OTG_DOEPINT_XFRC) == USB_OTG_DOEPINT_XFRC) + { + CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_XFRC); + + if(hpcd->Init.dma_enable == 1) + { + hpcd->OUT_ep[epnum].xfer_count = hpcd->OUT_ep[epnum].maxpacket- (USBx_OUTEP(epnum)->DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ); + hpcd->OUT_ep[epnum].xfer_buff += hpcd->OUT_ep[epnum].maxpacket; + } + + HAL_PCD_DataOutStageCallback(hpcd, epnum); + if(hpcd->Init.dma_enable == 1) + { + if((epnum == 0) && (hpcd->OUT_ep[epnum].xfer_len == 0)) + { + /* this is ZLP, so prepare EP0 for next setup */ + USB_EP0_OutStart(hpcd->Instance, 1, (uint8_t *)hpcd->Setup); + } + } + } + + if(( epint & USB_OTG_DOEPINT_STUP) == USB_OTG_DOEPINT_STUP) + { + /* Inform the upper layer that a setup packet is available */ + HAL_PCD_SetupStageCallback(hpcd); + CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_STUP); + } + + if(( epint & USB_OTG_DOEPINT_OTEPDIS) == USB_OTG_DOEPINT_OTEPDIS) + { + CLEAR_OUT_EP_INTR(epnum, USB_OTG_DOEPINT_OTEPDIS); + } + } + epnum++; + ep_intr >>= 1; + } + } + + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_IEPINT)) + { + /* Read in the device interrupt bits */ + ep_intr = USB_ReadDevAllInEpInterrupt(hpcd->Instance); + + epnum = 0; + + while ( ep_intr ) + { + if (ep_intr & 0x1) /* In ITR */ + { + epint = USB_ReadDevInEPInterrupt(hpcd->Instance, epnum); + + if(( epint & USB_OTG_DIEPINT_XFRC) == USB_OTG_DIEPINT_XFRC) + { + fifoemptymsk = 0x1 << epnum; + USBx_DEVICE->DIEPEMPMSK &= ~fifoemptymsk; + + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_XFRC); + + if (hpcd->Init.dma_enable == 1) + { + hpcd->IN_ep[epnum].xfer_buff += hpcd->IN_ep[epnum].maxpacket; + } + + HAL_PCD_DataInStageCallback(hpcd, epnum); + + if (hpcd->Init.dma_enable == 1) + { + /* this is ZLP, so prepare EP0 for next setup */ + if((epnum == 0) && (hpcd->IN_ep[epnum].xfer_len == 0)) + { + /* prepare to rx more setup packets */ + USB_EP0_OutStart(hpcd->Instance, 1, (uint8_t *)hpcd->Setup); + } + } + } + if(( epint & USB_OTG_DIEPINT_TOC) == USB_OTG_DIEPINT_TOC) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_TOC); + } + if(( epint & USB_OTG_DIEPINT_ITTXFE) == USB_OTG_DIEPINT_ITTXFE) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_ITTXFE); + } + if(( epint & USB_OTG_DIEPINT_INEPNE) == USB_OTG_DIEPINT_INEPNE) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_INEPNE); + } + if(( epint & USB_OTG_DIEPINT_EPDISD) == USB_OTG_DIEPINT_EPDISD) + { + CLEAR_IN_EP_INTR(epnum, USB_OTG_DIEPINT_EPDISD); + } + if(( epint & USB_OTG_DIEPINT_TXFE) == USB_OTG_DIEPINT_TXFE) + { + PCD_WriteEmptyTxFifo(hpcd , epnum); + } + } + epnum++; + ep_intr >>= 1; + } + } + + /* Handle Resume Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_WKUINT)) + { + /* Clear the Remote Wake-up Signaling */ + USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_RWUSIG; + +#ifdef USB_OTG_GLPMCFG_LPMEN + if(hpcd->LPM_State == LPM_L1) + { + hpcd->LPM_State = LPM_L0; + HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L0_ACTIVE); + } + else +#endif /* USB_OTG_GLPMCFG_LPMEN */ + { + HAL_PCD_ResumeCallback(hpcd); + } + + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_WKUINT); + } + + /* Handle Suspend Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_USBSUSP)) + { + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_SUSPSTS) == USB_OTG_DSTS_SUSPSTS) + { + + HAL_PCD_SuspendCallback(hpcd); + } + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_USBSUSP); + } + +#ifdef USB_OTG_GLPMCFG_LPMEN + /* Handle LPM Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_LPMINT)) + { + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_LPMINT); + if( hpcd->LPM_State == LPM_L0) + { + hpcd->LPM_State = LPM_L1; + hpcd->BESL = (hpcd->Instance->GLPMCFG & USB_OTG_GLPMCFG_BESL) >>2 ; + HAL_PCDEx_LPM_Callback(hpcd, PCD_LPM_L1_ACTIVE); + } + else + { + HAL_PCD_SuspendCallback(hpcd); + } + } +#endif /* USB_OTG_GLPMCFG_LPMEN */ + + /* Handle Reset Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_USBRST)) + { + USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_RWUSIG; + USB_FlushTxFifo(hpcd->Instance , 0 ); + + for (i = 0; i < hpcd->Init.dev_endpoints ; i++) + { + USBx_INEP(i)->DIEPINT = 0xFF; + USBx_OUTEP(i)->DOEPINT = 0xFF; + } + USBx_DEVICE->DAINT = 0xFFFFFFFF; + USBx_DEVICE->DAINTMSK |= 0x10001; + + if(hpcd->Init.use_dedicated_ep1) + { + USBx_DEVICE->DOUTEP1MSK |= (USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM | USB_OTG_DOEPMSK_EPDM); + USBx_DEVICE->DINEP1MSK |= (USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM | USB_OTG_DIEPMSK_EPDM); + } + else + { + USBx_DEVICE->DOEPMSK |= (USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM | USB_OTG_DOEPMSK_EPDM); + USBx_DEVICE->DIEPMSK |= (USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM | USB_OTG_DIEPMSK_EPDM); + } + + /* Set Default Address to 0 */ + USBx_DEVICE->DCFG &= ~USB_OTG_DCFG_DAD; + + /* setup EP0 to receive SETUP packets */ + USB_EP0_OutStart(hpcd->Instance, hpcd->Init.dma_enable, (uint8_t *)hpcd->Setup); + + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_USBRST); + } + + /* Handle Enumeration done Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_ENUMDNE)) + { + USB_ActivateSetup(hpcd->Instance); + hpcd->Instance->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT; + + if ( USB_GetDevSpeed(hpcd->Instance) == USB_OTG_SPEED_HIGH) + { + hpcd->Init.speed = USB_OTG_SPEED_HIGH; + hpcd->Init.ep0_mps = USB_OTG_HS_MAX_PACKET_SIZE ; + hpcd->Instance->GUSBCFG |= (uint32_t)((USBD_HS_TRDT_VALUE << 10) & USB_OTG_GUSBCFG_TRDT); + } + else + { + hpcd->Init.speed = USB_OTG_SPEED_FULL; + hpcd->Init.ep0_mps = USB_OTG_FS_MAX_PACKET_SIZE ; + hpcd->Instance->GUSBCFG |= (uint32_t)((USBD_FS_TRDT_VALUE << 10) & USB_OTG_GUSBCFG_TRDT); + } + + HAL_PCD_ResetCallback(hpcd); + + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_ENUMDNE); + } + + /* Handle RxQLevel Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_RXFLVL)) + { + USB_MASK_INTERRUPT(hpcd->Instance, USB_OTG_GINTSTS_RXFLVL); + + temp = USBx->GRXSTSP; + + ep = &hpcd->OUT_ep[temp & USB_OTG_GRXSTSP_EPNUM]; + + if(((temp & USB_OTG_GRXSTSP_PKTSTS) >> 17) == STS_DATA_UPDT) + { + if((temp & USB_OTG_GRXSTSP_BCNT) != 0) + { + USB_ReadPacket(USBx, ep->xfer_buff, (temp & USB_OTG_GRXSTSP_BCNT) >> 4); + ep->xfer_buff += (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + ep->xfer_count += (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + } + } + else if (((temp & USB_OTG_GRXSTSP_PKTSTS) >> 17) == STS_SETUP_UPDT) + { + USB_ReadPacket(USBx, (uint8_t *)hpcd->Setup, 8); + ep->xfer_count += (temp & USB_OTG_GRXSTSP_BCNT) >> 4; + } + USB_UNMASK_INTERRUPT(hpcd->Instance, USB_OTG_GINTSTS_RXFLVL); + } + + /* Handle SOF Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_SOF)) + { + HAL_PCD_SOFCallback(hpcd); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_SOF); + } + + /* Handle Incomplete ISO IN Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_IISOIXFR)) + { + HAL_PCD_ISOINIncompleteCallback(hpcd, epnum); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_IISOIXFR); + } + + /* Handle Incomplete ISO OUT Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT)) + { + HAL_PCD_ISOOUTIncompleteCallback(hpcd, epnum); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_PXFR_INCOMPISOOUT); + } + + /* Handle Connection event Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_SRQINT)) + { + HAL_PCD_ConnectCallback(hpcd); + __HAL_PCD_CLEAR_FLAG(hpcd, USB_OTG_GINTSTS_SRQINT); + } + + /* Handle Disconnection event Interrupt */ + if(__HAL_PCD_GET_FLAG(hpcd, USB_OTG_GINTSTS_OTGINT)) + { + temp = hpcd->Instance->GOTGINT; + + if((temp & USB_OTG_GOTGINT_SEDET) == USB_OTG_GOTGINT_SEDET) + { + HAL_PCD_DisconnectCallback(hpcd); + } + hpcd->Instance->GOTGINT |= temp; + } + } +} + +/** + * @brief Data OUT stage callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_DataOutStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_DataOutStageCallback could be implemented in the user file + */ +} + +/** + * @brief Data IN stage callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_DataInStageCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_DataInStageCallback could be implemented in the user file + */ +} +/** + * @brief Setup stage callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_SetupStageCallback(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_SetupStageCallback could be implemented in the user file + */ +} + +/** + * @brief USB Start Of Frame callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_SOFCallback(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_SOFCallback could be implemented in the user file + */ +} + +/** + * @brief USB Reset callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_ResetCallback(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ResetCallback could be implemented in the user file + */ +} + +/** + * @brief Suspend event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_SuspendCallback(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_SuspendCallback could be implemented in the user file + */ +} + +/** + * @brief Resume event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_ResumeCallback(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ResumeCallback could be implemented in the user file + */ +} + +/** + * @brief Incomplete ISO OUT callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_ISOOUTIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ISOOUTIncompleteCallback could be implemented in the user file + */ +} + +/** + * @brief Incomplete ISO IN callback. + * @param hpcd: PCD handle + * @param epnum: endpoint number + * @retval None + */ + __weak void HAL_PCD_ISOINIncompleteCallback(PCD_HandleTypeDef *hpcd, uint8_t epnum) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ISOINIncompleteCallback could be implemented in the user file + */ +} + +/** + * @brief Connection event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_ConnectCallback(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_ConnectCallback could be implemented in the user file + */ +} + +/** + * @brief Disconnection event callback. + * @param hpcd: PCD handle + * @retval None + */ + __weak void HAL_PCD_DisconnectCallback(PCD_HandleTypeDef *hpcd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PCD_DisconnectCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the PCD data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Connect the USB device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DevConnect(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + USB_DevConnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Disconnect the USB device. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DevDisconnect(PCD_HandleTypeDef *hpcd) +{ + __HAL_LOCK(hpcd); + USB_DevDisconnect(hpcd->Instance); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + +/** + * @brief Set the USB Device address. + * @param hpcd: PCD handle + * @param address: new device address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_SetAddress(PCD_HandleTypeDef *hpcd, uint8_t address) +{ + __HAL_LOCK(hpcd); + USB_SetDevAddress(hpcd->Instance, address); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} +/** + * @brief Open and configure an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @param ep_mps: endpoint max packet size + * @param ep_type: endpoint type + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Open(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint16_t ep_mps, uint8_t ep_type) +{ + HAL_StatusTypeDef ret = HAL_OK; + USB_OTG_EPTypeDef *ep; + + if ((ep_addr & 0x80) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & 0x7F]; + } + ep->num = ep_addr & 0x7F; + + ep->is_in = (0x80 & ep_addr) != 0; + ep->maxpacket = ep_mps; + ep->type = ep_type; + if (ep->is_in) + { + /* Assign a Tx FIFO */ + ep->tx_fifo_num = ep->num; + } + /* Set initial data PID. */ + if (ep_type == EP_TYPE_BULK ) + { + ep->data_pid_start = 0; + } + + __HAL_LOCK(hpcd); + USB_ActivateEndpoint(hpcd->Instance , ep); + __HAL_UNLOCK(hpcd); + return ret; +} + + +/** + * @brief Deactivate an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Close(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + USB_OTG_EPTypeDef *ep; + + if ((ep_addr & 0x80) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr & 0x7F]; + } + ep->num = ep_addr & 0x7F; + + ep->is_in = (0x80 & ep_addr) != 0; + + __HAL_LOCK(hpcd); + USB_DeactivateEndpoint(hpcd->Instance , ep); + __HAL_UNLOCK(hpcd); + return HAL_OK; +} + + +/** + * @brief Receive an amount of data. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @param pBuf: pointer to the reception buffer + * @param len: amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Receive(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) +{ + USB_OTG_EPTypeDef *ep; + + ep = &hpcd->OUT_ep[ep_addr & 0x7F]; + + /*setup and start the Xfer */ + ep->xfer_buff = pBuf; + ep->xfer_len = len; + ep->xfer_count = 0; + ep->is_in = 0; + ep->num = ep_addr & 0x7F; + + if (hpcd->Init.dma_enable == 1) + { + ep->dma_addr = (uint32_t)pBuf; + } + + __HAL_LOCK(hpcd); + + if ((ep_addr & 0x7F) == 0 ) + { + USB_EP0StartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + else + { + USB_EPStartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Get Received Data Size. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval Data Size + */ +uint16_t HAL_PCD_EP_GetRxCount(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + return hpcd->OUT_ep[ep_addr & 0x7F].xfer_count; +} +/** + * @brief Send an amount of data. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @param pBuf: pointer to the transmission buffer + * @param len: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Transmit(PCD_HandleTypeDef *hpcd, uint8_t ep_addr, uint8_t *pBuf, uint32_t len) +{ + USB_OTG_EPTypeDef *ep; + + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + + /*setup and start the Xfer */ + ep->xfer_buff = pBuf; + ep->xfer_len = len; + ep->xfer_count = 0; + ep->is_in = 1; + ep->num = ep_addr & 0x7F; + + if (hpcd->Init.dma_enable == 1) + { + ep->dma_addr = (uint32_t)pBuf; + } + + __HAL_LOCK(hpcd); + + if ((ep_addr & 0x7F) == 0 ) + { + USB_EP0StartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + else + { + USB_EPStartXfer(hpcd->Instance , ep, hpcd->Init.dma_enable); + } + + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Set a STALL condition over an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_SetStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + USB_OTG_EPTypeDef *ep; + + if ((0x80 & ep_addr) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr]; + } + + ep->is_stall = 1; + ep->num = ep_addr & 0x7F; + ep->is_in = ((ep_addr & 0x80) == 0x80); + + + __HAL_LOCK(hpcd); + USB_EPSetStall(hpcd->Instance , ep); + if((ep_addr & 0x7F) == 0) + { + USB_EP0_OutStart(hpcd->Instance, hpcd->Init.dma_enable, (uint8_t *)hpcd->Setup); + } + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Clear a STALL condition over in an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_ClrStall(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + USB_OTG_EPTypeDef *ep; + + if ((0x80 & ep_addr) == 0x80) + { + ep = &hpcd->IN_ep[ep_addr & 0x7F]; + } + else + { + ep = &hpcd->OUT_ep[ep_addr]; + } + + ep->is_stall = 0; + ep->num = ep_addr & 0x7F; + ep->is_in = ((ep_addr & 0x80) == 0x80); + + __HAL_LOCK(hpcd); + USB_EPClearStall(hpcd->Instance , ep); + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Flush an endpoint. + * @param hpcd: PCD handle + * @param ep_addr: endpoint address + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_EP_Flush(PCD_HandleTypeDef *hpcd, uint8_t ep_addr) +{ + __HAL_LOCK(hpcd); + + if ((ep_addr & 0x80) == 0x80) + { + USB_FlushTxFifo(hpcd->Instance, ep_addr & 0x7F); + } + else + { + USB_FlushRxFifo(hpcd->Instance); + } + + __HAL_UNLOCK(hpcd); + + return HAL_OK; +} + +/** + * @brief Activate remote wakeup signalling. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_ActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_SUSPSTS) == USB_OTG_DSTS_SUSPSTS) + { + /* Activate Remote wakeup signaling */ + USBx_DEVICE->DCTL |= USB_OTG_DCTL_RWUSIG; + } + return HAL_OK; +} + +/** + * @brief De-activate remote wakeup signalling. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCD_DeActivateRemoteWakeup(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + /* De-activate Remote wakeup signaling */ + USBx_DEVICE->DCTL &= ~(USB_OTG_DCTL_RWUSIG); + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup PCD_Exported_Functions_Group4 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the PCD handle state. + * @param hpcd: PCD handle + * @retval HAL state + */ +PCD_StateTypeDef HAL_PCD_GetState(PCD_HandleTypeDef *hpcd) +{ + return hpcd->State; +} +/** + * @} + */ + +/** + * @} + */ + +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup PCD_Private_Functions + * @{ + */ + +/** + * @brief Check FIFO for the next packet to be loaded. + * @param hpcd: PCD handle + * @param epnum : endpoint number + * @retval HAL status + */ +static HAL_StatusTypeDef PCD_WriteEmptyTxFifo(PCD_HandleTypeDef *hpcd, uint32_t epnum) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + USB_OTG_EPTypeDef *ep; + int32_t len = 0; + uint32_t len32b; + uint32_t fifoemptymsk = 0; + + ep = &hpcd->IN_ep[epnum]; + len = ep->xfer_len - ep->xfer_count; + + if (len > ep->maxpacket) + { + len = ep->maxpacket; + } + + + len32b = (len + 3) / 4; + + while ( (USBx_INEP(epnum)->DTXFSTS & USB_OTG_DTXFSTS_INEPTFSAV) > len32b && + ep->xfer_count < ep->xfer_len && + ep->xfer_len != 0) + { + /* Write the FIFO */ + len = ep->xfer_len - ep->xfer_count; + + if (len > ep->maxpacket) + { + len = ep->maxpacket; + } + len32b = (len + 3) / 4; + + USB_WritePacket(USBx, ep->xfer_buff, epnum, len, hpcd->Init.dma_enable); + + ep->xfer_buff += len; + ep->xfer_count += len; + } + + if(len <= 0) + { + fifoemptymsk = 0x1 << epnum; + USBx_DEVICE->DIEPEMPMSK &= ~fifoemptymsk; + + } + + return HAL_OK; +} + +/** + * @} + */ + +#endif /* HAL_PCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pcd_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pcd_ex.c new file mode 100644 index 0000000..46f0ad3 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pcd_ex.c @@ -0,0 +1,198 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_pcd_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief PCD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Extended features functions + * + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup PCDEx PCDEx + * @brief PCD Extended HAL module driver + * @{ + */ +#ifdef HAL_PCD_MODULE_ENABLED + +/* Private types -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macros ------------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup PCDEx_Exported_Functions PCD Extended Exported Functions + * @{ + */ + +/** @defgroup PCDEx_Exported_Functions_Group1 Peripheral Control functions + * @brief PCDEx control functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Update FIFO configuration + +@endverbatim + * @{ + */ + +/** + * @brief Set Tx FIFO + * @param hpcd: PCD handle + * @param fifo: The number of Tx fifo + * @param size: Fifo size + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_SetTxFiFo(PCD_HandleTypeDef *hpcd, uint8_t fifo, uint16_t size) +{ + uint8_t i = 0; + uint32_t Tx_Offset = 0; + + /* TXn min size = 16 words. (n : Transmit FIFO index) + When a TxFIFO is not used, the Configuration should be as follows: + case 1 : n > m and Txn is not used (n,m : Transmit FIFO indexes) + --> Txm can use the space allocated for Txn. + case2 : n < m and Txn is not used (n,m : Transmit FIFO indexes) + --> Txn should be configured with the minimum space of 16 words + The FIFO is used optimally when used TxFIFOs are allocated in the top + of the FIFO.Ex: use EP1 and EP2 as IN instead of EP1 and EP3 as IN ones. + When DMA is used 3n * FIFO locations should be reserved for internal DMA registers */ + + Tx_Offset = hpcd->Instance->GRXFSIZ; + + if(fifo == 0) + { + hpcd->Instance->DIEPTXF0_HNPTXFSIZ = (uint32_t)(((uint32_t)size << 16) | Tx_Offset); + } + else + { + Tx_Offset += (hpcd->Instance->DIEPTXF0_HNPTXFSIZ) >> 16; + for (i = 0; i < (fifo - 1); i++) + { + Tx_Offset += (hpcd->Instance->DIEPTXF[i] >> 16); + } + + /* Multiply Tx_Size by 2 to get higher performance */ + hpcd->Instance->DIEPTXF[fifo - 1] = (uint32_t)(((uint32_t)size << 16) | Tx_Offset); + } + + return HAL_OK; +} + +/** + * @brief Set Rx FIFO + * @param hpcd: PCD handle + * @param size: Size of Rx fifo + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_SetRxFiFo(PCD_HandleTypeDef *hpcd, uint16_t size) +{ + hpcd->Instance->GRXFSIZ = size; + + return HAL_OK; +} + +#if defined(STM32F446xx) +/** + * @brief Activate LPM feature + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_ActivateLPM(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + hpcd->lpm_active = ENABLE; + hpcd->LPM_State = LPM_L0; + USBx->GINTMSK |= USB_OTG_GINTMSK_LPMINTM; + USBx->GLPMCFG |= (USB_OTG_GLPMCFG_LPMEN | USB_OTG_GLPMCFG_LPMACK | USB_OTG_GLPMCFG_ENBESL); + + return HAL_OK; +} + +/** + * @brief Deactivate LPM feature. + * @param hpcd: PCD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PCDEx_DeActivateLPM(PCD_HandleTypeDef *hpcd) +{ + USB_OTG_GlobalTypeDef *USBx = hpcd->Instance; + + hpcd->lpm_active = DISABLE; + USBx->GINTMSK &= ~USB_OTG_GINTMSK_LPMINTM; + USBx->GLPMCFG &= ~(USB_OTG_GLPMCFG_LPMEN | USB_OTG_GLPMCFG_LPMACK | USB_OTG_GLPMCFG_ENBESL); + + return HAL_OK; +} + +/** + * @brief Send LPM message to user layer callback. + * @param hpcd: PCD handle + * @param msg: LPM message + * @retval HAL status + */ +__weak void HAL_PCDEx_LPM_Callback(PCD_HandleTypeDef *hpcd, PCD_LPM_MsgTypeDef msg) +{ +} +#endif /* STM32F446xx */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PCD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pwr.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pwr.c new file mode 100644 index 0000000..faa35da --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pwr.c @@ -0,0 +1,574 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_pwr.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Power Controller (PWR) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup PWR PWR + * @brief PWR HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup PWR_Private_Constants + * @{ + */ + +/** @defgroup PWR_PVD_Mode_Mask PWR PVD Mode Mask + * @{ + */ +#define PVD_MODE_IT ((uint32_t)0x00010000) +#define PVD_MODE_EVT ((uint32_t)0x00020000) +#define PVD_RISING_EDGE ((uint32_t)0x00000001) +#define PVD_FALLING_EDGE ((uint32_t)0x00000002) +/** + * @} + */ + +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup PWR_Exported_Functions PWR Exported Functions + * @{ + */ + +/** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + After reset, the backup domain (RTC registers, RTC backup data + registers and backup SRAM) is protected against possible unwanted + write accesses. + To enable access to the RTC Domain and RTC registers, proceed as follows: + (+) Enable the Power Controller (PWR) APB1 interface clock using the + __HAL_RCC_PWR_CLK_ENABLE() macro. + (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function. + +@endverbatim + * @{ + */ + +/** + * @brief Deinitializes the HAL PWR peripheral registers to their default reset values. + * @retval None + */ +void HAL_PWR_DeInit(void) +{ + __HAL_RCC_PWR_FORCE_RESET(); + __HAL_RCC_PWR_RELEASE_RESET(); +} + +/** + * @brief Enables access to the backup domain (RTC registers, RTC + * backup data registers and backup SRAM). + * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the + * Backup Domain Access should be kept enabled. + * @retval None + */ +void HAL_PWR_EnableBkUpAccess(void) +{ + *(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE; +} + +/** + * @brief Disables access to the backup domain (RTC registers, RTC + * backup data registers and backup SRAM). + * @note If the HSE divided by 2, 3, ..31 is used as the RTC clock, the + * Backup Domain Access should be kept enabled. + * @retval None + */ +void HAL_PWR_DisableBkUpAccess(void) +{ + *(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE; +} + +/** + * @} + */ + +/** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions + * @brief Low Power modes configuration functions + * +@verbatim + + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + + *** PVD configuration *** + ========================= + [..] + (+) The PVD is used to monitor the VDD power supply by comparing it to a + threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR). + (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower + than the PVD threshold. This event is internally connected to the EXTI + line16 and can generate an interrupt if enabled. This is done through + __HAL_PWR_PVD_EXTI_ENABLE_IT() macro. + (+) The PVD is stopped in Standby mode. + + *** Wake-up pin configuration *** + ================================ + [..] + (+) Wake-up pin is used to wake up the system from Standby mode. This pin is + forced in input pull-down configuration and is active on rising edges. + (+) There is one Wake-up pin: Wake-up Pin 1 on PA.00. + Only for STM32F446xx there are two Wake-Up pins: Pin1 on PA.00 and Pin 2 on PC.13 + + *** Low Power modes configuration *** + ===================================== + [..] + The devices feature 3 low-power modes: + (+) Sleep mode: Cortex-M4 core stopped, peripherals kept running. + (+) Stop mode: all clocks are stopped, regulator running, regulator + in low power mode + (+) Standby mode: 1.2V domain powered off. + + *** Sleep mode *** + ================== + [..] + (+) Entry: + The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI) + functions with + (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction + (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction + + -@@- The Regulator parameter is not used for the STM32F4 family + and is kept as parameter just to maintain compatibility with the + lower power families (STM32L). + (+) Exit: + Any peripheral interrupt acknowledged by the nested vectored interrupt + controller (NVIC) can wake up the device from Sleep mode. + + *** Stop mode *** + ================= + [..] + In Stop mode, all clocks in the 1.2V domain are stopped, the PLL, the HSI, + and the HSE RC oscillators are disabled. Internal SRAM and register contents + are preserved. + The voltage regulator can be configured either in normal or low-power mode. + To minimize the consumption In Stop mode, FLASH can be powered off before + entering the Stop mode using the HAL_PWREx_EnableFlashPowerDown() function. + It can be switched on again by software after exiting the Stop mode using + the HAL_PWREx_DisableFlashPowerDown() function. + + (+) Entry: + The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON) + function with: + (++) Main regulator ON. + (++) Low Power regulator ON. + (+) Exit: + Any EXTI Line (Internal or External) configured in Interrupt/Event mode. + + *** Standby mode *** + ==================== + [..] + (+) + The Standby mode allows to achieve the lowest power consumption. It is based + on the Cortex-M4 deep sleep mode, with the voltage regulator disabled. + The 1.2V domain is consequently powered off. The PLL, the HSI oscillator and + the HSE oscillator are also switched off. SRAM and register contents are lost + except for the RTC registers, RTC backup registers, backup SRAM and Standby + circuitry. + + The voltage regulator is OFF. + + (++) Entry: + (+++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function. + (++) Exit: + (+++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wake-up, + tamper event, time-stamp event, external reset in NRST pin, IWDG reset. + + *** Auto-wake-up (AWU) from low-power mode *** + ============================================= + [..] + + (+) The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC + Wake-up event, a tamper event or a time-stamp event, without depending on + an external interrupt (Auto-wake-up mode). + + (+) RTC auto-wake-up (AWU) from the Stop and Standby modes + + (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to + configure the RTC to generate the RTC alarm using the HAL_RTC_SetAlarm_IT() function. + + (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it + is necessary to configure the RTC to detect the tamper or time stamp event using the + HAL_RTCEx_SetTimeStamp_IT() or HAL_RTCEx_SetTamper_IT() functions. + + (++) To wake up from the Stop mode with an RTC Wake-up event, it is necessary to + configure the RTC to generate the RTC Wake-up event using the HAL_RTCEx_SetWakeUpTimer_IT() function. + +@endverbatim + * @{ + */ + +/** + * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD). + * @param sConfigPVD: pointer to an PWR_PVDTypeDef structure that contains the configuration + * information for the PVD. + * @note Refer to the electrical characteristics of your device datasheet for + * more details about the voltage threshold corresponding to each + * detection level. + * @retval None + */ +void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD) +{ + /* Check the parameters */ + assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel)); + assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode)); + + /* Set PLS[7:5] bits according to PVDLevel value */ + MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel); + + /* Clear any previous config. Keep it clear if no event or IT mode is selected */ + __HAL_PWR_PVD_EXTI_DISABLE_EVENT(); + __HAL_PWR_PVD_EXTI_DISABLE_IT(); + __HAL_PWR_PVD_EXTI_DISABLE_RISING_EDGE(); + __HAL_PWR_PVD_EXTI_DISABLE_FALLING_EDGE(); + + /* Configure interrupt mode */ + if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT) + { + __HAL_PWR_PVD_EXTI_ENABLE_IT(); + } + + /* Configure event mode */ + if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT) + { + __HAL_PWR_PVD_EXTI_ENABLE_EVENT(); + } + + /* Configure the edge */ + if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE(); + } + + if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE) + { + __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE(); + } +} + +/** + * @brief Enables the Power Voltage Detector(PVD). + * @retval None + */ +void HAL_PWR_EnablePVD(void) +{ + *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE; +} + +/** + * @brief Disables the Power Voltage Detector(PVD). + * @retval None + */ +void HAL_PWR_DisablePVD(void) +{ + *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE; +} + +/** + * @brief Enables the Wake-up PINx functionality. + * @param WakeUpPinx: Specifies the Power Wake-Up pin to enable. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN1 + * @arg PWR_WAKEUP_PIN2 only available in case of STM32F446xx devices + * @retval None + */ +void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx) +{ + /* Check the parameter */ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); + + /* Enable the wake up pin */ + SET_BIT(PWR->CSR, WakeUpPinx); +} + +/** + * @brief Disables the Wake-up PINx functionality. + * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable. + * This parameter can be one of the following values: + * @arg PWR_WAKEUP_PIN1 + * @arg PWR_WAKEUP_PIN2 only available in case of STM32F446xx devices + * @retval None + */ +void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx) +{ + /* Check the parameter */ + assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx)); + + /* Disable the wake up pin */ + CLEAR_BIT(PWR->CSR, WakeUpPinx); +} + +/** + * @brief Enters Sleep mode. + * + * @note In Sleep mode, all I/O pins keep the same state as in Run mode. + * + * @note In Sleep mode, the systick is stopped to avoid exit from this mode with + * systick interrupt when used as time base for Timeout + * + * @param Regulator: Specifies the regulator state in SLEEP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON + * @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON + * @note This parameter is not used for the STM32F4 family and is kept as parameter + * just to maintain compatibility with the lower power families. + * @param SLEEPEntry: Specifies if SLEEP mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction + * @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction + * @retval None + */ +void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry)); + + /* Clear SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select SLEEP mode entry -------------------------------------------------*/ + if(SLEEPEntry == PWR_SLEEPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } +} + +/** + * @brief Enters Stop mode. + * @note In Stop mode, all I/O pins keep the same state as in Run mode. + * @note When exiting Stop mode by issuing an interrupt or a wake-up event, + * the HSI RC oscillator is selected as system clock. + * @note When the voltage regulator operates in low power mode, an additional + * startup delay is incurred when waking up from Stop mode. + * By keeping the internal regulator ON during Stop mode, the consumption + * is higher although the startup time is reduced. + * @param Regulator: Specifies the regulator state in Stop mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON + * @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON + * @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction + * @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction + * @retval None + */ +void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry) +{ + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR(Regulator)); + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Select the regulator state in Stop mode: Set PDDS and LPDS bits according to PWR_Regulator value */ + MODIFY_REG(PWR->CR, (PWR_CR_PDDS | PWR_CR_LPDS), Regulator); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* Select Stop mode entry --------------------------------------------------*/ + if(STOPEntry == PWR_STOPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __SEV(); + __WFE(); + __WFE(); + } + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); +} + +/** + * @brief Enters Standby mode. + * @note In Standby mode, all I/O pins are high impedance except for: + * - Reset pad (still available) + * - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC + * Alarm out, or RTC clock calibration out. + * - RTC_AF2 pin (PI8) if configured for tamper or time-stamp. + * - WKUP pin 1 (PA0) if enabled. + * @retval None + */ +void HAL_PWR_EnterSTANDBYMode(void) +{ + /* Select Standby mode */ + SET_BIT(PWR->CR, PWR_CR_PDDS); + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk)); + + /* This option is used to ensure that store operations are completed */ +#if defined ( __CC_ARM) + __force_stores(); +#endif + /* Request Wait For Interrupt */ + __WFI(); +} + +/** + * @brief This function handles the PWR PVD interrupt request. + * @note This API should be called under the PVD_IRQHandler(). + * @retval None + */ +void HAL_PWR_PVD_IRQHandler(void) +{ + /* Check PWR Exti flag */ + if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET) + { + /* PWR PVD interrupt user callback */ + HAL_PWR_PVDCallback(); + + /* Clear PWR Exti pending bit */ + __HAL_PWR_PVD_EXTI_CLEAR_FLAG(); + } +} + +/** + * @brief PWR PVD interrupt callback + * @retval None + */ +__weak void HAL_PWR_PVDCallback(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_PWR_PVDCallback could be implemented in the user file + */ +} + +/** + * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode. + * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * Setting this bit is useful when the processor is expected to run only on + * interruptions handling. + * @retval None + */ +void HAL_PWR_EnableSleepOnExit(void) +{ + /* Set SLEEPONEXIT bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + +/** + * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode. + * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor + * re-enters SLEEP mode when an interruption handling is over. + * @retval None + */ +void HAL_PWR_DisableSleepOnExit(void) +{ + /* Clear SLEEPONEXIT bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk)); +} + +/** + * @brief Enables CORTEX M4 SEVONPEND bit. + * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_EnableSEVOnPend(void) +{ + /* Set SEVONPEND bit of Cortex System Control Register */ + SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + +/** + * @brief Disables CORTEX M4 SEVONPEND bit. + * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes + * WFE to wake up when an interrupt moves from inactive to pended. + * @retval None + */ +void HAL_PWR_DisableSEVOnPend(void) +{ + /* Clear SEVONPEND bit of Cortex System Control Register */ + CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk)); +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pwr_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pwr_ex.c new file mode 100644 index 0000000..b0faab1 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_pwr_ex.c @@ -0,0 +1,624 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_pwr_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief Extended PWR HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of PWR extension peripheral: + * + Peripheral Extended features functions + * + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup PWREx PWREx + * @brief PWR HAL module driver + * @{ + */ + +#ifdef HAL_PWR_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup PWREx_Private_Constants + * @{ + */ +#define PWR_OVERDRIVE_TIMEOUT_VALUE 1000 +#define PWR_UDERDRIVE_TIMEOUT_VALUE 1000 +#define PWR_BKPREG_TIMEOUT_VALUE 1000 +#define PWR_VOSRDY_TIMEOUT_VALUE 1000 +/** + * @} + */ + + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @defgroup PWREx_Exported_Functions PWREx Exported Functions + * @{ + */ + +/** @defgroup PWREx_Exported_Functions_Group1 Peripheral Extended features functions + * @brief Peripheral Extended features functions + * +@verbatim + + =============================================================================== + ##### Peripheral extended features functions ##### + =============================================================================== + + *** Main and Backup Regulators configuration *** + ================================================ + [..] + (+) The backup domain includes 4 Kbytes of backup SRAM accessible only from + the CPU, and address in 32-bit, 16-bit or 8-bit mode. Its content is + retained even in Standby or VBAT mode when the low power backup regulator + is enabled. It can be considered as an internal EEPROM when VBAT is + always present. You can use the HAL_PWREx_EnableBkUpReg() function to + enable the low power backup regulator. + + (+) When the backup domain is supplied by VDD (analog switch connected to VDD) + the backup SRAM is powered from VDD which replaces the VBAT power supply to + save battery life. + + (+) The backup SRAM is not mass erased by a tamper event. It is read + protected to prevent confidential data, such as cryptographic private + key, from being accessed. The backup SRAM can be erased only through + the Flash interface when a protection level change from level 1 to + level 0 is requested. + -@- Refer to the description of Read protection (RDP) in the Flash + programming manual. + + (+) The main internal regulator can be configured to have a tradeoff between + performance and power consumption when the device does not operate at + the maximum frequency. This is done through __HAL_PWR_MAINREGULATORMODE_CONFIG() + macro which configure VOS bit in PWR_CR register + + Refer to the product datasheets for more details. + + *** FLASH Power Down configuration **** + ======================================= + [..] + (+) By setting the FPDS bit in the PWR_CR register by using the + HAL_PWREx_EnableFlashPowerDown() function, the Flash memory also enters power + down mode when the device enters Stop mode. When the Flash memory + is in power down mode, an additional startup delay is incurred when + waking up from Stop mode. + + (+) For STM32F42xxx/43xxx Devices, the scale can be modified only when the PLL + is OFF and the HSI or HSE clock source is selected as system clock. + The new value programmed is active only when the PLL is ON. + When the PLL is OFF, the voltage scale 3 is automatically selected. + Refer to the datasheets for more details. + + *** Over-Drive and Under-Drive configuration **** + ================================================= + [..] + (+) For STM32F42xxx/43xxx Devices, in Run mode: the main regulator has + 2 operating modes available: + (++) Normal mode: The CPU and core logic operate at maximum frequency at a given + voltage scaling (scale 1, scale 2 or scale 3) + (++) Over-drive mode: This mode allows the CPU and the core logic to operate at a + higher frequency than the normal mode for a given voltage scaling (scale 1, + scale 2 or scale 3). This mode is enabled through HAL_PWREx_EnableOverDrive() function and + disabled by HAL_PWREx_DisableOverDrive() function, to enter or exit from Over-drive mode please follow + the sequence described in Reference manual. + + (+) For STM32F42xxx/43xxx Devices, in Stop mode: the main regulator or low power regulator + supplies a low power voltage to the 1.2V domain, thus preserving the content of registers + and internal SRAM. 2 operating modes are available: + (++) Normal mode: the 1.2V domain is preserved in nominal leakage mode. This mode is only + available when the main regulator or the low power regulator is used in Scale 3 or + low voltage mode. + (++) Under-drive mode: the 1.2V domain is preserved in reduced leakage mode. This mode is only + available when the main regulator or the low power regulator is in low voltage mode. + +@endverbatim + * @{ + */ + +/** + * @brief Enables the Backup Regulator. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg(void) +{ + uint32_t tickstart = 0; + + *(__IO uint32_t *) CSR_BRE_BB = (uint32_t)ENABLE; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till Backup regulator ready flag is set */ + while(__HAL_PWR_GET_FLAG(PWR_FLAG_BRR) == RESET) + { + if((HAL_GetTick() - tickstart ) > PWR_BKPREG_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Disables the Backup Regulator. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg(void) +{ + uint32_t tickstart = 0; + + *(__IO uint32_t *) CSR_BRE_BB = (uint32_t)DISABLE; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till Backup regulator ready flag is set */ + while(__HAL_PWR_GET_FLAG(PWR_FLAG_BRR) != RESET) + { + if((HAL_GetTick() - tickstart ) > PWR_BKPREG_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Enables the Flash Power Down in Stop mode. + * @retval None + */ +void HAL_PWREx_EnableFlashPowerDown(void) +{ + *(__IO uint32_t *) CR_FPDS_BB = (uint32_t)ENABLE; +} + +/** + * @brief Disables the Flash Power Down in Stop mode. + * @retval None + */ +void HAL_PWREx_DisableFlashPowerDown(void) +{ + *(__IO uint32_t *) CR_FPDS_BB = (uint32_t)DISABLE; +} + +/** + * @brief Return Voltage Scaling Range. + * @retval The configured scale for the regulator voltage(VOS bit field). + * The returned value can be one of the following: + * - @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output Scale 1 mode + * - @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output Scale 2 mode + * - @arg PWR_REGULATOR_VOLTAGE_SCALE3: Regulator voltage output Scale 3 mode + */ +uint32_t HAL_PWREx_GetVoltageRange(void) +{ + return (PWR->CR & PWR_CR_VOS); +} + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) +/** + * @brief Configures the main internal regulator output voltage. + * @param VoltageScaling: specifies the regulator output voltage to achieve + * a tradeoff between performance and power consumption. + * This parameter can be one of the following values: + * @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output range 1 mode, + * the maximum value of fHCLK = 168 MHz. + * @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output range 2 mode, + * the maximum value of fHCLK = 144 MHz. + * @note When moving from Range 1 to Range 2, the system frequency must be decreased to + * a value below 144 MHz before calling HAL_PWREx_ConfigVoltageScaling() API. + * When moving from Range 2 to Range 1, the system frequency can be increased to + * a value up to 168 MHz after calling HAL_PWREx_ConfigVoltageScaling() API. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling) +{ + uint32_t tickstart = 0; + + assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling)); + + /* Enable PWR RCC Clock Peripheral */ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Set Range */ + __HAL_PWR_VOLTAGESCALING_CONFIG(VoltageScaling); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + while((__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY) == RESET)) + { + if((HAL_GetTick() - tickstart ) > PWR_VOSRDY_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +#elif defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || \ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) || defined(STM32F446xx) +/** + * @brief Configures the main internal regulator output voltage. + * @param VoltageScaling: specifies the regulator output voltage to achieve + * a tradeoff between performance and power consumption. + * This parameter can be one of the following values: + * @arg PWR_REGULATOR_VOLTAGE_SCALE1: Regulator voltage output range 1 mode, + * the maximum value of fHCLK is 168 MHz. It can be extended to + * 180 MHz by activating the over-drive mode. + * @arg PWR_REGULATOR_VOLTAGE_SCALE2: Regulator voltage output range 2 mode, + * the maximum value of fHCLK is 144 MHz. It can be extended to, + * 168 MHz by activating the over-drive mode. + * @arg PWR_REGULATOR_VOLTAGE_SCALE3: Regulator voltage output range 3 mode, + * the maximum value of fHCLK is 120 MHz. + * @note To update the system clock frequency(SYSCLK): + * - Set the HSI or HSE as system clock frequency using the HAL_RCC_ClockConfig(). + * - Call the HAL_RCC_OscConfig() to configure the PLL. + * - Call HAL_PWREx_ConfigVoltageScaling() API to adjust the voltage scale. + * - Set the new system clock frequency using the HAL_RCC_ClockConfig(). + * @note The scale can be modified only when the HSI or HSE clock source is selected + * as system clock source, otherwise the API returns HAL_ERROR. + * @note When the PLL is OFF, the voltage scale 3 is automatically selected and the VOS bits + * value in the PWR_CR1 register are not taken in account. + * @note This API forces the PLL state ON to allow the possibility to configure the voltage scale 1 or 2. + * @note The new voltage scale is active only when the PLL is ON. + * @retval HAL Status + */ +HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling) +{ + uint32_t tickstart = 0; + + assert_param(IS_PWR_VOLTAGE_SCALING_RANGE(VoltageScaling)); + + /* Enable PWR RCC Clock Peripheral */ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Check if the PLL is used as system clock or not */ + if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) + { + /* Disable the main PLL */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + /* Wait till PLL is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set Range */ + __HAL_PWR_VOLTAGESCALING_CONFIG(VoltageScaling); + + /* Enable the main PLL */ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Get Start Tick */ + tickstart = HAL_GetTick(); + while((__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY) == RESET)) + { + if((HAL_GetTick() - tickstart ) > PWR_VOSRDY_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + return HAL_ERROR; + } + + return HAL_OK; +} +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx */ + +#if defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) +/** + * @brief Enables Main Regulator low voltage mode. + * @note This mode is only available for STM32F401xx/STM32F411xx devices. + * @retval None + */ +void HAL_PWREx_EnableMainRegulatorLowVoltage(void) +{ + *(__IO uint32_t *) CR_MRLVDS_BB = (uint32_t)ENABLE; +} + +/** + * @brief Disables Main Regulator low voltage mode. + * @note This mode is only available for STM32F401xx/STM32F411xx devices. + * @retval None + */ +void HAL_PWREx_DisableMainRegulatorLowVoltage(void) +{ + *(__IO uint32_t *) CR_MRLVDS_BB = (uint32_t)DISABLE; +} + +/** + * @brief Enables Low Power Regulator low voltage mode. + * @note This mode is only available for STM32F401xx/STM32F411xx devices. + * @retval None + */ +void HAL_PWREx_EnableLowRegulatorLowVoltage(void) +{ + *(__IO uint32_t *) CR_LPLVDS_BB = (uint32_t)ENABLE; +} + +/** + * @brief Disables Low Power Regulator low voltage mode. + * @note This mode is only available for STM32F401xx/STM32F411xx devices. + * @retval None + */ +void HAL_PWREx_DisableLowRegulatorLowVoltage(void) +{ + *(__IO uint32_t *) CR_LPLVDS_BB = (uint32_t)DISABLE; +} + +#endif /* STM32F401xC || STM32F401xE || STM32F411xE */ + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) +/** + * @brief Activates the Over-Drive mode. + * @note This function can be used only for STM32F42xx/STM32F43xx devices. + * This mode allows the CPU and the core logic to operate at a higher frequency + * than the normal mode for a given voltage scaling (scale 1, scale 2 or scale 3). + * @note It is recommended to enter or exit Over-drive mode when the application is not running + * critical tasks and when the system clock source is either HSI or HSE. + * During the Over-drive switch activation, no peripheral clocks should be enabled. + * The peripheral clocks must be enabled once the Over-drive mode is activated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_EnableOverDrive(void) +{ + uint32_t tickstart = 0; + + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable the Over-drive to extend the clock frequency to 180 Mhz */ + __HAL_PWR_OVERDRIVE_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(!__HAL_PWR_GET_FLAG(PWR_FLAG_ODRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Enable the Over-drive switch */ + __HAL_PWR_OVERDRIVESWITCHING_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(!__HAL_PWR_GET_FLAG(PWR_FLAG_ODSWRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + return HAL_OK; +} + +/** + * @brief Deactivates the Over-Drive mode. + * @note This function can be used only for STM32F42xx/STM32F43xx devices. + * This mode allows the CPU and the core logic to operate at a higher frequency + * than the normal mode for a given voltage scaling (scale 1, scale 2 or scale 3). + * @note It is recommended to enter or exit Over-drive mode when the application is not running + * critical tasks and when the system clock source is either HSI or HSE. + * During the Over-drive switch activation, no peripheral clocks should be enabled. + * The peripheral clocks must be enabled once the Over-drive mode is activated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_PWREx_DisableOverDrive(void) +{ + uint32_t tickstart = 0; + + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Disable the Over-drive switch */ + __HAL_PWR_OVERDRIVESWITCHING_DISABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODSWRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Disable the Over-drive */ + __HAL_PWR_OVERDRIVE_DISABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_PWR_GET_FLAG(PWR_FLAG_ODRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_OVERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @brief Enters in Under-Drive STOP mode. + * + * @note This mode is only available for STM32F42xxx/STM324F3xxx devices. + * + * @note This mode can be selected only when the Under-Drive is already active + * + * @note This mode is enabled only with STOP low power mode. + * In this mode, the 1.2V domain is preserved in reduced leakage mode. This + * mode is only available when the main regulator or the low power regulator + * is in low voltage mode + * + * @note If the Under-drive mode was enabled, it is automatically disabled after + * exiting Stop mode. + * When the voltage regulator operates in Under-drive mode, an additional + * startup delay is induced when waking up from Stop mode. + * + * @note In Stop mode, all I/O pins keep the same state as in Run mode. + * + * @note When exiting Stop mode by issuing an interrupt or a wake-up event, + * the HSI RC oscillator is selected as system clock. + * + * @note When the voltage regulator operates in low power mode, an additional + * startup delay is incurred when waking up from Stop mode. + * By keeping the internal regulator ON during Stop mode, the consumption + * is higher although the startup time is reduced. + * + * @param Regulator: specifies the regulator state in STOP mode. + * This parameter can be one of the following values: + * @arg PWR_MAINREGULATOR_UNDERDRIVE_ON: Main Regulator in under-drive mode + * and Flash memory in power-down when the device is in Stop under-drive mode + * @arg PWR_LOWPOWERREGULATOR_UNDERDRIVE_ON: Low Power Regulator in under-drive mode + * and Flash memory in power-down when the device is in Stop under-drive mode + * @param STOPEntry: specifies if STOP mode in entered with WFI or WFE instruction. + * This parameter can be one of the following values: + * @arg PWR_SLEEPENTRY_WFI: enter STOP mode with WFI instruction + * @arg PWR_SLEEPENTRY_WFE: enter STOP mode with WFE instruction + * @retval None + */ +HAL_StatusTypeDef HAL_PWREx_EnterUnderDriveSTOPMode(uint32_t Regulator, uint8_t STOPEntry) +{ + uint32_t tmpreg1 = 0; + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_PWR_REGULATOR_UNDERDRIVE(Regulator)); + assert_param(IS_PWR_STOP_ENTRY(STOPEntry)); + + /* Enable Power ctrl clock */ + __HAL_RCC_PWR_CLK_ENABLE(); + /* Enable the Under-drive Mode ---------------------------------------------*/ + /* Clear Under-drive flag */ + __HAL_PWR_CLEAR_ODRUDR_FLAG(); + + /* Enable the Under-drive */ + __HAL_PWR_UNDERDRIVE_ENABLE(); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait for UnderDrive mode is ready */ + while(__HAL_PWR_GET_FLAG(PWR_FLAG_UDRDY)) + { + if((HAL_GetTick() - tickstart ) > PWR_UDERDRIVE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Select the regulator state in STOP mode ---------------------------------*/ + tmpreg1 = PWR->CR; + /* Clear PDDS, LPDS, MRLUDS and LPLUDS bits */ + tmpreg1 &= (uint32_t)~(PWR_CR_PDDS | PWR_CR_LPDS | PWR_CR_LPUDS | PWR_CR_MRUDS); + + /* Set LPDS, MRLUDS and LPLUDS bits according to PWR_Regulator value */ + tmpreg1 |= Regulator; + + /* Store the new value */ + PWR->CR = tmpreg1; + + /* Set SLEEPDEEP bit of Cortex System Control Register */ + SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; + + /* Select STOP mode entry --------------------------------------------------*/ + if(STOPEntry == PWR_SLEEPENTRY_WFI) + { + /* Request Wait For Interrupt */ + __WFI(); + } + else + { + /* Request Wait For Event */ + __WFE(); + } + /* Reset SLEEPDEEP bit of Cortex System Control Register */ + SCB->SCR &= (uint32_t)~((uint32_t)SCB_SCR_SLEEPDEEP_Msk); + + return HAL_OK; +} + +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_PWR_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_qspi.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_qspi.c new file mode 100644 index 0000000..d681534 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_qspi.c @@ -0,0 +1,1942 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_qspi.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief QSPI HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the QuadSPI interface (QSPI). + * + Initialization and de-initialization functions + * + Indirect functional mode management + * + Memory-mapped functional mode management + * + Auto-polling functional mode management + * + Interrupts and flags management + * + DMA channel configuration for indirect functional mode + * + Errors management and abort functionality + * + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + *** Initialization *** + ====================== + [..] + (#) As prerequisite, fill in the HAL_QSPI_MspInit() : + (+) Enable QuadSPI clock interface with __HAL_RCC_QSPI_CLK_ENABLE(). + (+) Reset QuadSPI IP with __HAL_RCC_QSPI_FORCE_RESET() and __HAL_RCC_QSPI_RELEASE_RESET(). + (+) Enable the clocks for the QuadSPI GPIOS with __HAL_RCC_GPIOx_CLK_ENABLE(). + (+) Configure these QuadSPI pins in alternate mode using HAL_GPIO_Init(). + (+) If interrupt mode is used, enable and configure QuadSPI global + interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). + (+) If DMA mode is used, enable the clocks for the QuadSPI DMA channel + with __HAL_RCC_DMAx_CLK_ENABLE(), configure DMA with HAL_DMA_Init(), + link it with QuadSPI handle using __HAL_LINKDMA(), enable and configure + DMA channel global interrupt with HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ(). + (#) Configure the flash size, the clock prescaler, the fifo threshold, the + clock mode, the sample shifting and the CS high time using the HAL_QSPI_Init() function. + + *** Indirect functional mode *** + ================================ + [..] + (#) Configure the command sequence using the HAL_QSPI_Command() or HAL_QSPI_Command_IT() + functions : + (+) Instruction phase : the mode used and if present the instruction opcode. + (+) Address phase : the mode used and if present the size and the address value. + (+) Alternate-bytes phase : the mode used and if present the size and the alternate + bytes values. + (+) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). + (+) Data phase : the mode used and if present the number of bytes. + (+) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay + if activated. + (+) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. + (#) If no data is required for the command, it is sent directly to the memory : + (+) In polling mode, the output of the function is done when the transfer is complete. + (+) In interrupt mode, HAL_QSPI_CmdCpltCallback() will be called when the transfer is complete. + (#) For the indirect write mode, use HAL_QSPI_Transmit(), HAL_QSPI_Transmit_DMA() or + HAL_QSPI_Transmit_IT() after the command configuration : + (+) In polling mode, the output of the function is done when the transfer is complete. + (+) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold + is reached and HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. + (+) In DMA mode, HAL_QSPI_TxHalfCpltCallback() will be called at the half transfer and + HAL_QSPI_TxCpltCallback() will be called when the transfer is complete. + (#) For the indirect read mode, use HAL_QSPI_Receive(), HAL_QSPI_Receive_DMA() or + HAL_QSPI_Receive_IT() after the command configuration : + (+) In polling mode, the output of the function is done when the transfer is complete. + (+) In interrupt mode, HAL_QSPI_FifoThresholdCallback() will be called when the fifo threshold + is reached and HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. + (+) In DMA mode, HAL_QSPI_RxHalfCpltCallback() will be called at the half transfer and + HAL_QSPI_RxCpltCallback() will be called when the transfer is complete. + + *** Auto-polling functional mode *** + ==================================== + [..] + (#) Configure the command sequence and the auto-polling functional mode using the + HAL_QSPI_AutoPolling() or HAL_QSPI_AutoPolling_IT() functions : + (+) Instruction phase : the mode used and if present the instruction opcode. + (+) Address phase : the mode used and if present the size and the address value. + (+) Alternate-bytes phase : the mode used and if present the size and the alternate + bytes values. + (+) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). + (+) Data phase : the mode used. + (+) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay + if activated. + (+) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. + (+) The size of the status bytes, the match value, the mask used, the match mode (OR/AND), + the polling interval and the automatic stop activation. + (#) After the configuration : + (+) In polling mode, the output of the function is done when the status match is reached. The + automatic stop is activated to avoid an infinite loop. + (+) In interrupt mode, HAL_QSPI_StatusMatchCallback() will be called each time the status match is reached. + + *** Memory-mapped functional mode *** + ===================================== + [..] + (#) Configure the command sequence and the memory-mapped functional mode using the + HAL_QSPI_MemoryMapped() functions : + (+) Instruction phase : the mode used and if present the instruction opcode. + (+) Address phase : the mode used and the size. + (+) Alternate-bytes phase : the mode used and if present the size and the alternate + bytes values. + (+) Dummy-cycles phase : the number of dummy cycles (mode used is same as data phase). + (+) Data phase : the mode used. + (+) Double Data Rate (DDR) mode : the activation (or not) of this mode and the delay + if activated. + (+) Sending Instruction Only Once (SIOO) mode : the activation (or not) of this mode. + (+) The timeout activation and the timeout period. + (#) After the configuration, the QuadSPI will be used as soon as an access on the AHB is done on + the address range. HAL_QSPI_TimeOutCallback() will be called when the timeout expires. + + *** Errors management and abort functionality *** + ================================================== + [..] + (#) HAL_QSPI_GetError() function gives the error rised during the last operation. + (#) HAL_QSPI_Abort() function aborts any on-going operation and flushes the fifo. + (#) HAL_QSPI_GetState() function gives the current state of the HAL QuadSPI driver. + + *** Workarounds linked to Silicon Limitation *** + ==================================================== + [..] + (#) Workarounds Implemented inside HAL Driver + (+) Extra data written in the FIFO at the end of a read transfer + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup QSPI QSPI + * @brief HAL QSPI module driver + * @{ + */ +#ifdef HAL_QSPI_MODULE_ENABLED + +#if defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup QSPI_Private_Constants + * @{ + */ +#define QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE ((uint32_t)0x00000000) /*!<Indirect write mode*/ +#define QSPI_FUNCTIONAL_MODE_INDIRECT_READ ((uint32_t)QUADSPI_CCR_FMODE_0) /*!<Indirect read mode*/ +#define QSPI_FUNCTIONAL_MODE_AUTO_POLLING ((uint32_t)QUADSPI_CCR_FMODE_1) /*!<Automatic polling mode*/ +#define QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED ((uint32_t)QUADSPI_CCR_FMODE) /*!<Memory-mapped mode*/ +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/** @addtogroup QSPI_Private_Macros QSPI Private Macros + * @{ + */ +#define IS_QSPI_FUNCTIONAL_MODE(MODE) (((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE) || \ + ((MODE) == QSPI_FUNCTIONAL_MODE_INDIRECT_READ) || \ + ((MODE) == QSPI_FUNCTIONAL_MODE_AUTO_POLLING) || \ + ((MODE) == QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)) +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup QSPI_Private_Functions QSPI Private Functions + * @{ + */ +static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma); +static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma); +static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void QSPI_DMAError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, FlagStatus State, uint32_t Timeout); +static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup QSPI_Exported_Functions QSPI Exported Functions + * @{ + */ + +/** @defgroup QSPI_Exported_Functions_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to : + (+) Initialize the QuadSPI. + (+) De-initialize the QuadSPI. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the QSPI mode according to the specified parameters + * in the QSPI_InitTypeDef and creates the associated handle. + * @param hqspi: qspi handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Init(QSPI_HandleTypeDef *hqspi) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the QSPI handle allocation */ + if(hqspi == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_QSPI_ALL_INSTANCE(hqspi->Instance)); + assert_param(IS_QSPI_CLOCK_PRESCALER(hqspi->Init.ClockPrescaler)); + assert_param(IS_QSPI_FIFO_THRESHOLD(hqspi->Init.FifoThreshold)); + assert_param(IS_QSPI_SSHIFT(hqspi->Init.SampleShifting)); + assert_param(IS_QSPI_FLASH_SIZE(hqspi->Init.FlashSize)); + assert_param(IS_QSPI_CS_HIGH_TIME(hqspi->Init.ChipSelectHighTime)); + assert_param(IS_QSPI_CLOCK_MODE(hqspi->Init.ClockMode)); + assert_param(IS_QSPI_DUAL_FLASH_MODE(hqspi->Init.DualFlash)); + + if (hqspi->Init.DualFlash != QSPI_DUALFLASH_ENABLE ) + { + assert_param(IS_QSPI_FLASH_ID(hqspi->Init.FlashID)); + } + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hqspi->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK */ + HAL_QSPI_MspInit(hqspi); + + /* Configure the default timeout for the QSPI memory access */ + HAL_QSPI_SetTimeout(hqspi, HAL_QPSI_TIMEOUT_DEFAULT_VALUE); + } + + /* Configure QSPI FIFO Threshold */ + MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_FTHRES, ((hqspi->Init.FifoThreshold - 1) << 8)); + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, hqspi->Timeout); + + if(status == HAL_OK) + { + + /* Configure QSPI Clock Prescaler and Sample Shift */ + MODIFY_REG(hqspi->Instance->CR,(QUADSPI_CR_PRESCALER | QUADSPI_CR_SSHIFT | QUADSPI_CR_FSEL | QUADSPI_CR_DFM), ((hqspi->Init.ClockPrescaler << 24)| hqspi->Init.SampleShifting | hqspi->Init.FlashID| hqspi->Init.DualFlash )); + + /* Configure QSPI Flash Size, CS High Time and Clock Mode */ + MODIFY_REG(hqspi->Instance->DCR, (QUADSPI_DCR_FSIZE | QUADSPI_DCR_CSHT | QUADSPI_DCR_CKMODE), + ((hqspi->Init.FlashSize << 16) | hqspi->Init.ChipSelectHighTime | hqspi->Init.ClockMode)); + + /* Enable the QSPI peripheral */ + __HAL_QSPI_ENABLE(hqspi); + + /* Set QSPI error code to none */ + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Initialize the QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + /* Release Lock */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief DeInitializes the QSPI peripheral + * @param hqspi: qspi handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_DeInit(QSPI_HandleTypeDef *hqspi) +{ + /* Check the QSPI handle allocation */ + if(hqspi == NULL) + { + return HAL_ERROR; + } + + /* Process locked */ + __HAL_LOCK(hqspi); + + /* Disable the QSPI Peripheral Clock */ + __HAL_QSPI_DISABLE(hqspi); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_QSPI_MspDeInit(hqspi); + + /* Set QSPI error code to none */ + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Initialize the QSPI state */ + hqspi->State = HAL_QSPI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hqspi); + + return HAL_OK; +} + +/** + * @brief QSPI MSP Init + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_MspInit(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_QSPI_MspInit can be implemented in the user file + */ +} + +/** + * @brief QSPI MSP DeInit + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_MspDeInit(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_QSPI_MspDeInit can be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup QSPI_Exported_Functions_Group2 IO operation functions + * @brief QSPI Transmit/Receive functions + * +@verbatim + =============================================================================== + ##### I/O operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to : + (+) Handle the interrupts. + (+) Handle the command sequence. + (+) Transmit data in blocking, interrupt or DMA mode. + (+) Receive data in blocking, interrupt or DMA mode. + (+) Manage the auto-polling functional mode. + (+) Manage the memory-mapped functional mode. + +@endverbatim + * @{ + */ + +/** + * @brief This function handles QSPI interrupt request. + * @param hqspi: QSPI handle + * @retval None. + */ +void HAL_QSPI_IRQHandler(QSPI_HandleTypeDef *hqspi) +{ + __IO uint32_t *data_reg; + uint32_t flag = 0, itsource = 0; + + /* QSPI FIFO Threshold interrupt occurred ----------------------------------*/ + flag = __HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT); + itsource = __HAL_QSPI_GET_IT_SOURCE(hqspi, QSPI_IT_FT); + + if((flag != RESET) && (itsource != RESET)) + { + data_reg = &hqspi->Instance->DR; + + if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) + { + /* Transmission process */ + while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0) + { + if (hqspi->TxXferCount > 0) + { + /* Fill the FIFO until it is full */ + *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; + hqspi->TxXferCount--; + } + else + { + /* No more data available for the transfer */ + break; + } + } + } + else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) + { + /* Receiving Process */ + while(__HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_FT) != 0) + { + if (hqspi->RxXferCount > 0) + { + /* Read the FIFO until it is empty */ + *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; + hqspi->RxXferCount--; + } + else + { + /* All data have been received for the transfer */ + break; + } + } + } + + /* FIFO Threshold callback */ + HAL_QSPI_FifoThresholdCallback(hqspi); + } + + /* QSPI Transfer Complete interrupt occurred -------------------------------*/ + flag = __HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_TC); + itsource = __HAL_QSPI_GET_IT_SOURCE(hqspi, QSPI_IT_TC); + + if((flag != RESET) && (itsource != RESET)) + { + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Disable the QSPI FIFO Threshold, Transfer Error and Transfer complete Interrupts */ + __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); + + /* Transfer complete callback */ + if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_TX) + { + /* Clear Busy bit */ + HAL_QSPI_Abort(hqspi); + + /* TX Complete callback */ + HAL_QSPI_TxCpltCallback(hqspi); + } + else if(hqspi->State == HAL_QSPI_STATE_BUSY_INDIRECT_RX) + { + data_reg = &hqspi->Instance->DR; + while(READ_BIT(hqspi->Instance->SR, QUADSPI_SR_FLEVEL) != 0) + { + if (hqspi->RxXferCount > 0) + { + /* Read the last data received in the FIFO until it is empty */ + *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; + hqspi->RxXferCount--; + } + else + { + /* All data have been received for the transfer */ + break; + } + } + + /* Workaround - Extra data written in the FIFO at the end of a read transfer */ + HAL_QSPI_Abort(hqspi); + + /* RX Complete callback */ + HAL_QSPI_RxCpltCallback(hqspi); + } + else if(hqspi->State == HAL_QSPI_STATE_BUSY) + { + /* Command Complete callback */ + HAL_QSPI_CmdCpltCallback(hqspi); + } + + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + /* QSPI Status Match interrupt occurred ------------------------------------*/ + flag = __HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_SM); + itsource = __HAL_QSPI_GET_IT_SOURCE(hqspi, QSPI_IT_SM); + + if((flag != RESET) && (itsource != RESET)) + { + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM); + + /* Check if the automatic poll mode stop is activated */ + if(READ_BIT(hqspi->Instance->CR, QUADSPI_CR_APMS) != 0) + { + /* Disable the QSPI FIFO Threshold, Transfer Error and Status Match Interrupts */ + __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_FT | QSPI_IT_TE); + + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + /* Status match callback */ + HAL_QSPI_StatusMatchCallback(hqspi); + } + + /* QSPI Transfer Error interrupt occurred ----------------------------------*/ + flag = __HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_TE); + itsource = __HAL_QSPI_GET_IT_SOURCE(hqspi, QSPI_IT_TE); + + if((flag != RESET) && (itsource != RESET)) + { + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TE); + + /* Disable all the QSPI Interrupts */ + __HAL_QSPI_DISABLE_IT(hqspi, QSPI_IT_SM | QSPI_IT_TC | QSPI_IT_TE | QSPI_IT_FT); + + /* Set error code */ + hqspi->ErrorCode |= HAL_QSPI_ERROR_TRANSFER; + + /* Change state of QSPI */ + hqspi->State = HAL_QSPI_STATE_ERROR; + + /* Error callback */ + HAL_QSPI_ErrorCallback(hqspi); + } + + /* QSPI Time out interrupt occurred -----------------------------------------*/ + flag = __HAL_QSPI_GET_FLAG(hqspi, QSPI_FLAG_TO); + itsource = __HAL_QSPI_GET_IT_SOURCE(hqspi, QSPI_IT_TO); + + if((flag != RESET) && (itsource != RESET)) + { + /* Clear interrupt */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TO); + + /* Time out callback */ + HAL_QSPI_TimeOutCallback(hqspi); + } +} + +/** + * @brief Sets the command configuration. + * @param hqspi: QSPI handle + * @param cmd : structure that contains the command configuration information + * @param Timeout : Time out duration + * @note This function is used only in Indirect Read or Write Modes + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Command(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_BUSY; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, Timeout); + + if (status == HAL_OK) + { + /* Call the configuration function */ + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + if (cmd->DataMode == QSPI_DATA_NONE) + { + /* When there is no data phase, the transfer start as soon as the configuration is done + so wait until TC flag is set to go back in idle state */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, Timeout) != HAL_OK) + { + status = HAL_TIMEOUT; + } + else + { + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + } + else + { + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Sets the command configuration in interrupt mode. + * @param hqspi: QSPI handle + * @param cmd : structure that contains the command configuration information + * @note This function is used only in Indirect Read or Write Modes + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Command_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_BUSY; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, hqspi->Timeout); + + if (status == HAL_OK) + { + if (cmd->DataMode == QSPI_DATA_NONE) + { + /* When there is no data phase, the transfer start as soon as the configuration is done + so activate TC and TE interrupts */ + /* Enable the QSPI Transfer Error Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_TC); + } + + /* Call the configuration function */ + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + if (cmd->DataMode != QSPI_DATA_NONE) + { + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Transmit an amount of data in blocking mode. + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @param Timeout : Time out duration + * @note This function is used only in Indirect Write Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Transmit(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + __IO uint32_t *data_reg = &hqspi->Instance->DR; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + if(pData != NULL ) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; + + /* Configure counters and size of the handle */ + hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pTxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect write */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + while(hqspi->TxXferCount > 0) + { + /* Wait until FT flag is set to send data */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_FT, SET, Timeout) != HAL_OK) + { + status = HAL_TIMEOUT; + break; + } + + *(__IO uint8_t *)data_reg = *hqspi->pTxBuffPtr++; + hqspi->TxXferCount--; + } + + if (status == HAL_OK) + { + /* Wait until TC flag is set to go back in idle state */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, Timeout) != HAL_OK) + { + status = HAL_TIMEOUT; + } + else + { + /* Clear Transfer Complete bit */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Clear Busy bit */ + status = HAL_QSPI_Abort(hqspi); + } + } + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + + +/** + * @brief Receive an amount of data in blocking mode + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @param Timeout : Time out duration + * @note This function is used only in Indirect Read Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Receive(QSPI_HandleTypeDef *hqspi, uint8_t *pData, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t addr_reg = READ_REG(hqspi->Instance->AR); + __IO uint32_t *data_reg = &hqspi->Instance->DR; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + if(pData != NULL ) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; + + /* Configure counters and size of the handle */ + hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pRxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect read */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); + + /* Start the transfer by re-writing the address in AR register */ + WRITE_REG(hqspi->Instance->AR, addr_reg); + + while(hqspi->RxXferCount > 0) + { + /* Wait until FT or TC flag is set to read received data */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, (QSPI_FLAG_FT | QSPI_FLAG_TC), SET, Timeout) != HAL_OK) + { + status = HAL_TIMEOUT; + break; + } + + *hqspi->pRxBuffPtr++ = *(__IO uint8_t *)data_reg; + hqspi->RxXferCount--; + } + + if (status == HAL_OK) + { + /* Wait until TC flag is set to go back in idle state */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, Timeout) != HAL_OK) + { + status = HAL_TIMEOUT; + } + else + { + /* Clear Transfer Complete bit */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Workaround - Extra data written in the FIFO at the end of a read transfer */ + status = HAL_QSPI_Abort(hqspi); + } + } + + /* Update QSPI state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + +/** + * @brief Send an amount of data in interrupt mode + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @note This function is used only in Indirect Write Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Transmit_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + if(pData != NULL ) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; + + /* Configure counters and size of the handle */ + hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pTxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect write */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + /* Enable the QSPI transfer error, FIFO threshold and transfert complete Interrupts */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); + + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + +/** + * @brief Receive an amount of data in no-blocking mode with Interrupt + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @note This function is used only in Indirect Read Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Receive_IT(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t addr_reg = READ_REG(hqspi->Instance->AR); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + if(pData != NULL ) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; + + /* Configure counters and size of the handle */ + hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pRxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional as indirect read */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); + + /* Start the transfer by re-writing the address in AR register */ + WRITE_REG(hqspi->Instance->AR, addr_reg); + + /* Enable the QSPI transfer error, FIFO threshold and transfert complete Interrupts */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TE | QSPI_IT_FT | QSPI_IT_TC); + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + +/** + * @brief Sends an amount of data in non blocking mode with DMA. + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer + * @note This function is used only in Indirect Write Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Transmit_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t *tmp; + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + if(pData != NULL ) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_TX; + + /* Configure counters and size of the handle */ + hqspi->TxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->TxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pTxBuffPtr = pData; + + /* Configure QSPI: CCR register with functional mode as indirect write */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE); + + /* Set the QSPI DMA transfer complete callback */ + hqspi->hdma->XferCpltCallback = QSPI_DMATxCplt; + + /* Set the QSPI DMA Half transfer complete callback */ + hqspi->hdma->XferHalfCpltCallback = QSPI_DMATxHalfCplt; + + /* Set the DMA error callback */ + hqspi->hdma->XferErrorCallback = QSPI_DMAError; + + /* Configure the direction of the DMA */ + hqspi->hdma->Init.Direction = DMA_MEMORY_TO_PERIPH; + MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); + + /* Enable the QSPI transmit DMA Channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hqspi->hdma, *(uint32_t*)tmp, (uint32_t)&hqspi->Instance->DR, hqspi->TxXferSize); + + /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + } + else + { + status = HAL_OK; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + +/** + * @brief Receives an amount of data in non blocking mode with DMA. + * @param hqspi: QSPI handle + * @param pData: pointer to data buffer. + * @note This function is used only in Indirect Read Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_Receive_DMA(QSPI_HandleTypeDef *hqspi, uint8_t *pData) +{ + HAL_StatusTypeDef status = HAL_OK; + uint32_t *tmp; + uint32_t addr_reg = READ_REG(hqspi->Instance->AR); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + if(pData != NULL ) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_INDIRECT_RX; + + /* Configure counters and size of the handle */ + hqspi->RxXferCount = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->RxXferSize = READ_REG(hqspi->Instance->DLR) + 1; + hqspi->pRxBuffPtr = pData; + + /* Set the QSPI DMA transfer complete callback */ + hqspi->hdma->XferCpltCallback = QSPI_DMARxCplt; + + /* Set the QSPI DMA Half transfer complete callback */ + hqspi->hdma->XferHalfCpltCallback = QSPI_DMARxHalfCplt; + + /* Set the DMA error callback */ + hqspi->hdma->XferErrorCallback = QSPI_DMAError; + + /* Configure the direction of the DMA */ + hqspi->hdma->Init.Direction = DMA_PERIPH_TO_MEMORY; + MODIFY_REG(hqspi->hdma->Instance->CR, DMA_SxCR_DIR, hqspi->hdma->Init.Direction); + + /* Enable the DMA Channel */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hqspi->hdma, (uint32_t)&hqspi->Instance->DR, *(uint32_t*)tmp, hqspi->RxXferSize); + + /* Configure QSPI: CCR register with functional as indirect read */ + MODIFY_REG(hqspi->Instance->CCR, QUADSPI_CCR_FMODE, QSPI_FUNCTIONAL_MODE_INDIRECT_READ); + + /* Start the transfer by re-writing the address in AR register */ + WRITE_REG(hqspi->Instance->AR, addr_reg); + + /* Enable the DMA transfer by setting the DMAEN bit in the QSPI CR register */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + } + else + { + status = HAL_ERROR; + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + return status; +} + +/** + * @brief Configure the QSPI Automatic Polling Mode in blocking mode. + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information. + * @param cfg: structure that contains the polling configuration information. + * @param Timeout : Time out duration + * @note This function is used only in Automatic Polling Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_AutoPolling(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg, uint32_t Timeout) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + assert_param(IS_QSPI_INTERVAL(cfg->Interval)); + assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); + assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, Timeout); + + if (status == HAL_OK) + { + /* Configure QSPI: PSMAR register with the status match value */ + WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); + + /* Configure QSPI: PSMKR register with the status mask value */ + WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); + + /* Configure QSPI: PIR register with the interval value */ + WRITE_REG(hqspi->Instance->PIR, cfg->Interval); + + /* Configure QSPI: CR register with Match mode and Automatic stop enabled + (otherwise there will be an infinite loop in blocking mode) */ + MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), + (cfg->MatchMode | QSPI_AUTOMATIC_STOP_ENABLE)); + + /* Call the configuration function */ + cmd->NbData = cfg->StatusBytesSize; + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); + + /* Wait until SM flag is set to go back in idle state */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_SM, SET, Timeout) != HAL_OK) + { + status = HAL_TIMEOUT; + } + else + { + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_SM); + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + } + } + else + { + status = HAL_BUSY; + } + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Configure the QSPI Automatic Polling Mode in non-blocking mode. + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information. + * @param cfg: structure that contains the polling configuration information. + * @note This function is used only in Automatic Polling Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_AutoPolling_IT(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_AutoPollingTypeDef *cfg) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + assert_param(IS_QSPI_INTERVAL(cfg->Interval)); + assert_param(IS_QSPI_STATUS_BYTES_SIZE(cfg->StatusBytesSize)); + assert_param(IS_QSPI_MATCH_MODE(cfg->MatchMode)); + assert_param(IS_QSPI_AUTOMATIC_STOP(cfg->AutomaticStop)); + + /* Process locked */ + __HAL_LOCK(hqspi); + +if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_AUTO_POLLING; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, hqspi->Timeout); + + if (status == HAL_OK) + { + /* Configure QSPI: PSMAR register with the status match value */ + WRITE_REG(hqspi->Instance->PSMAR, cfg->Match); + + /* Configure QSPI: PSMKR register with the status mask value */ + WRITE_REG(hqspi->Instance->PSMKR, cfg->Mask); + + /* Configure QSPI: PIR register with the interval value */ + WRITE_REG(hqspi->Instance->PIR, cfg->Interval); + + /* Configure QSPI: CR register with Match mode and Automatic stop mode */ + MODIFY_REG(hqspi->Instance->CR, (QUADSPI_CR_PMM | QUADSPI_CR_APMS), + (cfg->MatchMode | cfg->AutomaticStop)); + + /* Call the configuration function */ + cmd->NbData = cfg->StatusBytesSize; + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_AUTO_POLLING); + + /* Enable the QSPI Transfer Error, FIFO threshold and status match Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, (QSPI_IT_FT | QSPI_IT_SM | QSPI_IT_TE)); + } + } + else + { + status = HAL_BUSY; + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Configure the Memory Mapped mode. + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information. + * @param cfg: structure that contains the memory mapped configuration information. + * @note This function is used only in Memory mapped Mode + * @retval HAL status + */ +HAL_StatusTypeDef HAL_QSPI_MemoryMapped(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, QSPI_MemoryMappedTypeDef *cfg) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Check the parameters */ + assert_param(IS_QSPI_INSTRUCTION_MODE(cmd->InstructionMode)); + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + assert_param(IS_QSPI_INSTRUCTION(cmd->Instruction)); + } + + assert_param(IS_QSPI_ADDRESS_MODE(cmd->AddressMode)); + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + assert_param(IS_QSPI_ADDRESS_SIZE(cmd->AddressSize)); + } + + assert_param(IS_QSPI_ALTERNATE_BYTES_MODE(cmd->AlternateByteMode)); + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + assert_param(IS_QSPI_ALTERNATE_BYTES_SIZE(cmd->AlternateBytesSize)); + } + + assert_param(IS_QSPI_DUMMY_CYCLES(cmd->DummyCycles)); + assert_param(IS_QSPI_DATA_MODE(cmd->DataMode)); + + assert_param(IS_QSPI_DDR_MODE(cmd->DdrMode)); + assert_param(IS_QSPI_DDR_HHC(cmd->DdrHoldHalfCycle)); + assert_param(IS_QSPI_SIOO_MODE(cmd->SIOOMode)); + + assert_param(IS_QSPI_TIMEOUT_ACTIVATION(cfg->TimeOutActivation)); + + /* Process locked */ + __HAL_LOCK(hqspi); + + if(hqspi->State == HAL_QSPI_STATE_READY) + { + hqspi->ErrorCode = HAL_QSPI_ERROR_NONE; + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_BUSY_MEM_MAPPED; + + /* Wait till BUSY flag reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, hqspi->Timeout); + + if (status == HAL_OK) + { + /* Configure QSPI: CR register with time out counter enable */ + MODIFY_REG(hqspi->Instance->CR, QUADSPI_CR_TCEN, cfg->TimeOutActivation); + + if (cfg->TimeOutActivation == QSPI_TIMEOUT_COUNTER_ENABLE) + { + assert_param(IS_QSPI_TIMEOUT_PERIOD(cfg->TimeOutPeriod)); + + /* Configure QSPI: LPTR register with the low-power time out value */ + WRITE_REG(hqspi->Instance->LPTR, cfg->TimeOutPeriod); + + /* Enable the QSPI TimeOut Interrupt */ + __HAL_QSPI_ENABLE_IT(hqspi, QSPI_IT_TO); + } + + /* Call the configuration function */ + QSPI_Config(hqspi, cmd, QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED); + + } + } + else + { + status = HAL_BUSY; + + } + + /* Process unlocked */ + __HAL_UNLOCK(hqspi); + + /* Return function status */ + return status; +} + +/** + * @brief Transfer Error callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_ErrorCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_ErrorCallback could be implemented in the user file + */ +} + +/** + * @brief Command completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_CmdCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_CmdCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_RxCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_TxCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_RxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_RxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param hqspi: QSPI handle + * @retval None + */ + __weak void HAL_QSPI_TxHalfCpltCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_QSPI_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief FIFO Threshold callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_FifoThresholdCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_FIFOThresholdCallback could be implemented in the user file + */ +} + +/** + * @brief Status Match callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_StatusMatchCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_StatusMatchCallback could be implemented in the user file + */ +} + +/** + * @brief Timeout callbacks + * @param hqspi: QSPI handle + * @retval None + */ +__weak void HAL_QSPI_TimeOutCallback(QSPI_HandleTypeDef *hqspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_QSPI_TimeOutCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup QSPI_Exported_Functions_Group3 Peripheral Control and State functions + * @brief QSPI control and State functions + * +@verbatim + =============================================================================== + ##### Peripheral Control and State functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to : + (+) Check in run-time the state of the driver. + (+) Check the error code set during last operation. + (+) Abort any operation. +..... +@endverbatim + * @{ + */ + +/** + * @brief Return the QSPI state. + * @param hqspi: QSPI handle + * @retval HAL state + */ +HAL_QSPI_StateTypeDef HAL_QSPI_GetState(QSPI_HandleTypeDef *hqspi) +{ + return hqspi->State; +} + +/** +* @brief Return the QSPI error code +* @param hqspi: QSPI handle +* @retval QSPI Error Code +*/ +uint32_t HAL_QSPI_GetError(QSPI_HandleTypeDef *hqspi) +{ + return hqspi->ErrorCode; +} + +/** +* @brief Abort the current transmission +* @param hqspi: QSPI handle +* @retval HAL status +*/ +HAL_StatusTypeDef HAL_QSPI_Abort(QSPI_HandleTypeDef *hqspi) +{ + HAL_StatusTypeDef status = HAL_ERROR; + + /* Configure QSPI: CR register with Abort request */ + SET_BIT(hqspi->Instance->CR, QUADSPI_CR_ABORT); + + /* Wait until TC flag is set to go back in idle state */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, hqspi->Timeout) != HAL_OK) + { + status = HAL_TIMEOUT; + } + else + { + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Wait until BUSY flag is reset */ + status = QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_BUSY, RESET, hqspi->Timeout); + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_READY; + } + + return status; +} + +/** @brief Set QSPI timeout + * @param hqspi: QSPI handle. + * @param Timeout: Timeout for the QSPI memory access. + * @retval None + */ +void HAL_QSPI_SetTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Timeout) +{ + hqspi->Timeout = Timeout; +} + +/** +* @} +*/ + +/* Private functions ---------------------------------------------------------*/ + +/** + * @brief DMA QSPI receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void QSPI_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hqspi->RxXferCount = 0; + + /* Wait for QSPI TC Flag */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, hqspi->Timeout) != HAL_OK) + { + /* Time out Occurred */ + HAL_QSPI_ErrorCallback(hqspi); + } + else + { + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Disable the DMA channel */ + HAL_DMA_Abort(hdma); + + /* Clear Transfer Complete bit */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Workaround - Extra data written in the FIFO at the end of a read transfer */ + HAL_QSPI_Abort(hqspi); + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_READY; + + HAL_QSPI_RxCpltCallback(hqspi); + } +} + +/** + * @brief DMA QSPI transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void QSPI_DMATxCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hqspi->TxXferCount = 0; + + /* Wait for QSPI TC Flag */ + if(QSPI_WaitFlagStateUntilTimeout(hqspi, QSPI_FLAG_TC, SET, hqspi->Timeout) != HAL_OK) + { + /* Time out Occurred */ + HAL_QSPI_ErrorCallback(hqspi); + } + else + { + /* Disable the DMA transfer by clearing the DMAEN bit in the QSPI CR register */ + CLEAR_BIT(hqspi->Instance->CR, QUADSPI_CR_DMAEN); + + /* Disable the DMA channel */ + HAL_DMA_Abort(hdma); + + /* Clear Transfer Complete bit */ + __HAL_QSPI_CLEAR_FLAG(hqspi, QSPI_FLAG_TC); + + /* Clear Busy bit */ + HAL_QSPI_Abort(hqspi); + + /* Update state */ + hqspi->State = HAL_QSPI_STATE_READY; + + HAL_QSPI_TxCpltCallback(hqspi); + } +} + +/** + * @brief DMA QSPI receive process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void QSPI_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_QSPI_RxHalfCpltCallback(hqspi); +} + +/** + * @brief DMA QSPI transmit process half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void QSPI_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = (QSPI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_QSPI_TxHalfCpltCallback(hqspi); +} + +/** + * @brief DMA QSPI communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void QSPI_DMAError(DMA_HandleTypeDef *hdma) +{ + QSPI_HandleTypeDef* hqspi = ( QSPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + hqspi->RxXferCount = 0; + hqspi->TxXferCount = 0; + hqspi->State = HAL_QSPI_STATE_ERROR; + hqspi->ErrorCode |= HAL_QSPI_ERROR_DMA; + + HAL_QSPI_ErrorCallback(hqspi); +} + +/** + * @brief This function wait a flag state until time out. + * @param hqspi: QSPI handle + * @param Flag: Flag checked + * @param State: Value of the flag expected + * @param Timeout: Duration of the time out + * @retval HAL status + */ +static HAL_StatusTypeDef QSPI_WaitFlagStateUntilTimeout(QSPI_HandleTypeDef *hqspi, uint32_t Flag, + FlagStatus State, uint32_t Timeout) +{ + uint32_t tickstart = HAL_GetTick(); + + /* Wait until flag is in expected state */ + while((FlagStatus)(__HAL_QSPI_GET_FLAG(hqspi, Flag)) != State) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout)) + { + hqspi->State = HAL_QSPI_STATE_ERROR; + hqspi->ErrorCode |= HAL_QSPI_ERROR_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief This function configures the communication registers + * @param hqspi: QSPI handle + * @param cmd: structure that contains the command configuration information + * @param FunctionalMode: functional mode to configured + * This parameter can be one of the following values: + * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_WRITE: Indirect write mode + * @arg QSPI_FUNCTIONAL_MODE_INDIRECT_READ: Indirect read mode + * @arg QSPI_FUNCTIONAL_MODE_AUTO_POLLING: Automatic polling mode + * @arg QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED: Memory-mapped mode + * @retval None + */ +static void QSPI_Config(QSPI_HandleTypeDef *hqspi, QSPI_CommandTypeDef *cmd, uint32_t FunctionalMode) +{ + assert_param(IS_QSPI_FUNCTIONAL_MODE(FunctionalMode)); + + if ((cmd->DataMode != QSPI_DATA_NONE) && (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED)) + { + /* Configure QSPI: DLR register with the number of data to read or write */ + WRITE_REG(hqspi->Instance->DLR, (cmd->NbData - 1)); + } + + if (cmd->InstructionMode != QSPI_INSTRUCTION_NONE) + { + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + /* Configure QSPI: ABR register with alternate bytes value */ + WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); + + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with instruction, address and alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | + cmd->InstructionMode | cmd->Instruction | FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with instruction and alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | + cmd->Instruction | FunctionalMode)); + } + } + else + { + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with instruction and address ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | + cmd->Instruction | FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with only instruction ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressMode | cmd->InstructionMode | cmd->Instruction | + FunctionalMode)); + } + } + } + else + { + if (cmd->AlternateByteMode != QSPI_ALTERNATE_BYTES_NONE) + { + /* Configure QSPI: ABR register with alternate bytes value */ + WRITE_REG(hqspi->Instance->ABR, cmd->AlternateBytes); + + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with address and alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressSize | cmd->AddressMode | + cmd->InstructionMode | FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with only alternate bytes ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateBytesSize | + cmd->AlternateByteMode | cmd->AddressMode | cmd->InstructionMode | + FunctionalMode)); + } + } + else + { + if (cmd->AddressMode != QSPI_ADDRESS_NONE) + { + /*---- Command with only address ----*/ + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressSize | cmd->AddressMode | cmd->InstructionMode | + FunctionalMode)); + + if (FunctionalMode != QSPI_FUNCTIONAL_MODE_MEMORY_MAPPED) + { + /* Configure QSPI: AR register with address value */ + WRITE_REG(hqspi->Instance->AR, cmd->Address); + } + } + else + { + /*---- Command with only data phase ----*/ + if (cmd->DataMode != QSPI_DATA_NONE) + { + /* Configure QSPI: CCR register with all communications parameters */ + WRITE_REG(hqspi->Instance->CCR, (cmd->DdrMode | cmd->DdrHoldHalfCycle | cmd->SIOOMode | + cmd->DataMode | (cmd->DummyCycles << 18) | cmd->AlternateByteMode | + cmd->AddressMode | cmd->InstructionMode | FunctionalMode)); + } + } + } + } +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F446xx */ + +#endif /* HAL_QSPI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rcc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rcc.c new file mode 100644 index 0000000..30ce2f9 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rcc.c @@ -0,0 +1,1234 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_rcc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Reset and Clock Control (RCC) peripheral: + * + Initialization and de-initialization functions + * + Peripheral Control functions + * + @verbatim + ============================================================================== + ##### RCC specific features ##### + ============================================================================== + [..] + After reset the device is running from Internal High Speed oscillator + (HSI 16MHz) with Flash 0 wait state, Flash prefetch buffer, D-Cache + and I-Cache are disabled, and all peripherals are off except internal + SRAM, Flash and JTAG. + (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses; + all peripherals mapped on these busses are running at HSI speed. + (+) The clock for all peripherals is switched off, except the SRAM and FLASH. + (+) All GPIOs are in input floating state, except the JTAG pins which + are assigned to be used for debug purpose. + + [..] + Once the device started from reset, the user application has to: + (+) Configure the clock source to be used to drive the System clock + (if the application needs higher frequency/performance) + (+) Configure the System clock frequency and Flash settings + (+) Configure the AHB and APB busses prescalers + (+) Enable the clock for the peripheral(s) to be used + (+) Configure the clock source(s) for peripherals which clocks are not + derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG) + + ##### RCC Limitations ##### + ============================================================================== + [..] + A delay between an RCC peripheral clock enable and the effective peripheral + enabling should be taken into account in order to manage the peripheral read/write + from/to registers. + (+) This delay depends on the peripheral mapping. + (+) If peripheral is mapped on AHB: the delay is 2 AHB clock cycle + after the clock enable bit is set on the hardware register + (+) If peripheral is mapped on APB: the delay is 2 APB clock cycle + after the clock enable bit is set on the hardware register + + [..] + Possible Workarounds: + (#) Enable the peripheral clock sometimes before the peripheral read/write + register is required. + (#) For AHB peripheral, insert two dummy read to the peripheral register. + (#) For APB peripheral, insert a dummy read to the peripheral register. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup RCC RCC + * @brief RCC HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup RCC_Private_Constants + * @{ + */ +#define CLOCKSWITCH_TIMEOUT_VALUE ((uint32_t)5000) /* 5 s */ + +/* Private macro -------------------------------------------------------------*/ +#define __MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() +#define MCO1_GPIO_PORT GPIOA +#define MCO1_PIN GPIO_PIN_8 + +#define __MCO2_CLK_ENABLE() __HAL_RCC_GPIOC_CLK_ENABLE() +#define MCO2_GPIO_PORT GPIOC +#define MCO2_PIN GPIO_PIN_9 +/** + * @} + */ + +/* Private variables ---------------------------------------------------------*/ +/** @defgroup RCC_Private_Variables RCC Private Variables + * @{ + */ +const uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9}; +/** + * @} + */ + +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup RCC_Exported_Functions RCC Exported Functions + * @{ + */ + +/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] + This section provides functions allowing to configure the internal/external oscillators + (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System busses clocks (SYSCLK, AHB, APB1 + and APB2). + + [..] Internal/external clock and PLL configuration + (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through + the PLL as System clock source. + + (#) LSI (low-speed internal), 32 KHz low consumption RC used as IWDG and/or RTC + clock source. + + (#) HSE (high-speed external), 4 to 26 MHz crystal oscillator used directly or + through the PLL as System clock source. Can be used also as RTC clock source. + + (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. + + (#) PLL (clocked by HSI or HSE), featuring two different output clocks: + (++) The first output is used to generate the high speed system clock (up to 168 MHz) + (++) The second output is used to generate the clock for the USB OTG FS (48 MHz), + the random analog generator (<=48 MHz) and the SDIO (<= 48 MHz). + + (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() + and if a HSE clock failure occurs(HSE used directly or through PLL as System + clock source), the System clocks automatically switched to HSI and an interrupt + is generated if enabled. The interrupt is linked to the Cortex-M4 NMI + (Non-Maskable Interrupt) exception vector. + + (#) MCO1 (microcontroller clock output), used to output HSI, LSE, HSE or PLL + clock (through a configurable prescaler) on PA8 pin. + + (#) MCO2 (microcontroller clock output), used to output HSE, PLL, SYSCLK or PLLI2S + clock (through a configurable prescaler) on PC9 pin. + + [..] System, AHB and APB busses clocks configuration + (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, + HSE and PLL. + The AHB clock (HCLK) is derived from System clock through configurable + prescaler and used to clock the CPU, memory and peripherals mapped + on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived + from AHB clock through configurable prescalers and used to clock + the peripherals mapped on these busses. You can use + "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. + + -@- All the peripheral clocks are derived from the System clock (SYSCLK) except: + (+@) I2S: the I2S clock can be derived either from a specific PLL (PLLI2S) or + from an external clock mapped on the I2S_CKIN pin. + You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock. + (+@) SAI: the SAI clock can be derived either from a specific PLL (PLLI2S) or (PLLSAI) or + from an external clock mapped on the I2S_CKIN pin. + You have to use __HAL_RCC_PLLI2S_CONFIG() macro to configure this clock. + (+@) RTC: the RTC clock can be derived either from the LSI, LSE or HSE clock + divided by 2 to 31. You have to use __HAL_RCC_RTC_CONFIG() and __HAL_RCC_RTC_ENABLE() + macros to configure this clock. + (+@) USB OTG FS, SDIO and RTC: USB OTG FS require a frequency equal to 48 MHz + to work correctly, while the SDIO require a frequency equal or lower than + to 48. This clock is derived of the main PLL through PLLQ divider. + (+@) IWDG clock which is always the LSI clock. + + (#) For the STM32F405xx/07xx and STM32F415xx/17xx devices, the maximum + frequency of the SYSCLK and HCLK is 168 MHz, PCLK2 84 MHz and PCLK1 42 MHz. + Depending on the device voltage range, the maximum frequency should + be adapted accordingly (refer to the product datasheets for more details). + + (#) For the STM32F42xxx and STM32F43xxx devices, the maximum frequency + of the SYSCLK and HCLK is 180 MHz, PCLK2 90 MHz and PCLK1 45 MHz. + Depending on the device voltage range, the maximum frequency should + be adapted accordingly (refer to the product datasheets for more details). + + (#) For the STM32F401xx, the maximum frequency of the SYSCLK and HCLK is 84 MHz, + PCLK2 84 MHz and PCLK1 42 MHz. + Depending on the device voltage range, the maximum frequency should + be adapted accordingly (refer to the product datasheets for more details). +@endverbatim + * @{ + */ + +/** + * @brief Resets the RCC clock configuration to the default reset state. + * @note The default reset state of the clock configuration is given below: + * - HSI ON and used as system clock source + * - HSE, PLL and PLLI2S OFF + * - AHB, APB1 and APB2 prescaler set to 1. + * - CSS, MCO1 and MCO2 OFF + * - All interrupts disabled + * @note This function doesn't modify the configuration of the + * - Peripheral clocks + * - LSI, LSE and RTC clocks + * @retval None + */ +void HAL_RCC_DeInit(void) +{ + /* Set HSION bit */ + SET_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSITRIM_4); + + /* Reset CFGR register */ + CLEAR_REG(RCC->CFGR); + + /* Reset HSEON, CSSON, PLLON, PLLI2S */ + CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON| RCC_CR_PLLI2SON); + + /* Reset PLLCFGR register */ + CLEAR_REG(RCC->PLLCFGR); + SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLM_4 | RCC_PLLCFGR_PLLN_6 | RCC_PLLCFGR_PLLN_7 | RCC_PLLCFGR_PLLQ_2); + + /* Reset PLLI2SCFGR register */ + CLEAR_REG(RCC->PLLI2SCFGR); + SET_BIT(RCC->PLLI2SCFGR, RCC_PLLI2SCFGR_PLLI2SN_6 | RCC_PLLI2SCFGR_PLLI2SN_7 | RCC_PLLI2SCFGR_PLLI2SR_1); + + /* Reset HSEBYP bit */ + CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); + + /* Disable all interrupts */ + CLEAR_REG(RCC->CIR); +} + +/** + * @brief Initializes the RCC Oscillators according to the specified parameters in the + * RCC_OscInitTypeDef. + * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC Oscillators. + * @note The PLL is not disabled when used as system clock. + * @retval HAL status + */ +__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); + /*------------------------------- HSE Configuration ------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) + { + /* Check the parameters */ + assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); + /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\ + ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE))) + { + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) + { + return HAL_ERROR; + } + } + else + { + /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/ + __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set the new HSE configuration ---------------------------------------*/ + __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); + + /* Check the HSE State */ + if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is bypassed or disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*----------------------------- HSI Configuration --------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); + assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); + + /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\ + ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI))) + { + /* When HSI is used as system clock it will not disabled */ + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) + { + return HAL_ERROR; + } + /* Otherwise, just the calibration is allowed */ + else + { + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + } + else + { + /* Check the HSI State */ + if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF) + { + /* Enable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + else + { + /* Disable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*------------------------------ LSI Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) + { + /* Check the parameters */ + assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); + + /* Check the LSI State */ + if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF) + { + /* Enable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*------------------------------ LSE Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) + { + /* Check the parameters */ + assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); + + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR |= PWR_CR_DBP; + + /* Wait for Backup domain Write protection disable */ + tickstart = HAL_GetTick(); + + while((PWR->CR & PWR_CR_DBP) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/ + __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set the new LSE configuration -----------------------------------------*/ + __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); + /* Check the LSE State */ + if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*-------------------------------- PLL Configuration -----------------------*/ + /* Check the parameters */ + assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); + if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) + { + /* Check if the PLL is used as system clock or not */ + if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) + { + if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) + { + /* Check the parameters */ + assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); + assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); + assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); + assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); + assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); + + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Configure the main PLL clock source, multiplication and division factors. */ + WRITE_REG(RCC->PLLCFGR, (RCC_OscInitStruct->PLL.PLLSource | \ + RCC_OscInitStruct->PLL.PLLM | \ + (RCC_OscInitStruct->PLL.PLLN << POSITION_VAL(RCC_PLLCFGR_PLLN)) | \ + (((RCC_OscInitStruct->PLL.PLLP >> 1) -1) << POSITION_VAL(RCC_PLLCFGR_PLLP)) | \ + (RCC_OscInitStruct->PLL.PLLQ << POSITION_VAL(RCC_PLLCFGR_PLLQ)))); + /* Enable the main PLL. */ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + return HAL_ERROR; + } + } + return HAL_OK; +} + +/** + * @brief Initializes the CPU, AHB and APB busses clocks according to the specified + * parameters in the RCC_ClkInitStruct. + * @param RCC_ClkInitStruct: pointer to an RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC peripheral. + * @param FLatency: FLASH Latency, this parameter depend on device selected + * + * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency + * and updated by HAL_RCC_GetHCLKFreq() function called within this function + * + * @note The HSI is used (enabled by hardware) as system clock source after + * startup from Reset, wake-up from STOP and STANDBY mode, or in case + * of failure of the HSE used directly or indirectly as system clock + * (if the Clock Security System CSS is enabled). + * + * @note A switch from one clock source to another occurs only if the target + * clock source is ready (clock stable after startup delay or PLL locked). + * If a clock source which is not yet ready is selected, the switch will + * occur when the clock source will be ready. + * + * @note Depending on the device voltage range, the software has to set correctly + * HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency + * (for more details refer to section above "Initialization/de-initialization functions") + * @retval None + */ +HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); + assert_param(IS_FLASH_LATENCY(FLatency)); + + /* To correctly read data from FLASH memory, the number of wait states (LATENCY) + must be correctly programmed according to the frequency of the CPU clock + (HCLK) and the supply voltage of the device. */ + + /* Increasing the CPU frequency */ + if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY)) + { + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) + { + return HAL_ERROR; + } + + /*-------------------------- HCLK Configuration --------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) + { + assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); + } + + /*------------------------- SYSCLK Configuration ---------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) + { + assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); + + /* HSE is selected as System Clock Source */ + if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + /* Check the HSE ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) + { + return HAL_ERROR; + } + } + /* PLL is selected as System Clock Source */ + else if((RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) || + (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLRCLK)) + { + /* Check the PLL ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + return HAL_ERROR; + } + } + /* HSI is selected as System Clock Source */ + else + { + /* Check the HSI ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) + { + return HAL_ERROR; + } + } + + __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLRCLK) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLRCLK) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /* Decreasing the CPU frequency */ + else + { + /*-------------------------- HCLK Configuration --------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) + { + assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); + } + + /*------------------------- SYSCLK Configuration -------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) + { + assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); + + /* HSE is selected as System Clock Source */ + if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + /* Check the HSE ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) + { + return HAL_ERROR; + } + } + /* PLL is selected as System Clock Source */ + else if((RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) || + (RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLRCLK)) + { + /* Check the PLL ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + return HAL_ERROR; + } + } + /* HSI is selected as System Clock Source */ + else + { + /* Check the HSI ready flag */ + if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) + { + return HAL_ERROR; + } + } + __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLRCLK) + { + while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLRCLK) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) + { + if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + + /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ + __HAL_FLASH_SET_LATENCY(FLatency); + + /* Check that the new number of wait states is taken into account to access the Flash + memory by reading the FLASH_ACR register */ + if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) + { + return HAL_ERROR; + } + } + + /*-------------------------- PCLK1 Configuration ---------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) + { + assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); + } + + /*-------------------------- PCLK2 Configuration ---------------------------*/ + if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) + { + assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); + MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3)); + } + + /* Configure the source of time base considering new system clocks settings*/ + HAL_InitTick (TICK_INT_PRIORITY); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions + * @brief RCC clocks control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the RCC Clocks + frequencies. + +@endverbatim + * @{ + */ + +/** + * @brief Selects the clock source to output on MCO1 pin(PA8) or on MCO2 pin(PC9). + * @note PA8/PC9 should be configured in alternate function mode. + * @param RCC_MCOx: specifies the output direction for the clock source. + * This parameter can be one of the following values: + * @arg RCC_MCO1: Clock source to output on MCO1 pin(PA8). + * @arg RCC_MCO2: Clock source to output on MCO2 pin(PC9). + * @param RCC_MCOSource: specifies the clock source to output. + * This parameter can be one of the following values: + * @arg RCC_MCO1SOURCE_HSI: HSI clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_LSE: LSE clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_HSE: HSE clock selected as MCO1 source + * @arg RCC_MCO1SOURCE_PLLCLK: main PLL clock selected as MCO1 source + * @arg RCC_MCO2SOURCE_SYSCLK: System clock (SYSCLK) selected as MCO2 source + * @arg RCC_MCO2SOURCE_PLLI2SCLK: PLLI2S clock selected as MCO2 source + * @arg RCC_MCO2SOURCE_HSE: HSE clock selected as MCO2 source + * @arg RCC_MCO2SOURCE_PLLCLK: main PLL clock selected as MCO2 source + * @param RCC_MCODiv: specifies the MCOx prescaler. + * This parameter can be one of the following values: + * @arg RCC_MCODIV_1: no division applied to MCOx clock + * @arg RCC_MCODIV_2: division by 2 applied to MCOx clock + * @arg RCC_MCODIV_3: division by 3 applied to MCOx clock + * @arg RCC_MCODIV_4: division by 4 applied to MCOx clock + * @arg RCC_MCODIV_5: division by 5 applied to MCOx clock + * @retval None + */ +void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) +{ + GPIO_InitTypeDef GPIO_InitStruct; + /* Check the parameters */ + assert_param(IS_RCC_MCO(RCC_MCOx)); + assert_param(IS_RCC_MCODIV(RCC_MCODiv)); + /* RCC_MCO1 */ + if(RCC_MCOx == RCC_MCO1) + { + assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); + + /* MCO1 Clock Enable */ + __MCO1_CLK_ENABLE(); + + /* Configure the MCO1 pin in alternate function mode */ + GPIO_InitStruct.Pin = MCO1_PIN; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_HIGH; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Alternate = GPIO_AF0_MCO; + HAL_GPIO_Init(MCO1_GPIO_PORT, &GPIO_InitStruct); + + /* Mask MCO1 and MCO1PRE[2:0] bits then Select MCO1 clock source and prescaler */ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO1 | RCC_CFGR_MCO1PRE), (RCC_MCOSource | RCC_MCODiv)); + } + else + { + assert_param(IS_RCC_MCO2SOURCE(RCC_MCOSource)); + + /* MCO2 Clock Enable */ + __MCO2_CLK_ENABLE(); + + /* Configure the MCO2 pin in alternate function mode */ + GPIO_InitStruct.Pin = MCO2_PIN; + GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; + GPIO_InitStruct.Speed = GPIO_SPEED_HIGH; + GPIO_InitStruct.Pull = GPIO_NOPULL; + GPIO_InitStruct.Alternate = GPIO_AF0_MCO; + HAL_GPIO_Init(MCO2_GPIO_PORT, &GPIO_InitStruct); + + /* Mask MCO2 and MCO2PRE[2:0] bits then Select MCO2 clock source and prescaler */ + MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCO2 | RCC_CFGR_MCO2PRE), (RCC_MCOSource | (RCC_MCODiv << 3))); + } +} + +/** + * @brief Enables the Clock Security System. + * @note If a failure is detected on the HSE oscillator clock, this oscillator + * is automatically disabled and an interrupt is generated to inform the + * software about the failure (Clock Security System Interrupt, CSSI), + * allowing the MCU to perform rescue operations. The CSSI is linked to + * the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector. + * @retval None + */ +void HAL_RCC_EnableCSS(void) +{ + *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE; +} + +/** + * @brief Disables the Clock Security System. + * @retval None + */ +void HAL_RCC_DisableCSS(void) +{ + *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE; +} + +/** + * @brief Returns the SYSCLK frequency + * + * @note The system frequency computed by this function is not the real + * frequency in the chip. It is calculated based on the predefined + * constant and the selected clock source: + * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) + * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) + * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**) + * or HSI_VALUE(*) multiplied/divided by the PLL factors. + * @note (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value + * 25 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * + * @note The result of this function could be not correct when using fractional + * value for HSE crystal. + * + * @note This function can be used by the user application to compute the + * baudrate for the communication peripherals or configure other parameters. + * + * @note Each time SYSCLK changes, this function must be called to update the + * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. + * + * + * @retval SYSCLK frequency + */ +__weak uint32_t HAL_RCC_GetSysClockFreq(void) +{ + uint32_t pllm = 0, pllvco = 0, pllp = 0; + uint32_t sysclockfreq = 0; + + /* Get SYSCLK source -------------------------------------------------------*/ + switch (RCC->CFGR & RCC_CFGR_SWS) + { + case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */ + { + sysclockfreq = HSI_VALUE; + break; + } + case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */ + { + sysclockfreq = HSE_VALUE; + break; + } + case RCC_CFGR_SWS_PLL: /* PLL used as system clock source */ + { + /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN + SYSCLK = PLL_VCO / PLLP */ + pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; + if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI) + { + /* HSE used as PLL clock source */ + pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + else + { + /* HSI used as PLL clock source */ + pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> POSITION_VAL(RCC_PLLCFGR_PLLP)) + 1 ) *2); + + sysclockfreq = pllvco/pllp; + break; + } + default: + { + sysclockfreq = HSI_VALUE; + break; + } + } + return sysclockfreq; +} + +/** + * @brief Returns the HCLK frequency + * @note Each time HCLK changes, this function must be called to update the + * right HCLK value. Otherwise, any configuration based on this function will be incorrect. + * + * @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency + * and updated within this function + * @retval HCLK frequency + */ +uint32_t HAL_RCC_GetHCLKFreq(void) +{ + SystemCoreClock = HAL_RCC_GetSysClockFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> POSITION_VAL(RCC_CFGR_HPRE)]; + return SystemCoreClock; +} + +/** + * @brief Returns the PCLK1 frequency + * @note Each time PCLK1 changes, this function must be called to update the + * right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. + * @retval PCLK1 frequency + */ +uint32_t HAL_RCC_GetPCLK1Freq(void) +{ + /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ + return (HAL_RCC_GetHCLKFreq() >> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1)>> POSITION_VAL(RCC_CFGR_PPRE1)]); +} + +/** + * @brief Returns the PCLK2 frequency + * @note Each time PCLK2 changes, this function must be called to update the + * right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. + * @retval PCLK2 frequency + */ +uint32_t HAL_RCC_GetPCLK2Freq(void) +{ + /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ + return (HAL_RCC_GetHCLKFreq()>> APBAHBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2)>> POSITION_VAL(RCC_CFGR_PPRE2)]); +} + +/** + * @brief Configures the RCC_OscInitStruct according to the internal + * RCC configuration registers. + * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that + * will be configured. + * @retval None + */ +__weak void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + /* Set all possible values for the Oscillator type parameter ---------------*/ + RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; + + /* Get the HSE configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) + { + RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; + } + else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) + { + RCC_OscInitStruct->HSEState = RCC_HSE_ON; + } + else + { + RCC_OscInitStruct->HSEState = RCC_HSE_OFF; + } + + /* Get the HSI configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) + { + RCC_OscInitStruct->HSIState = RCC_HSI_ON; + } + else + { + RCC_OscInitStruct->HSIState = RCC_HSI_OFF; + } + + RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM)); + + /* Get the LSE configuration -----------------------------------------------*/ + if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) + { + RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; + } + else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) + { + RCC_OscInitStruct->LSEState = RCC_LSE_ON; + } + else + { + RCC_OscInitStruct->LSEState = RCC_LSE_OFF; + } + + /* Get the LSI configuration -----------------------------------------------*/ + if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) + { + RCC_OscInitStruct->LSIState = RCC_LSI_ON; + } + else + { + RCC_OscInitStruct->LSIState = RCC_LSI_OFF; + } + + /* Get the PLL configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; + } + else + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; + } + RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); + RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM); + RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); + RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1) >> POSITION_VAL(RCC_PLLCFGR_PLLP)); + RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)); +} + +/** + * @brief Configures the RCC_ClkInitStruct according to the internal + * RCC configuration registers. + * @param RCC_ClkInitStruct: pointer to an RCC_ClkInitTypeDef structure that + * will be configured. + * @param pFLatency: Pointer on the Flash Latency. + * @retval None + */ +void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) +{ + /* Set all possible values for the Clock type parameter --------------------*/ + RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; + + /* Get the SYSCLK configuration --------------------------------------------*/ + RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); + + /* Get the HCLK configuration ----------------------------------------------*/ + RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); + + /* Get the APB1 configuration ----------------------------------------------*/ + RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); + + /* Get the APB2 configuration ----------------------------------------------*/ + RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3); + + /* Get the Flash Wait State (Latency) configuration ------------------------*/ + *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); +} + +/** + * @brief This function handles the RCC CSS interrupt request. + * @note This API should be called under the NMI_Handler(). + * @retval None + */ +void HAL_RCC_NMI_IRQHandler(void) +{ + /* Check RCC CSSF flag */ + if(__HAL_RCC_GET_IT(RCC_IT_CSS)) + { + /* RCC Clock Security System interrupt user callback */ + HAL_RCC_CSSCallback(); + + /* Clear RCC CSS pending bit */ + __HAL_RCC_CLEAR_IT(RCC_IT_CSS); + } +} + +/** + * @brief RCC Clock Security System interrupt callback + * @retval None + */ +__weak void HAL_RCC_CSSCallback(void) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RCC_CSSCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rcc_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rcc_ex.c new file mode 100644 index 0000000..37df30e --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rcc_ex.c @@ -0,0 +1,1676 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_rcc_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief Extension RCC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities RCC extension peripheral: + * + Extended Peripheral Control functions + * + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup RCCEx RCCEx + * @brief RCCEx HAL module driver + * @{ + */ + +#ifdef HAL_RCC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup RCCEx_Private_Constants + * @{ + */ +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions + * @{ + */ + +/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions + * @brief Extended Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extended Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the RCC Clocks + frequencies. + [..] + (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to + select the RTC clock source; in this case the Backup domain will be reset in + order to modify the RTC Clock source, as consequence RTC registers (including + the backup registers) and RCC_BDCR register are set to their reset values. + +@endverbatim + * @{ + */ +#if defined(STM32F446xx) +/** + * @brief Initializes the RCC extended peripherals clocks according to the specified + * parameters in the RCC_PeriphCLKInitTypeDef. + * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that + * contains the configuration information for the Extended Peripherals + * clocks(I2S, SAI, LTDC RTC and TIM). + * + * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select + * the RTC clock source; in this case the Backup domain will be reset in + * order to modify the RTC Clock source, as consequence RTC registers (including + * the backup registers) and RCC_BDCR register are set to their reset values. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tickstart = 0; + uint32_t tmpreg1 = 0; + uint32_t plli2sp = 0; + uint32_t plli2sq = 0; + uint32_t plli2sr = 0; + uint32_t pllsaip = 0; + uint32_t pllsaiq = 0; + uint32_t plli2sused = 0; + uint32_t pllsaiused = 0; + + /* Check the peripheral clock selection parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); + + /*----------------------------------- I2S APB1 configuration ----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB1) == (RCC_PERIPHCLK_I2S_APB1)) + { + /* Check the parameters */ + assert_param(IS_RCC_I2SAPB1CLKSOURCE(PeriphClkInit->I2sApb1ClockSelection)); + + /* Configure I2S Clock source */ + __HAL_RCC_I2S_APB1_CONFIG(PeriphClkInit->I2sApb1ClockSelection); + /* Enable the PLLI2S when it's used as clock source for I2S */ + if(PeriphClkInit->I2sApb1ClockSelection == RCC_I2SAPB1CLKSOURCE_PLLI2S) + { + plli2sused = 1; + } + } + + /*----------------------------------- I2S APB2 configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB2) == (RCC_PERIPHCLK_I2S_APB2)) + { + /* Check the parameters */ + assert_param(IS_RCC_I2SAPB2CLKSOURCE(PeriphClkInit->I2sApb2ClockSelection)); + + /* Configure I2S Clock source */ + __HAL_RCC_I2S_APB2_CONFIG(PeriphClkInit->I2sApb2ClockSelection); + /* Enable the PLLI2S when it's used as clock source for I2S */ + if(PeriphClkInit->I2sApb2ClockSelection == RCC_I2SAPB2CLKSOURCE_PLLI2S) + { + plli2sused = 1; + } + } + + /*------------------------------------ SAI1 configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == (RCC_PERIPHCLK_SAI1)) + { + /* Check the parameters */ + assert_param(IS_RCC_SAI1CLKSOURCE(PeriphClkInit->Sai1ClockSelection)); + + /* Configure SAI1 Clock source */ + __HAL_RCC_SAI1_CONFIG(PeriphClkInit->Sai1ClockSelection); + /* Enable the PLLI2S when it's used as clock source for SAI */ + if(PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLI2S) + { + plli2sused = 1; + } + /* Enable the PLLSAI when it's used as clock source for SAI */ + if(PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLSAI) + { + pllsaiused = 1; + } + } + + /*------------------------------------ SAI2 configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == (RCC_PERIPHCLK_SAI2)) + { + /* Check the parameters */ + assert_param(IS_RCC_SAI2CLKSOURCE(PeriphClkInit->Sai2ClockSelection)); + + /* Configure SAI2 Clock source */ + __HAL_RCC_SAI2_CONFIG(PeriphClkInit->Sai2ClockSelection); + + /* Enable the PLLI2S when it's used as clock source for SAI */ + if(PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLI2S) + { + plli2sused = 1; + } + /* Enable the PLLSAI when it's used as clock source for SAI */ + if(PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLSAI) + { + pllsaiused = 1; + } + } + + /*------------------------------------ RTC configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC)) + { + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR |= PWR_CR_DBP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((PWR->CR & PWR_CR_DBP) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + /* Reset the Backup domain only if the RTC Clock source selction is modified */ + if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)) + { + /* Store the content of BDCR register before the reset of Backup Domain */ + tmpreg1 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL)); + /* RTC Clock selection can be changed only if the Backup Domain is reset */ + __HAL_RCC_BACKUPRESET_FORCE(); + __HAL_RCC_BACKUPRESET_RELEASE(); + /* Restore the Content of BDCR register */ + RCC->BDCR = tmpreg1; + + /* Wait for LSERDY if LSE was enabled */ + if(HAL_IS_BIT_SET(tmpreg1, RCC_BDCR_LSERDY)) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); + } + } + + /*------------------------------------ TIM configuration --------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_TIM) == (RCC_PERIPHCLK_TIM)) + { + /* Configure Timer Prescaler */ + __HAL_RCC_TIMCLKPRESCALER(PeriphClkInit->TIMPresSelection); + } + + /*------------------------------------- FMPI2C1 Configuration ----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_FMPI2C1) == RCC_PERIPHCLK_FMPI2C1) + { + /* Check the parameters */ + assert_param(IS_RCC_FMPI2C1CLKSOURCE(PeriphClkInit->Fmpi2c1ClockSelection)); + + /* Configure the FMPI2C1 clock source */ + __HAL_RCC_FMPI2C1_CONFIG(PeriphClkInit->Fmpi2c1ClockSelection); + } + + /*--------------------------------------- CEC Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC) + { + /* Check the parameters */ + assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection)); + + /* Configure the CEC clock source */ + __HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection); + } + + /*-------------------------------------- CK48 Configuration -----------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CK48) == RCC_PERIPHCLK_CK48) + { + /* Check the parameters */ + assert_param(IS_RCC_CK48CLKSOURCE(PeriphClkInit->Clk48ClockSelection)); + + /* Configure the SDIO clock source */ + __HAL_RCC_CLK48_CONFIG(PeriphClkInit->Clk48ClockSelection); + + /* Enable the PLLSAI when it's used as clock source for CK48 */ + if(PeriphClkInit->Clk48ClockSelection == RCC_CK48CLKSOURCE_PLLSAIP) + { + pllsaiused = 1; + } + } + + /*------------------------------------- SDIO Configuration ------------------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SDIO) == RCC_PERIPHCLK_SDIO) + { + /* Check the parameters */ + assert_param(IS_RCC_SDIOCLKSOURCE(PeriphClkInit->SdioClockSelection)); + + /* Configure the SDIO clock source */ + __HAL_RCC_SDIO_CONFIG(PeriphClkInit->SdioClockSelection); + } + + /*------------------------------------- SPDIFRX Configuration --------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) + { + /* Check the parameters */ + assert_param(IS_RCC_SPDIFRXCLKSOURCE(PeriphClkInit->SpdifClockSelection)); + + /* Configure the SPDIFRX clock source */ + __HAL_RCC_SPDIFRX_CONFIG(PeriphClkInit->SpdifClockSelection); + /* Enable the PLLI2S when it's used as clock source for SPDIFRX */ + if(PeriphClkInit->SpdifClockSelection == RCC_SPDIFRXCLKSOURCE_PLLI2SP) + { + plli2sused = 1; + } + } + + /*-------------------------------------- PLLI2S Configuration --------------*/ + /* PLLI2S is configured when a peripheral will use it as source clock : SAI1, SAI2, I2S on APB1, + I2S on APB2 or SPDIFRX */ + if((plli2sused == 1) || (PeriphClkInit->PeriphClockSelection == RCC_PERIPHCLK_PLLI2S)) + { + /* Disable the PLLI2S */ + __HAL_RCC_PLLI2S_DISABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLI2S is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + + /* check for common PLLI2S Parameters */ + assert_param(IS_RCC_PLLI2SM_VALUE(PeriphClkInit->PLLI2S.PLLI2SM)); + assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN)); + + /*----------------- In Case of PLLI2S is selected as source clock for I2S -------------------*/ + if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB1) == RCC_PERIPHCLK_I2S_APB1) && (PeriphClkInit->I2sApb1ClockSelection == RCC_I2SAPB1CLKSOURCE_PLLI2S)) || + ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S_APB2) == RCC_PERIPHCLK_I2S_APB2) && (PeriphClkInit->I2sApb2ClockSelection == RCC_I2SAPB2CLKSOURCE_PLLI2S))) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR)); + + /* Read PLLI2SP/PLLI2SQ value from PLLI2SCFGR register (this value is not needed for I2S configuration) */ + plli2sp = ((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1); + plli2sq = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN/PLLI2SM) */ + /* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , plli2sp, plli2sq, PeriphClkInit->PLLI2S.PLLI2SR); + } + + /*----------------- In Case of PLLI2S is selected as source clock for SAI -------------------*/ + if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) && (PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLI2S)) || + ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) && (PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLI2S))) + { + /* Check for PLLI2S Parameters */ + assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ)); + /* Check for PLLI2S/DIVQ parameters */ + assert_param(IS_RCC_PLLI2S_DIVQ_VALUE(PeriphClkInit->PLLI2SDivQ)); + + /* Read PLLI2SP/PLLI2SR value from PLLI2SCFGR register (this value is not needed for SAI configuration) */ + plli2sp = ((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1); + plli2sr = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLI2SM */ + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , plli2sp, PeriphClkInit->PLLI2S.PLLI2SQ, plli2sr); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */ + __HAL_RCC_PLLI2S_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLI2SDivQ); + } + + /*----------------- In Case of PLLI2S is selected as source clock for SPDIFRX -------------------*/ + if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SPDIFRX) == RCC_PERIPHCLK_SPDIFRX) && (PeriphClkInit->SpdifClockSelection == RCC_SPDIFRXCLKSOURCE_PLLI2SP)) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLI2SP_VALUE(PeriphClkInit->PLLI2S.PLLI2SP)); + /* Read PLLI2SR value from PLLI2SCFGR register (this value is not need for SAI configuration) */ + plli2sq = ((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1); + plli2sr = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN/PLLI2SM) */ + /* SPDIFRXCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SP */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SP, plli2sq, plli2sr); + } + + /*----------------- In Case of PLLI2S is just selected -----------------*/ + if((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_PLLI2S) == RCC_PERIPHCLK_PLLI2S) + { + /* Check for Parameters */ + assert_param(IS_RCC_PLLI2SP_VALUE(PeriphClkInit->PLLI2S.PLLI2SP)); + assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR)); + assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ)); + + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN/PLLI2SM) */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SP, PeriphClkInit->PLLI2S.PLLI2SQ, PeriphClkInit->PLLI2S.PLLI2SR); + } + + /* Enable the PLLI2S */ + __HAL_RCC_PLLI2S_ENABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLI2S is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + } + /*-------------------------------------- PLLSAI Configuration ---------------------------------*/ + /* PLLSAI is configured when a peripheral will use it as source clock : SAI1, SAI2, CK48 or SDIO */ + if(pllsaiused == 1) + { + /* Disable PLLSAI Clock */ + __HAL_RCC_PLLSAI_DISABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLSAI is disabled */ + while(__HAL_RCC_PLLSAI_GET_FLAG() != RESET) + { + if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + + /* Check the PLLSAI division factors */ + assert_param(IS_RCC_PLLSAIM_VALUE(PeriphClkInit->PLLSAI.PLLSAIM)); + assert_param(IS_RCC_PLLSAIN_VALUE(PeriphClkInit->PLLSAI.PLLSAIN)); + + /*----------------- In Case of PLLSAI is selected as source clock for SAI -------------------*/ + if(((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI1) == RCC_PERIPHCLK_SAI1) && (PeriphClkInit->Sai1ClockSelection == RCC_SAI1CLKSOURCE_PLLSAI)) || + ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI2) == RCC_PERIPHCLK_SAI2) && (PeriphClkInit->Sai2ClockSelection == RCC_SAI2CLKSOURCE_PLLSAI))) + { + /* check for PLLSAIQ Parameter */ + assert_param(IS_RCC_PLLSAIQ_VALUE(PeriphClkInit->PLLSAI.PLLSAIQ)); + /* check for PLLSAI/DIVQ Parameter */ + assert_param(IS_RCC_PLLSAI_DIVQ_VALUE(PeriphClkInit->PLLSAIDivQ)); + + /* Read PLLSAIP value from PLLSAICFGR register (this value is not needed for SAI configuration) */ + pllsaip = ((((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIP) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)) + 1) << 1); + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */ + __HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIM, PeriphClkInit->PLLSAI.PLLSAIN , pllsaip, PeriphClkInit->PLLSAI.PLLSAIQ, 0); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */ + __HAL_RCC_PLLSAI_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLSAIDivQ); + } + + /*----------------- In Case of PLLSAI is selected as source clock for CK48 -------------------*/ + /* In Case of PLLI2S is selected as source clock for CK48 */ + if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CK48) == RCC_PERIPHCLK_CK48) && (PeriphClkInit->Clk48ClockSelection == RCC_CK48CLKSOURCE_PLLSAIP)) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLSAIP_VALUE(PeriphClkInit->PLLSAI.PLLSAIP)); + /* Read PLLSAIQ value from PLLI2SCFGR register (this value is not need for SAI configuration) */ + pllsaiq = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)); + /* Configure the PLLSAI division factors */ + /* PLLSAI_VCO = f(VCO clock) = f(PLLSAI clock input) × (PLLI2SN/PLLSAIM) */ + /* 48CLK = f(PLLSAI clock output) = f(VCO clock) / PLLSAIP */ + __HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIM, PeriphClkInit->PLLSAI.PLLSAIN , PeriphClkInit->PLLSAI.PLLSAIP, pllsaiq, 0); + } + + /* Enable PLLSAI Clock */ + __HAL_RCC_PLLSAI_ENABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLSAI is ready */ + while(__HAL_RCC_PLLSAI_GET_FLAG() == RESET) + { + if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief Get the RCC_PeriphCLKInitTypeDef according to the internal + * RCC configuration registers. + * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that + * will be configured. + * @retval None + */ +void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tempreg; + + /* Set all possible values for the extended clock type parameter------------*/ + PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S_APB1 | RCC_PERIPHCLK_I2S_APB2 |\ + RCC_PERIPHCLK_SAI1 | RCC_PERIPHCLK_SAI2 |\ + RCC_PERIPHCLK_TIM | RCC_PERIPHCLK_RTC |\ + RCC_PERIPHCLK_CEC | RCC_PERIPHCLK_FMPI2C1 |\ + RCC_PERIPHCLK_CK48 | RCC_PERIPHCLK_SDIO |\ + RCC_PERIPHCLK_SPDIFRX; + + /* Get the PLLI2S Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLI2S.PLLI2SM = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SM)); + PeriphClkInit->PLLI2S.PLLI2SN = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN)); + PeriphClkInit->PLLI2S.PLLI2SP = (uint32_t)((((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SP) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SP)) + 1) << 1); + PeriphClkInit->PLLI2S.PLLI2SQ = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ)); + PeriphClkInit->PLLI2S.PLLI2SR = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + /* Get the PLLSAI Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLSAI.PLLSAIM = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIM) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIM)); + PeriphClkInit->PLLSAI.PLLSAIN = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIN)); + PeriphClkInit->PLLSAI.PLLSAIP = (uint32_t)((((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIP) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIP)) + 1) << 1); + PeriphClkInit->PLLSAI.PLLSAIQ = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)); + /* Get the PLLSAI/PLLI2S division factors -------------------------------------------*/ + PeriphClkInit->PLLI2SDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLI2SDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLI2SDIVQ)); + PeriphClkInit->PLLSAIDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLSAIDIVQ)); + + /* Get the SAI1 clock configuration ----------------------------------------------*/ + PeriphClkInit->Sai1ClockSelection = __HAL_RCC_GET_SAI1_SOURCE(); + + /* Get the SAI2 clock configuration ----------------------------------------------*/ + PeriphClkInit->Sai2ClockSelection = __HAL_RCC_GET_SAI2_SOURCE(); + + /* Get the I2S APB1 clock configuration ------------------------------------------*/ + PeriphClkInit->I2sApb1ClockSelection = __HAL_RCC_GET_I2S_APB1_SOURCE(); + + /* Get the I2S APB2 clock configuration ------------------------------------------*/ + PeriphClkInit->I2sApb2ClockSelection = __HAL_RCC_GET_I2S_APB2_SOURCE(); + + /* Get the RTC Clock configuration -----------------------------------------------*/ + tempreg = (RCC->CFGR & RCC_CFGR_RTCPRE); + PeriphClkInit->RTCClockSelection = (uint32_t)((tempreg) | (RCC->BDCR & RCC_BDCR_RTCSEL)); + + /* Get the CEC clock configuration -----------------------------------------------*/ + PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE(); + + /* Get the FMPI2C1 clock configuration -----------------------------------------------*/ + PeriphClkInit->Fmpi2c1ClockSelection = __HAL_RCC_GET_FMPI2C1_SOURCE(); + + /* Get the CK48 clock configuration -----------------------------------------------*/ + PeriphClkInit->Clk48ClockSelection = __HAL_RCC_GET_CLK48_SOURCE(); + + /* Get the SDIO clock configuration -----------------------------------------------*/ + PeriphClkInit->SdioClockSelection = __HAL_RCC_GET_SDIO_SOURCE(); + + /* Get the SPDIFRX clock configuration ----------------------------------------------*/ + PeriphClkInit->SpdifClockSelection = __HAL_RCC_GET_SPDIFRX_SOURCE(); + + /* Get the TIM Prescaler configuration --------------------------------------------*/ + if ((RCC->DCKCFGR & RCC_DCKCFGR_TIMPRE) == RESET) + { + PeriphClkInit->TIMPresSelection = RCC_TIMPRES_DESACTIVATED; + } + else + { + PeriphClkInit->TIMPresSelection = RCC_TIMPRES_ACTIVATED; + } +} + +/** + * @brief Return the peripheral clock frequency for a given peripheral(SAI..) + * @note Return 0 if peripheral clock identifier not managed by this API + * @param PeriphClk: Peripheral clock identifier + * This parameter can be one of the following values: + * @arg RCC_PERIPHCLK_SAI1: SAI1 peripheral clock + * @arg RCC_PERIPHCLK_SAI2: SAI2 peripheral clock + * @retval Frequency in KHz + */ +uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk) +{ + uint32_t tmpreg1 = 0; + /* This variable used to store the SAI clock frequency (value in Hz) */ + uint32_t frequency = 0; + /* This variable used to store the VCO Input (value in Hz) */ + uint32_t vcoinput = 0; + /* This variable used to store the SAI clock source */ + uint32_t saiclocksource = 0; + if ((PeriphClk == RCC_PERIPHCLK_SAI1) || (PeriphClk == RCC_PERIPHCLK_SAI2)) + { + saiclocksource = RCC->DCKCFGR; + saiclocksource &= (RCC_DCKCFGR_SAI1SRC | RCC_DCKCFGR_SAI2SRC); + switch (saiclocksource) + { + case 0: /* PLLSAI is the clock source for SAI*/ + { + /* Configure the PLLSAI division factor */ + /* PLLSAI_VCO Input = PLL_SOURCE/PLLSAIM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIM))); + } + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */ + tmpreg1 = (RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> 24; + frequency = (vcoinput * ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> 6))/(tmpreg1); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */ + tmpreg1 = (((RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVQ) >> 8) + 1); + frequency = frequency/(tmpreg1); + break; + } + case RCC_DCKCFGR_SAI1SRC_0: /* PLLI2S is the clock source for SAI*/ + case RCC_DCKCFGR_SAI2SRC_0: /* PLLI2S is the clock source for SAI*/ + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLI2SM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM))); + } + + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */ + tmpreg1 = (RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> 24; + frequency = (vcoinput * ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6))/(tmpreg1); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */ + tmpreg1 = ((RCC->DCKCFGR & RCC_DCKCFGR_PLLI2SDIVQ) + 1); + frequency = frequency/(tmpreg1); + break; + } + case RCC_DCKCFGR_SAI1SRC_1: /* PLLR is the clock source for SAI*/ + case RCC_DCKCFGR_SAI2SRC_1: /* PLLR is the clock source for SAI*/ + { + /* Configure the PLLI2S division factor */ + /* PLL_VCO Input = PLL_SOURCE/PLLM */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM))); + } + + /* PLL_VCO Output = PLL_VCO Input * PLLN */ + /* SAI_CLK_x = PLL_VCO Output/PLLR */ + tmpreg1 = (RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 28; + frequency = (vcoinput * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 6))/(tmpreg1); + break; + } + case RCC_DCKCFGR_SAI1SRC: /* External clock is the clock source for SAI*/ + { + frequency = EXTERNAL_CLOCK_VALUE; + break; + } + case RCC_DCKCFGR_SAI2SRC: /* PLLSRC(HSE or HSI) is the clock source for SAI*/ + { + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + frequency = (uint32_t)(HSI_VALUE); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + frequency = (uint32_t)(HSE_VALUE); + } + break; + } + default : + { + break; + } + } + } + return frequency; +} + +#endif /* STM32F446xx */ + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) +/** + * @brief Initializes the RCC extended peripherals clocks according to the specified + * parameters in the RCC_PeriphCLKInitTypeDef. + * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that + * contains the configuration information for the Extended Peripherals + * clocks(I2S, SAI, LTDC RTC and TIM). + * + * @note Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select + * the RTC clock source; in this case the Backup domain will be reset in + * order to modify the RTC Clock source, as consequence RTC registers (including + * the backup registers) and RCC_BDCR register are set to their reset values. + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tickstart = 0; + uint32_t tmpreg1 = 0; + + /* Check the parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); + + /*----------------------- SAI/I2S Configuration (PLLI2S) -------------------------*/ + + /*----------------------- Common configuration SAI/I2S ---------------------------*/ + /* In Case of SAI or I2S Clock Configuration through PLLI2S, PLLI2SN division + factor is common parameters for both peripherals */ + if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == RCC_PERIPHCLK_I2S) || + (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLI2S) == RCC_PERIPHCLK_SAI_PLLI2S)) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN)); + + /* Disable the PLLI2S */ + __HAL_RCC_PLLI2S_DISABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLI2S is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + + /*---------------------------- I2S configuration -------------------------------*/ + /* In Case of I2S Clock Configuration through PLLI2S, PLLI2SR must be added + only for I2S configuration */ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == (RCC_PERIPHCLK_I2S)) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN/PLLM) */ + /* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SR); + } + + /*---------------------------- SAI configuration -------------------------------*/ + /* In Case of SAI Clock Configuration through PLLI2S, PLLI2SQ and PLLI2S_DIVQ must + be added only for SAI configuration */ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLI2S) == (RCC_PERIPHCLK_SAI_PLLI2S)) + { + /* Check the PLLI2S division factors */ + assert_param(IS_RCC_PLLI2SQ_VALUE(PeriphClkInit->PLLI2S.PLLI2SQ)); + assert_param(IS_RCC_PLLI2S_DIVQ_VALUE(PeriphClkInit->PLLI2SDivQ)); + + /* Read PLLI2SR value from PLLI2SCFGR register (this value is not need for SAI configuration) */ + tmpreg1 = ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLM */ + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */ + __HAL_RCC_PLLI2S_SAICLK_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SQ , tmpreg1); + /* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */ + __HAL_RCC_PLLI2S_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLI2SDivQ); + } + + /* Enable the PLLI2S */ + __HAL_RCC_PLLI2S_ENABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLI2S is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + } + + /*----------------------- SAI/LTDC Configuration (PLLSAI) ------------------*/ + + /*----------------------- Common configuration SAI/LTDC --------------------*/ + /* In Case of SAI or LTDC Clock Configuration through PLLSAI, PLLSAIN division + factor is common parameters for both peripherals */ + if((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLSAI) == RCC_PERIPHCLK_SAI_PLLSAI) || + (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == RCC_PERIPHCLK_LTDC)) + { + /* Check the PLLSAI division factors */ + assert_param(IS_RCC_PLLSAIN_VALUE(PeriphClkInit->PLLSAI.PLLSAIN)); + + /* Disable PLLSAI Clock */ + __HAL_RCC_PLLSAI_DISABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLSAI is disabled */ + while(__HAL_RCC_PLLSAI_GET_FLAG() != RESET) + { + if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + + /*---------------------------- SAI configuration -------------------------*/ + /* In Case of SAI Clock Configuration through PLLSAI, PLLSAIQ and PLLSAI_DIVQ must + be added only for SAI configuration */ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_SAI_PLLSAI) == (RCC_PERIPHCLK_SAI_PLLSAI)) + { + assert_param(IS_RCC_PLLSAIQ_VALUE(PeriphClkInit->PLLSAI.PLLSAIQ)); + assert_param(IS_RCC_PLLSAI_DIVQ_VALUE(PeriphClkInit->PLLSAIDivQ)); + + /* Read PLLSAIR value from PLLSAICFGR register (this value is not need for SAI configuration) */ + tmpreg1 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIR) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR)); + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */ + __HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIN , PeriphClkInit->PLLSAI.PLLSAIQ, tmpreg1); + /* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */ + __HAL_RCC_PLLSAI_PLLSAICLKDIVQ_CONFIG(PeriphClkInit->PLLSAIDivQ); + } + + /*---------------------------- LTDC configuration ------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LTDC) == (RCC_PERIPHCLK_LTDC)) + { + assert_param(IS_RCC_PLLSAIR_VALUE(PeriphClkInit->PLLSAI.PLLSAIR)); + assert_param(IS_RCC_PLLSAI_DIVR_VALUE(PeriphClkInit->PLLSAIDivR)); + + /* Read PLLSAIR value from PLLSAICFGR register (this value is not need for SAI configuration) */ + tmpreg1 = ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)); + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* LTDC_CLK(first level) = PLLSAI_VCO Output/PLLSAIR */ + __HAL_RCC_PLLSAI_CONFIG(PeriphClkInit->PLLSAI.PLLSAIN , tmpreg1, PeriphClkInit->PLLSAI.PLLSAIR); + /* LTDC_CLK = LTDC_CLK(first level)/PLLSAIDIVR */ + __HAL_RCC_PLLSAI_PLLSAICLKDIVR_CONFIG(PeriphClkInit->PLLSAIDivR); + } + /* Enable PLLSAI Clock */ + __HAL_RCC_PLLSAI_ENABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLSAI is ready */ + while(__HAL_RCC_PLLSAI_GET_FLAG() == RESET) + { + if((HAL_GetTick() - tickstart ) > PLLSAI_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + } + + + /*---------------------------- RTC configuration ---------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC)) + { + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR |= PWR_CR_DBP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((PWR->CR & PWR_CR_DBP) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + /* Reset the Backup domain only if the RTC Clock source selection is modified */ + if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)) + { + /* Store the content of BDCR register before the reset of Backup Domain */ + tmpreg1 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL)); + /* RTC Clock selection can be changed only if the Backup Domain is reset */ + __HAL_RCC_BACKUPRESET_FORCE(); + __HAL_RCC_BACKUPRESET_RELEASE(); + /* Restore the Content of BDCR register */ + RCC->BDCR = tmpreg1; + /* Wait for LSERDY if LSE was enabled */ + if(HAL_IS_BIT_SET(tmpreg1, RCC_BDCR_LSERDY)) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); + } + } + + /*---------------------------- TIM configuration ---------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_TIM) == (RCC_PERIPHCLK_TIM)) + { + __HAL_RCC_TIMCLKPRESCALER(PeriphClkInit->TIMPresSelection); + } + return HAL_OK; +} + +/** + * @brief Configures the RCC_OscInitStruct according to the internal + * RCC configuration registers. + * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that + * will be configured. + * @retval None + */ +void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tempreg; + + /* Set all possible values for the extended clock type parameter------------*/ + PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S | RCC_PERIPHCLK_SAI_PLLSAI | RCC_PERIPHCLK_SAI_PLLI2S | RCC_PERIPHCLK_LTDC | RCC_PERIPHCLK_TIM | RCC_PERIPHCLK_RTC; + + /* Get the PLLI2S Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLI2S.PLLI2SN = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN)); + PeriphClkInit->PLLI2S.PLLI2SR = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); + PeriphClkInit->PLLI2S.PLLI2SQ = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SQ)); + /* Get the PLLSAI Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLSAI.PLLSAIN = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIN)); + PeriphClkInit->PLLSAI.PLLSAIR = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIR) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIR)); + PeriphClkInit->PLLSAI.PLLSAIQ = (uint32_t)((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> POSITION_VAL(RCC_PLLSAICFGR_PLLSAIQ)); + /* Get the PLLSAI/PLLI2S division factors -----------------------------------------------*/ + PeriphClkInit->PLLI2SDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLI2SDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLI2SDIVQ)); + PeriphClkInit->PLLSAIDivQ = (uint32_t)((RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVQ) >> POSITION_VAL(RCC_DCKCFGR_PLLSAIDIVQ)); + PeriphClkInit->PLLSAIDivR = (uint32_t)(RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVR); + /* Get the RTC Clock configuration -----------------------------------------------*/ + tempreg = (RCC->CFGR & RCC_CFGR_RTCPRE); + PeriphClkInit->RTCClockSelection = (uint32_t)((tempreg) | (RCC->BDCR & RCC_BDCR_RTCSEL)); + + if ((RCC->DCKCFGR & RCC_DCKCFGR_TIMPRE) == RESET) + { + PeriphClkInit->TIMPresSelection = RCC_TIMPRES_DESACTIVATED; + } + else + { + PeriphClkInit->TIMPresSelection = RCC_TIMPRES_ACTIVATED; + } +} + +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx)|| defined(STM32F417xx) ||\ + defined(STM32F401xC) || defined(STM32F401xE) || defined(STM32F411xE) +/** + * @brief Initializes the RCC extended peripherals clocks according to the specified parameters in the + * RCC_PeriphCLKInitTypeDef. + * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that + * contains the configuration information for the Extended Peripherals clocks(I2S and RTC clocks). + * + * @note A caution to be taken when HAL_RCCEx_PeriphCLKConfig() is used to select RTC clock selection, in this case + * the Reset of Backup domain will be applied in order to modify the RTC Clock source as consequence all backup + * domain (RTC and RCC_BDCR register expect BKPSRAM) will be reset + * + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tickstart = 0; + uint32_t tmpreg1 = 0; + + /* Check the parameters */ + assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection)); + + /*---------------------------- I2S configuration ---------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2S) == (RCC_PERIPHCLK_I2S)) + { + /* check for Parameters */ + assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR)); + assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN)); +#if defined(STM32F411xE) + assert_param(IS_RCC_PLLI2SM_VALUE(PeriphClkInit->PLLI2S.PLLI2SM)); +#endif /* STM32F411xE */ + /* Disable the PLLI2S */ + __HAL_RCC_PLLI2S_DISABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLI2S is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + +#if defined(STM32F411xE) + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN/PLLI2SM) */ + /* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */ + __HAL_RCC_PLLI2S_I2SCLK_CONFIG(PeriphClkInit->PLLI2S.PLLI2SM, PeriphClkInit->PLLI2S.PLLI2SN, PeriphClkInit->PLLI2S.PLLI2SR); +#else + /* Configure the PLLI2S division factors */ + /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN/PLLM) */ + /* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */ + __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SR); +#endif /* STM32F411xE */ + + /* Enable the PLLI2S */ + __HAL_RCC_PLLI2S_ENABLE(); + /* Get tick */ + tickstart = HAL_GetTick(); + /* Wait till PLLI2S is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE) + { + /* return in case of Timeout detected */ + return HAL_TIMEOUT; + } + } + } + + /*---------------------------- RTC configuration ---------------------------*/ + if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC)) + { + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR |= PWR_CR_DBP; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while((PWR->CR & PWR_CR_DBP) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + /* Reset the Backup domain only if the RTC Clock source selection is modified */ + if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)) + { + /* Store the content of BDCR register before the reset of Backup Domain */ + tmpreg1 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL)); + /* RTC Clock selection can be changed only if the Backup Domain is reset */ + __HAL_RCC_BACKUPRESET_FORCE(); + __HAL_RCC_BACKUPRESET_RELEASE(); + /* Restore the Content of BDCR register */ + RCC->BDCR = tmpreg1; + /* Wait for LSERDY if LSE was enabled */ + if(HAL_IS_BIT_SET(tmpreg1, RCC_BDCR_LSERDY)) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection); + } + } + + return HAL_OK; +} + +/** + * @brief Configures the RCC_OscInitStruct according to the internal + * RCC configuration registers. + * @param PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that + * will be configured. + * @retval None + */ +void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit) +{ + uint32_t tempreg; + + /* Set all possible values for the extended clock type parameter------------*/ + PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_I2S | RCC_PERIPHCLK_RTC; + + /* Get the PLLI2S Clock configuration -----------------------------------------------*/ + PeriphClkInit->PLLI2S.PLLI2SN = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SN)); + PeriphClkInit->PLLI2S.PLLI2SR = (uint32_t)((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SR) >> POSITION_VAL(RCC_PLLI2SCFGR_PLLI2SR)); +#if defined(STM32F411xE) + PeriphClkInit->PLLI2S.PLLI2SM = (uint32_t)(RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SM); +#endif /* STM32F411xE */ + /* Get the RTC Clock configuration -----------------------------------------------*/ + tempreg = (RCC->CFGR & RCC_CFGR_RTCPRE); + PeriphClkInit->RTCClockSelection = (uint32_t)((tempreg) | (RCC->BDCR & RCC_BDCR_RTCSEL)); + +} +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F401xC || STM32F401xE || STM32F411xE */ + +#if defined(STM32F411xE) || defined(STM32F446xx) +/** + * @brief Select LSE mode + * + * @note This mode is only available for STM32F411xx devices. + * + * @param Mode: specifies the LSE mode. + * This parameter can be one of the following values: + * @arg RCC_LSE_LOWPOWER_MODE: LSE oscillator in low power mode selection + * @arg RCC_LSE_HIGHDRIVE_MODE: LSE oscillator in High Drive mode selection + * @retval None + */ +void HAL_RCCEx_SelectLSEMode(uint8_t Mode) +{ + /* Check the parameters */ + assert_param(IS_RCC_LSE_MODE(Mode)); + if(Mode == RCC_LSE_HIGHDRIVE_MODE) + { + SET_BIT(RCC->BDCR, RCC_BDCR_LSEMOD); + } + else + { + CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEMOD); + } +} + +#endif /* STM32F411xE || STM32F446xx */ + +#if defined(STM32F446xx) +/** + * @brief Initializes the RCC Oscillators according to the specified parameters in the + * RCC_OscInitTypeDef. + * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that + * contains the configuration information for the RCC Oscillators. + * @note The PLL is not disabled when used as system clock. + * @note This function add the PLL/PLLR factor management during PLL configuration this feature is only available in STM32F446xx devices + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); + /*------------------------------- HSE Configuration ------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) + { + /* Check the parameters */ + assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); + /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSE) ||\ + ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE)) ||\ + ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLLR) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSE))) + { + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) + { + return HAL_ERROR; + } + } + else + { + /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/ + __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set the new HSE configuration ---------------------------------------*/ + __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); + + /* Check the HSE State */ + if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSE is bypassed or disabled */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*----------------------------- HSI Configuration --------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) + { + /* Check the parameters */ + assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); + assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); + + /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ + if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_HSI) ||\ + ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLL) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI)) ||\ + ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_PLLR) && ((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLCFGR_PLLSRC_HSI))) + { + /* When HSI is used as system clock it will not disabled */ + if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) + { + return HAL_ERROR; + } + /* Otherwise, just the calibration is allowed */ + else + { + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + } + else + { + /* Check the HSI State */ + if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF) + { + /* Enable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ + __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); + } + else + { + /* Disable the Internal High Speed oscillator (HSI). */ + __HAL_RCC_HSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till HSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + } + /*------------------------------ LSI Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) + { + /* Check the parameters */ + assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); + + /* Check the LSI State */ + if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF) + { + /* Enable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the Internal Low Speed oscillator (LSI). */ + __HAL_RCC_LSI_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSI is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*------------------------------ LSE Configuration -------------------------*/ + if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) + { + /* Check the parameters */ + assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); + + /* Enable Power Clock*/ + __HAL_RCC_PWR_CLK_ENABLE(); + + /* Enable write access to Backup domain */ + PWR->CR |= PWR_CR_DBP; + + /* Wait for Backup domain Write protection disable */ + tickstart = HAL_GetTick(); + + while((PWR->CR & PWR_CR_DBP) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/ + __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Set the new LSE configuration -----------------------------------------*/ + __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); + /* Check the LSE State */ + if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF) + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till LSE is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + /*-------------------------------- PLL Configuration -----------------------*/ + /* Check the parameters */ + assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); + if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) + { + /* Check if the PLL is used as system clock or not */ + if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) + { + if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) + { + /* Check the parameters */ + assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); + assert_param(IS_RCC_PLLM_VALUE(RCC_OscInitStruct->PLL.PLLM)); + assert_param(IS_RCC_PLLN_VALUE(RCC_OscInitStruct->PLL.PLLN)); + assert_param(IS_RCC_PLLP_VALUE(RCC_OscInitStruct->PLL.PLLP)); + assert_param(IS_RCC_PLLQ_VALUE(RCC_OscInitStruct->PLL.PLLQ)); + assert_param(IS_RCC_PLLR_VALUE(RCC_OscInitStruct->PLL.PLLR)); + + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + /* Configure the main PLL clock source, multiplication and division factors. */ + __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, + RCC_OscInitStruct->PLL.PLLM, + RCC_OscInitStruct->PLL.PLLN, + RCC_OscInitStruct->PLL.PLLP, + RCC_OscInitStruct->PLL.PLLQ, + RCC_OscInitStruct->PLL.PLLR); + + /* Enable the main PLL. */ + __HAL_RCC_PLL_ENABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + else + { + /* Disable the main PLL. */ + __HAL_RCC_PLL_DISABLE(); + + /* Get Start Tick*/ + tickstart = HAL_GetTick(); + + /* Wait till PLL is ready */ + while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) + { + if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + } + else + { + return HAL_ERROR; + } + } + return HAL_OK; +} + +/** + * @brief Configures the RCC_OscInitStruct according to the internal + * RCC configuration registers. + * @param RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that will be configured. + * + * @note This function is only available in case of STM32F446xx devices. + * @note This function add the PLL/PLLR factor management + * @retval None + */ +void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) +{ + /* Set all possible values for the Oscillator type parameter ---------------*/ + RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; + + /* Get the HSE configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) + { + RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; + } + else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) + { + RCC_OscInitStruct->HSEState = RCC_HSE_ON; + } + else + { + RCC_OscInitStruct->HSEState = RCC_HSE_OFF; + } + + /* Get the HSI configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) + { + RCC_OscInitStruct->HSIState = RCC_HSI_ON; + } + else + { + RCC_OscInitStruct->HSIState = RCC_HSI_OFF; + } + + RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR &RCC_CR_HSITRIM) >> POSITION_VAL(RCC_CR_HSITRIM)); + + /* Get the LSE configuration -----------------------------------------------*/ + if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) + { + RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; + } + else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) + { + RCC_OscInitStruct->LSEState = RCC_LSE_ON; + } + else + { + RCC_OscInitStruct->LSEState = RCC_LSE_OFF; + } + + /* Get the LSI configuration -----------------------------------------------*/ + if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) + { + RCC_OscInitStruct->LSIState = RCC_LSI_ON; + } + else + { + RCC_OscInitStruct->LSIState = RCC_LSI_OFF; + } + + /* Get the PLL configuration -----------------------------------------------*/ + if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; + } + else + { + RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; + } + RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); + RCC_OscInitStruct->PLL.PLLM = (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM); + RCC_OscInitStruct->PLL.PLLN = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN)); + RCC_OscInitStruct->PLL.PLLP = (uint32_t)((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) + RCC_PLLCFGR_PLLP_0) << 1) >> POSITION_VAL(RCC_PLLCFGR_PLLP)); + RCC_OscInitStruct->PLL.PLLQ = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLQ) >> POSITION_VAL(RCC_PLLCFGR_PLLQ)); + RCC_OscInitStruct->PLL.PLLR = (uint32_t)((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)); +} + +/** + * @brief Returns the SYSCLK frequency + * + * @note This function is only available in case of STM32F446xx devices. + * @note This function add the PLL/PLLR System clock source + * + * @note The system frequency computed by this function is not the real + * frequency in the chip. It is calculated based on the predefined + * constant and the selected clock source: + * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) + * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(**) + * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(**) + * or HSI_VALUE(*) multiplied/divided by the PLL factors. + * @note (*) HSI_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature. + * @note (**) HSE_VALUE is a constant defined in stm32f4xx_hal_conf.h file (default value + * 25 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * have wrong result. + * + * @note The result of this function could be not correct when using fractional + * value for HSE crystal. + * + * @note This function can be used by the user application to compute the + * baudrate for the communication peripherals or configure other parameters. + * + * @note Each time SYSCLK changes, this function must be called to update the + * right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. + * + * + * @retval SYSCLK frequency + */ +uint32_t HAL_RCC_GetSysClockFreq(void) +{ + uint32_t pllm = 0; + uint32_t pllvco = 0; + uint32_t pllp = 0; + uint32_t pllr = 0; + uint32_t sysclockfreq = 0; + + /* Get SYSCLK source -------------------------------------------------------*/ + switch (RCC->CFGR & RCC_CFGR_SWS) + { + case RCC_CFGR_SWS_HSI: /* HSI used as system clock source */ + { + sysclockfreq = HSI_VALUE; + break; + } + case RCC_CFGR_SWS_HSE: /* HSE used as system clock source */ + { + sysclockfreq = HSE_VALUE; + break; + } + case RCC_CFGR_SWS_PLL: /* PLL/PLLP used as system clock source */ + { + /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN + SYSCLK = PLL_VCO / PLLP */ + pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; + if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI) + { + /* HSE used as PLL clock source */ + pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + else + { + /* HSI used as PLL clock source */ + pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + pllp = ((((RCC->PLLCFGR & RCC_PLLCFGR_PLLP) >> POSITION_VAL(RCC_PLLCFGR_PLLP)) + 1 ) *2); + + sysclockfreq = pllvco/pllp; + break; + } + case RCC_CFGR_SWS_PLLR: /* PLL/PLLR used as system clock source */ + { + /* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN + SYSCLK = PLL_VCO / PLLR */ + pllm = RCC->PLLCFGR & RCC_PLLCFGR_PLLM; + if(__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI) + { + /* HSE used as PLL clock source */ + pllvco = ((HSE_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + else + { + /* HSI used as PLL clock source */ + pllvco = ((HSI_VALUE / pllm) * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> POSITION_VAL(RCC_PLLCFGR_PLLN))); + } + pllr = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> POSITION_VAL(RCC_PLLCFGR_PLLR)); + + sysclockfreq = pllvco/pllr; + break; + } + default: + { + sysclockfreq = HSI_VALUE; + break; + } + } + return sysclockfreq; +} +#endif /* STM32F446xx */ + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RCC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rng.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rng.c new file mode 100644 index 0000000..a9873b6 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rng.c @@ -0,0 +1,515 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_rng.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief RNG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Random Number Generator (RNG) peripheral: + * + Initialization/de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The RNG HAL driver can be used as follows: + + (#) Enable the RNG controller clock using __HAL_RCC_RNG_CLK_ENABLE() macro + in HAL_RNG_MspInit(). + (#) Activate the RNG peripheral using HAL_RNG_Init() function. + (#) Wait until the 32 bit Random Number Generator contains a valid + random data using (polling/interrupt) mode. + (#) Get the 32 bit random number using HAL_RNG_GenerateRandomNumber() function. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @addtogroup RNG + * @{ + */ + +#ifdef HAL_RNG_MODULE_ENABLED + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) + + +/* Private types -------------------------------------------------------------*/ +/* Private defines -----------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/** @addtogroup RNG_Private_Constants + * @{ + */ +#define RNG_TIMEOUT_VALUE 2 +/** + * @} + */ +/* Private macros ------------------------------------------------------------*/ +/* Private functions prototypes ----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ + +/** @addtogroup RNG_Exported_Functions + * @{ + */ + +/** @addtogroup RNG_Exported_Functions_Group1 + * @brief Initialization and de-initialization functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Initialize the RNG according to the specified parameters + in the RNG_InitTypeDef and create the associated handle + (+) DeInitialize the RNG peripheral + (+) Initialize the RNG MSP + (+) DeInitialize RNG MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the RNG peripheral and creates the associated handle. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_Init(RNG_HandleTypeDef *hrng) +{ + /* Check the RNG handle allocation */ + if(hrng == NULL) + { + return HAL_ERROR; + } + + __HAL_LOCK(hrng); + + if(hrng->State == HAL_RNG_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrng->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_RNG_MspInit(hrng); + } + + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Enable the RNG Peripheral */ + __HAL_RNG_ENABLE(hrng); + + /* Initialize the RNG state */ + hrng->State = HAL_RNG_STATE_READY; + + __HAL_UNLOCK(hrng); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the RNG peripheral. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_DeInit(RNG_HandleTypeDef *hrng) +{ + /* Check the RNG handle allocation */ + if(hrng == NULL) + { + return HAL_ERROR; + } + /* Disable the RNG Peripheral */ + CLEAR_BIT(hrng->Instance->CR, RNG_CR_IE | RNG_CR_RNGEN); + + /* Clear RNG interrupt status flags */ + CLEAR_BIT(hrng->Instance->SR, RNG_SR_CEIS | RNG_SR_SEIS); + + /* DeInit the low level hardware */ + HAL_RNG_MspDeInit(hrng); + + /* Update the RNG state */ + hrng->State = HAL_RNG_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hrng); + + /* Return the function status */ + return HAL_OK; +} + +/** + * @brief Initializes the RNG MSP. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_MspInit(RNG_HandleTypeDef *hrng) +{ + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_MspInit must be implemented in the user file. + */ +} + +/** + * @brief DeInitializes the RNG MSP. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_MspDeInit(RNG_HandleTypeDef *hrng) +{ + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_MspDeInit must be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @addtogroup RNG_Exported_Functions_Group2 + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) Get the 32 bit Random number + (+) Get the 32 bit Random number with interrupt enabled + (+) Handle RNG interrupt request + +@endverbatim + * @{ + */ + +/** + * @brief Generates a 32-bit random number. + * @note Each time the random number data is read the RNG_FLAG_DRDY flag + * is automatically cleared. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param random32bit: pointer to generated random number variable if successful. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_RNG_GenerateRandomNumber(RNG_HandleTypeDef *hrng, uint32_t *random32bit) +{ + uint32_t tickstart = 0; + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hrng); + + /* Check RNG peripheral state */ + if(hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Check if data register contains valid random data */ + while(__HAL_RNG_GET_FLAG(hrng, RNG_FLAG_DRDY) == RESET) + { + if((HAL_GetTick() - tickstart ) > RNG_TIMEOUT_VALUE) + { + hrng->State = HAL_RNG_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + return HAL_TIMEOUT; + } + } + + /* Get a 32bit Random number */ + hrng->RandomNumber = hrng->Instance->DR; + *random32bit = hrng->RandomNumber; + + hrng->State = HAL_RNG_STATE_READY; + } + else + { + status = HAL_ERROR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + return status; +} + +/** + * @brief Generates a 32-bit random number in interrupt mode. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RNG_GenerateRandomNumber_IT(RNG_HandleTypeDef *hrng) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process Locked */ + __HAL_LOCK(hrng); + + /* Check RNG peripheral state */ + if(hrng->State == HAL_RNG_STATE_READY) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + /* Enable the RNG Interrupts: Data Ready, Clock error, Seed error */ + __HAL_RNG_ENABLE_IT(hrng); + } + else + { + /* Process Unlocked */ + __HAL_UNLOCK(hrng); + + status = HAL_ERROR; + } + + return status; +} + +/** + * @brief Handles RNG interrupt request. + * @note In the case of a clock error, the RNG is no more able to generate + * random numbers because the PLL48CLK clock is not correct. User has + * to check that the clock controller is correctly configured to provide + * the RNG clock and clear the CEIS bit using __HAL_RNG_CLEAR_IT(). + * The clock error has no impact on the previously generated + * random numbers, and the RNG_DR register contents can be used. + * @note In the case of a seed error, the generation of random numbers is + * interrupted as long as the SECS bit is '1'. If a number is + * available in the RNG_DR register, it must not be used because it may + * not have enough entropy. In this case, it is recommended to clear the + * SEIS bit using __HAL_RNG_CLEAR_IT(), then disable and enable + * the RNG peripheral to reinitialize and restart the RNG. + * @note User-written HAL_RNG_ErrorCallback() API is called once whether SEIS + * or CEIS are set. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + + */ +void HAL_RNG_IRQHandler(RNG_HandleTypeDef *hrng) +{ + /* RNG clock error interrupt occurred */ + if((__HAL_RNG_GET_IT(hrng, RNG_IT_CEI) != RESET) || (__HAL_RNG_GET_IT(hrng, RNG_IT_SEI) != RESET)) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_ERROR; + + HAL_RNG_ErrorCallback(hrng); + + /* Clear the clock error flag */ + __HAL_RNG_CLEAR_IT(hrng, RNG_IT_CEI|RNG_IT_SEI); + + } + + /* Check RNG data ready interrupt occurred */ + if(__HAL_RNG_GET_IT(hrng, RNG_IT_DRDY) != RESET) + { + /* Generate random number once, so disable the IT */ + __HAL_RNG_DISABLE_IT(hrng); + + /* Get the 32bit Random number (DRDY flag automatically cleared) */ + hrng->RandomNumber = hrng->Instance->DR; + + if(hrng->State != HAL_RNG_STATE_ERROR) + { + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_READY; + + /* Data Ready callback */ + HAL_RNG_ReadyDataCallback(hrng, hrng->RandomNumber); + } + } +} + +/** + * @brief Returns generated random number in polling mode (Obsolete) + * Use HAL_RNG_GenerateRandomNumber() API instead. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval Random value + */ +uint32_t HAL_RNG_GetRandomNumber(RNG_HandleTypeDef *hrng) +{ + if(HAL_RNG_GenerateRandomNumber(hrng, &(hrng->RandomNumber)) == HAL_OK) + { + return hrng->RandomNumber; + } + else + { + return 0; + } +} + +/** + * @brief Returns a 32-bit random number with interrupt enabled (Obsolete), + * Use HAL_RNG_GenerateRandomNumber_IT() API instead. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval 32-bit random number + */ +uint32_t HAL_RNG_GetRandomNumber_IT(RNG_HandleTypeDef *hrng) +{ + uint32_t random32bit = 0; + + /* Process locked */ + __HAL_LOCK(hrng); + + /* Change RNG peripheral state */ + hrng->State = HAL_RNG_STATE_BUSY; + + /* Get a 32bit Random number */ + random32bit = hrng->Instance->DR; + + /* Enable the RNG Interrupts: Data Ready, Clock error, Seed error */ + __HAL_RNG_ENABLE_IT(hrng); + + /* Return the 32 bit random number */ + return random32bit; +} + +/** + * @brief Read latest generated random number. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval random value + */ +uint32_t HAL_RNG_ReadLastRandomNumber(RNG_HandleTypeDef *hrng) +{ + return(hrng->RandomNumber); +} + +/** + * @brief Data Ready callback in non-blocking mode. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @param random32bit: generated random number. + * @retval None + */ +__weak void HAL_RNG_ReadyDataCallback(RNG_HandleTypeDef *hrng, uint32_t random32bit) +{ + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_ReadyDataCallback must be implemented in the user file. + */ +} + +/** + * @brief RNG error callbacks. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval None + */ +__weak void HAL_RNG_ErrorCallback(RNG_HandleTypeDef *hrng) +{ + /* NOTE : This function should not be modified. When the callback is needed, + function HAL_RNG_ErrorCallback must be implemented in the user file. + */ +} +/** + * @} + */ + + +/** @addtogroup RNG_Exported_Functions_Group3 + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the RNG state. + * @param hrng: pointer to a RNG_HandleTypeDef structure that contains + * the configuration information for RNG. + * @retval HAL state + */ +HAL_RNG_StateTypeDef HAL_RNG_GetState(RNG_HandleTypeDef *hrng) +{ + return hrng->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + +#endif /* HAL_RNG_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rtc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rtc.c new file mode 100644 index 0000000..4114d87 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rtc.c @@ -0,0 +1,1545 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_rtc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real Time Clock (RTC) peripheral: + * + Initialization and de-initialization functions + * + RTC Time and Date functions + * + RTC Alarm functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### Backup Domain Operating Condition ##### + ============================================================================== + [..] The real-time clock (RTC), the RTC backup registers, and the backup + SRAM (BKP SRAM) can be powered from the VBAT voltage when the main + VDD supply is powered off. + To retain the content of the RTC backup registers, backup SRAM, and supply + the RTC when VDD is turned off, VBAT pin can be connected to an optional + standby voltage supplied by a battery or by another source. + + [..] To allow the RTC operating even when the main digital supply (VDD) is turned + off, the VBAT pin powers the following blocks: + (#) The RTC + (#) The LSE oscillator + (#) The backup SRAM when the low power backup regulator is enabled + (#) PC13 to PC15 I/Os, plus PI8 I/O (when available) + + [..] When the backup domain is supplied by VDD (analog switch connected to VDD), + the following pins are available: + (#) PC14 and PC15 can be used as either GPIO or LSE pins + (#) PC13 can be used as a GPIO or as the RTC_AF1 pin + (#) PI8 can be used as a GPIO or as the RTC_AF2 pin + + [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT + because VDD is not present), the following pins are available: + (#) PC14 and PC15 can be used as LSE pins only + (#) PC13 can be used as the RTC_AF1 pin + (#) PI8 can be used as the RTC_AF2 pin + + ##### Backup Domain Reset ##### + ================================================================== + [..] The backup domain reset sets all RTC registers and the RCC_BDCR register + to their reset values. The BKPSRAM is not affected by this reset. The only + way to reset the BKPSRAM is through the Flash interface by requesting + a protection level change from 1 to 0. + [..] A backup domain reset is generated when one of the following events occurs: + (#) Software reset, triggered by setting the BDRST bit in the + RCC Backup domain control register (RCC_BDCR). + (#) VDD or VBAT power on, if both supplies have previously been powered off. + + ##### Backup Domain Access ##### + ================================================================== + [..] After reset, the backup domain (RTC registers, RTC backup data + registers and backup SRAM) is protected against possible unwanted write + accesses. + [..] To enable access to the RTC Domain and RTC registers, proceed as follows: + (+) Enable the Power Controller (PWR) APB1 interface clock using the + __HAL_RCC_PWR_CLK_ENABLE() function. + (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function. + (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function. + (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function. + + + ##### How to use this driver ##### + ================================================================== + [..] + (+) Enable the RTC domain access (see description in the section above). + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** Time and Date configuration *** + =================================== + [..] + (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime() + and HAL_RTC_SetDate() functions. + (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions. + + *** Alarm configuration *** + =========================== + [..] + (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function. + You can also configure the RTC Alarm with interrupt mode using the HAL_RTC_SetAlarm_IT() function. + (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function. + + ##### RTC and low power modes ##### + ================================================================== + [..] The MCU can be woken up from a low power mode by an RTC alternate + function. + [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), + RTC wake-up, RTC tamper event detection and RTC time stamp event detection. + These RTC alternate functions can wake up the system from the Stop and + Standby low power modes. + [..] The system can also wake up from low power modes without depending + on an external interrupt (Auto-wake-up mode), by using the RTC alarm + or the RTC wake-up events. + [..] The RTC provides a programmable time base for waking up from the + Stop or Standby mode at regular intervals. + Wake-up from STOP and STANDBY modes is possible only when the RTC clock source + is LSE or LSI. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup RTC RTC + * @brief RTC HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup RTC_Exported_Functions RTC Exported Functions + * @{ + */ + +/** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to initialize and configure the + RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable + RTC registers Write protection, enter and exit the RTC initialization mode, + RTC registers synchronization check and reference clock detection enable. + (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base. + It is split into 2 programmable prescalers to minimize power consumption. + (++) A 7-bit asynchronous prescaler and a 13-bit synchronous prescaler. + (++) When both prescalers are used, it is recommended to configure the + asynchronous prescaler to a high value to minimize power consumption. + (#) All RTC registers are Write protected. Writing to the RTC registers + is enabled by writing a key into the Write Protection register, RTC_WPR. + (#) To configure the RTC Calendar, user application should enter + initialization mode. In this mode, the calendar counter is stopped + and its value can be updated. When the initialization sequence is + complete, the calendar restarts counting after 4 RTCCLK cycles. + (#) To read the calendar through the shadow registers after Calendar + initialization, calendar update or after wake-up from low power modes + the software must first clear the RSF flag. The software must then + wait until it is set again before reading the calendar, which means + that the calendar registers have been correctly copied into the + RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function + implements the above software sequence (RSF clear and RSF check). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the RTC peripheral + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc) +{ + /* Check the RTC peripheral state */ + if(hrtc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat)); + assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv)); + assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv)); + assert_param (IS_RTC_OUTPUT(hrtc->Init.OutPut)); + assert_param (IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity)); + assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType)); + + if(hrtc->State == HAL_RTC_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hrtc->Lock = HAL_UNLOCKED; + /* Initialize RTC MSP */ + HAL_RTC_MspInit(hrtc); + } + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + else + { + /* Clear RTC_CR FMT, OSEL and POL Bits */ + hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL)); + /* Set RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity); + + /* Configure the RTC PRER */ + hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv); + hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + + hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE; + hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; + } +} + +/** + * @brief DeInitializes the RTC peripheral + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note This function doesn't reset the RTC Backup Data registers. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart = 0; + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + else + { + /* Reset TR, DR and CR registers */ + hrtc->Instance->TR = (uint32_t)0x00000000; + hrtc->Instance->DR = (uint32_t)0x00002101; + /* Reset All CR bits except CR[2:0] */ + hrtc->Instance->CR &= (uint32_t)0x00000007; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till WUTWF flag is set and if Time out is reached exit */ + while(((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + + /* Reset all RTC CR register bits */ + hrtc->Instance->CR &= (uint32_t)0x00000000; + hrtc->Instance->WUTR = (uint32_t)0x0000FFFF; + hrtc->Instance->PRER = (uint32_t)0x007F00FF; + hrtc->Instance->CALIBR = (uint32_t)0x00000000; + hrtc->Instance->ALRMAR = (uint32_t)0x00000000; + hrtc->Instance->ALRMBR = (uint32_t)0x00000000; + hrtc->Instance->SHIFTR = (uint32_t)0x00000000; + hrtc->Instance->CALR = (uint32_t)0x00000000; + hrtc->Instance->ALRMASSR = (uint32_t)0x00000000; + hrtc->Instance->ALRMBSSR = (uint32_t)0x00000000; + + /* Reset ISR register and exit initialization mode */ + hrtc->Instance->ISR = (uint32_t)0x00000000; + + /* Reset Tamper and alternate functions configuration register */ + hrtc->Instance->TAFCR = 0x00000000; + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* De-Initialize RTC MSP */ + HAL_RTC_MspDeInit(hrtc); + + hrtc->State = HAL_RTC_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Initializes the RTC MSP. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the RTC MSP. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions + * @brief RTC Time and Date functions + * +@verbatim + =============================================================================== + ##### RTC Time and Date functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Time and Date features + +@endverbatim + * @{ + */ + +/** + * @brief Sets RTC current time. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTime: Pointer to Time structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving)); + assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(Format == RTC_FORMAT_BIN) + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + assert_param(IS_RTC_HOUR12(sTime->Hours)); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(sTime->Hours)); + } + assert_param(IS_RTC_MINUTES(sTime->Minutes)); + assert_param(IS_RTC_SECONDS(sTime->Seconds)); + + tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \ + (((uint32_t)sTime->TimeFormat) << 16)); + } + else + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + tmpreg = RTC_Bcd2ToByte(sTime->Hours); + assert_param(IS_RTC_HOUR12(tmpreg)); + assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat)); + } + else + { + sTime->TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours))); + } + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds))); + tmpreg = (((uint32_t)(sTime->Hours) << 16) | \ + ((uint32_t)(sTime->Minutes) << 8) | \ + ((uint32_t)sTime->Seconds) | \ + ((uint32_t)(sTime->TimeFormat) << 16)); + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Set the RTC_TR register */ + hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK); + + /* Clear the bits to be configured */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_BCK; + + /* Configure the RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + + /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + __HAL_UNLOCK(hrtc); + + return HAL_OK; + } +} + +/** + * @brief Gets RTC current time. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTime: Pointer to Time structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds + * value in second fraction ratio with time unit following generic formula: + * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit + * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values + * in the higher-order calendar shadow registers to ensure consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers until current date is read. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get subseconds structure field from the corresponding register */ + sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR); + + /* Get SecondFraction structure field from the corresponding register field */ + sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S); + + /* Get the TR register */ + tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16); + sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8); + sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU)); + sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16); + + /* Check the input parameters format */ + if(Format == RTC_FORMAT_BIN) + { + /* Convert the time structure parameters to Binary format */ + sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours); + sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes); + sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds); + } + + return HAL_OK; +} + +/** + * @brief Sets RTC current date. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sDate: Pointer to date structure + * @param Format: specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10) == 0x10)) + { + sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10)) + (uint8_t)0x0A); + } + + assert_param(IS_RTC_WEEKDAY(sDate->WeekDay)); + + if(Format == RTC_FORMAT_BIN) + { + assert_param(IS_RTC_YEAR(sDate->Year)); + assert_param(IS_RTC_MONTH(sDate->Month)); + assert_param(IS_RTC_DATE(sDate->Date)); + + datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \ + ((uint32_t)sDate->WeekDay << 13)); + } + else + { + assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year))); + datetmpreg = RTC_Bcd2ToByte(sDate->Month); + assert_param(IS_RTC_MONTH(datetmpreg)); + datetmpreg = RTC_Bcd2ToByte(sDate->Date); + assert_param(IS_RTC_DATE(datetmpreg)); + + datetmpreg = ((((uint32_t)sDate->Year) << 16) | \ + (((uint32_t)sDate->Month) << 8) | \ + ((uint32_t)sDate->Date) | \ + (((uint32_t)sDate->WeekDay) << 13)); + } + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Set the RTC_DR register */ + hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + + /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY ; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; + } +} + +/** + * @brief Gets RTC current date. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sDate: Pointer to Date structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values + * in the higher-order calendar shadow registers to ensure consistency between the time and date values. + * Reading RTC current time locks the values in calendar shadow registers until Current date is read. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format) +{ + uint32_t datetmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the DR register */ + datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK); + + /* Fill the structure fields with the read parameters */ + sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16); + sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8); + sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU)); + sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13); + + /* Check the input parameters format */ + if(Format == RTC_FORMAT_BIN) + { + /* Convert the date structure parameters to Binary format */ + sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year); + sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month); + sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date); + } + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions + * @brief RTC Alarm functions + * +@verbatim + =============================================================================== + ##### RTC Alarm functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Alarm feature + +@endverbatim + * @{ + */ +/** + * @brief Sets the specified RTC Alarm. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm: Pointer to Alarm structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + uint32_t tickstart = 0; + uint32_t tmpreg = 0, subsecondtmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(Format == RTC_FORMAT_BIN) + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + assert_param(IS_RTC_HOUR12(tmpreg)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg)); + } + else + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg)); + } + + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t) sAlarm->AlarmTime.Seconds) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + + /* Configure the Alarm A or Alarm B Sub Second registers */ + subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Alarm register */ + if(sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable the Alarm A interrupt */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMAR = (uint32_t)tmpreg; + /* Configure the Alarm A Sub Second register */ + hrtc->Instance->ALRMASSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMA_ENABLE(hrtc); + } + else + { + /* Disable the Alarm B interrupt */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMBR = (uint32_t)tmpreg; + /* Configure the Alarm B Sub Second register */ + hrtc->Instance->ALRMBSSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMB_ENABLE(hrtc); + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets the specified RTC Alarm with Interrupt + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm: Pointer to Alarm structure + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format) +{ + uint32_t tickstart = 0; + uint32_t tmpreg = 0, subsecondtmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(sAlarm->Alarm)); + assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask)); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel)); + assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds)); + assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(Format == RTC_FORMAT_BIN) + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours)); + } + assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes)); + assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds)); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay)); + } + else + { + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay)); + } + tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + else + { + if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + assert_param(IS_RTC_HOUR12(tmpreg)); + assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat)); + } + else + { + sAlarm->AlarmTime.TimeFormat = 0x00; + assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours))); + } + + assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes))); + assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds))); + + if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE) + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg)); + } + else + { + tmpreg = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg)); + } + tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \ + ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \ + ((uint32_t) sAlarm->AlarmTime.Seconds) | \ + ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \ + ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \ + ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \ + ((uint32_t)sAlarm->AlarmMask)); + } + /* Configure the Alarm A or Alarm B Sub Second registers */ + subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask)); + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Alarm register */ + if(sAlarm->Alarm == RTC_ALARM_A) + { + /* Disable the Alarm A interrupt */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* Clear flag alarm A */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMAR = (uint32_t)tmpreg; + /* Configure the Alarm A Sub Second register */ + hrtc->Instance->ALRMASSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMA_ENABLE(hrtc); + /* Configure the Alarm interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA); + } + else + { + /* Disable the Alarm B interrupt */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* Clear flag alarm B */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + hrtc->Instance->ALRMBR = (uint32_t)tmpreg; + /* Configure the Alarm B Sub Second register */ + hrtc->Instance->ALRMBSSR = subsecondtmpreg; + /* Configure the Alarm state: Enable Alarm */ + __HAL_RTC_ALARMB_ENABLE(hrtc); + /* Configure the Alarm interrupt */ + __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB); + } + + /* RTC Alarm Interrupt Configuration: EXTI configuration */ + __HAL_RTC_ALARM_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_ALARM_EVENT; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivate the specified RTC Alarm + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Alarm: Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: AlarmA + * @arg RTC_ALARM_B: AlarmB + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_ALARM(Alarm)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + if(Alarm == RTC_ALARM_A) + { + /* AlarmA */ + __HAL_RTC_ALARMA_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + else + { + /* AlarmB */ + __HAL_RTC_ALARMB_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_ALARM_DISABLE_IT(hrtc,RTC_IT_ALRB); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets the RTC Alarm value and masks. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sAlarm: Pointer to Date structure + * @param Alarm: Specifies the Alarm. + * This parameter can be one of the following values: + * @arg RTC_ALARM_A: AlarmA + * @arg RTC_ALARM_B: AlarmB + * @param Format: Specifies the format of the entered parameters. + * This parameter can be one of the following values: + * @arg RTC_FORMAT_BIN: Binary data format + * @arg RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format) +{ + uint32_t tmpreg = 0, subsecondtmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + assert_param(IS_RTC_ALARM(Alarm)); + + if(Alarm == RTC_ALARM_A) + { + /* AlarmA */ + sAlarm->Alarm = RTC_ALARM_A; + + tmpreg = (uint32_t)(hrtc->Instance->ALRMAR); + subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR ) & RTC_ALRMASSR_SS); + } + else + { + sAlarm->Alarm = RTC_ALARM_B; + + tmpreg = (uint32_t)(hrtc->Instance->ALRMBR); + subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS); + } + + /* Fill the structure with the read parameters */ + sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16); + sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8); + sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)); + sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16); + sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg; + sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24); + sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL); + sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL); + + if(Format == RTC_FORMAT_BIN) + { + sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours); + sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes); + sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds); + sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay); + } + + return HAL_OK; +} + +/** + * @brief This function handles Alarm interrupt request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc) +{ + if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRA)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRA) != (uint32_t)RESET) + { + /* AlarmA callback */ + HAL_RTC_AlarmAEventCallback(hrtc); + + /* Clear the Alarm interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRAF); + } + } + + if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRB)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRB) != (uint32_t)RESET) + { + /* AlarmB callback */ + HAL_RTCEx_AlarmBEventCallback(hrtc); + + /* Clear the Alarm interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRBF); + } + } + + /* Clear the EXTI's line Flag for RTC Alarm */ + __HAL_RTC_ALARM_EXTI_CLEAR_FLAG(); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Alarm A callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_AlarmAEventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles AlarmA Polling request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm interrupt pending bit */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Wait for RTC Time and Date Synchronization + +@endverbatim + * @{ + */ + +/** + * @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are + * synchronized with RTC APB clock. + * @note The RTC Resynchronization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @note To read the calendar through the shadow registers after Calendar + * initialization, calendar update or after wake-up from low power modes + * the software must first clear the RSF flag. + * The software must then wait until it is set again before reading + * the calendar, which means that the calendar registers have been + * correctly copied into the RTC_TR and RTC_DR shadow registers. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc) +{ + uint32_t tickstart = 0; + + /* Clear RSF flag */ + hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait the registers to be synchronised */ + while((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Get RTC state + +@endverbatim + * @{ + */ +/** + * @brief Returns the RTC state. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL state + */ +HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc) +{ + return hrtc->State; +} + +/** + * @} + */ + +/** + * @brief Enters the RTC Initialization mode. + * @note The RTC Initialization mode is write protected, use the + * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc) +{ + uint32_t tickstart = 0; + + /* Check if the Initialization mode is set */ + if((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) + { + /* Set the Initialization mode */ + hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC is in INIT state and if Time out is reached exit */ + while((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + return HAL_TIMEOUT; + } + } + } + + return HAL_OK; +} + + +/** + * @brief Converts a 2 digit decimal to BCD format. + * @param Value: Byte to be converted + * @retval Converted byte + */ +uint8_t RTC_ByteToBcd2(uint8_t Value) +{ + uint32_t bcdhigh = 0; + + while(Value >= 10) + { + bcdhigh++; + Value -= 10; + } + + return ((uint8_t)(bcdhigh << 4) | Value); +} + +/** + * @brief Converts from 2 digit BCD to Binary. + * @param Value: BCD value to be converted + * @retval Converted word + */ +uint8_t RTC_Bcd2ToByte(uint8_t Value) +{ + uint32_t tmp = 0; + tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10; + return (tmp + (Value & (uint8_t)0x0F)); +} + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rtc_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rtc_ex.c new file mode 100644 index 0000000..cafbe8a --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_rtc_ex.c @@ -0,0 +1,1710 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_rtc_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief RTC HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Real Time Clock (RTC) Extension peripheral: + * + RTC Time Stamp functions + * + RTC Tamper functions + * + RTC Wake-up functions + * + Extension Control functions + * + Extension RTC features functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (+) Enable the RTC domain access. + (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour + format using the HAL_RTC_Init() function. + + *** RTC Wake-up configuration *** + ================================ + [..] + (+) To configure the RTC Wake-up Clock source and Counter use the HAL_RTC_SetWakeUpTimer() + function. You can also configure the RTC Wake-up timer in interrupt mode + using the HAL_RTC_SetWakeUpTimer_IT() function. + (+) To read the RTC Wake-up Counter register, use the HAL_RTC_GetWakeUpTimer() + function. + + *** TimeStamp configuration *** + =============================== + [..] + (+) Configure the RTC_AFx trigger and enable the RTC TimeStamp using the + HAL_RTC_SetTimeStamp() function. You can also configure the RTC TimeStamp with + interrupt mode using the HAL_RTC_SetTimeStamp_IT() function. + (+) To read the RTC TimeStamp Time and Date register, use the HAL_RTC_GetTimeStamp() + function. + (+) The TIMESTAMP alternate function can be mapped either to RTC_AF1 (PC13) + or RTC_AF2 (PI8 or PA0 only for STM32F446xx devices) depending on the value of TSINSEL bit in + RTC_TAFCR register. The corresponding pin is also selected by HAL_RTC_SetTimeStamp() + or HAL_RTC_SetTimeStamp_IT() function. + + *** Tamper configuration *** + ============================ + [..] + (+) Enable the RTC Tamper and configure the Tamper filter count, trigger Edge + or Level according to the Tamper filter (if equal to 0 Edge else Level) + value, sampling frequency, precharge or discharge and Pull-UP using the + HAL_RTC_SetTamper() function. You can configure RTC Tamper in interrupt + mode using HAL_RTC_SetTamper_IT() function. + (+) The TAMPER1 alternate function can be mapped either to RTC_AF1 (PC13) + or RTC_AF2 (PI8 or PA0 only for STM32F446xx devices) depending on the value of TAMP1INSEL bit in + RTC_TAFCR register. The corresponding pin is also selected by HAL_RTC_SetTamper() + or HAL_RTC_SetTamper_IT() function. + + *** Backup Data Registers configuration *** + =========================================== + [..] + (+) To write to the RTC Backup Data registers, use the HAL_RTC_BKUPWrite() + function. + (+) To read the RTC Backup Data registers, use the HAL_RTC_BKUPRead() + function. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup RTCEx RTCEx + * @brief RTC HAL module driver + * @{ + */ + +#ifdef HAL_RTC_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup RTCEx_Exported_Functions RTCEx Exported Functions + * @{ + */ + +/** @defgroup RTCEx_Exported_Functions_Group1 RTC TimeStamp and Tamper functions + * @brief RTC TimeStamp and Tamper functions + * +@verbatim + =============================================================================== + ##### RTC TimeStamp and Tamper functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure TimeStamp feature + +@endverbatim + * @{ + */ + +/** + * @brief Sets TimeStamp. + * @note This API must be called before enabling the TimeStamp feature. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param TimeStampEdge: Specifies the pin edge on which the TimeStamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the + * rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the + * falling edge of the related pin. + * @param RTC_TimeStampPin: specifies the RTC TimeStamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_DEFAULT: PC13 is selected as RTC TimeStamp Pin. + * @arg RTC_TIMESTAMPPIN_POS1: PI8/PA0 is selected as RTC TimeStamp Pin. + * (PI8 for all STM32 devices except for STM32F446xx devices the PA0 is used) + * @arg RTC_TIMESTAMPPIN_PA0: PA0 is selected as RTC TimeStamp Pin only for STM32F446xx devices + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + tmpreg|= TimeStampEdge; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_TSINSEL; + hrtc->Instance->TAFCR |= (uint32_t)(RTC_TimeStampPin); + + /* Configure the Time Stamp TSEDGE and Enable bits */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + __HAL_RTC_TIMESTAMP_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets TimeStamp with Interrupt. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note This API must be called before enabling the TimeStamp feature. + * @param TimeStampEdge: Specifies the pin edge on which the TimeStamp is + * activated. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPEDGE_RISING: the Time stamp event occurs on the + * rising edge of the related pin. + * @arg RTC_TIMESTAMPEDGE_FALLING: the Time stamp event occurs on the + * falling edge of the related pin. + * @param RTC_TimeStampPin: Specifies the RTC TimeStamp Pin. + * This parameter can be one of the following values: + * @arg RTC_TIMESTAMPPIN_PC13: PC13 is selected as RTC TimeStamp Pin. + * @arg RTC_TIMESTAMPPIN_PI8: PI8 is selected as RTC TimeStamp Pin. (not applicable in the case of STM32F446xx devices) + * @arg RTC_TIMESTAMPPIN_PA0: PA0 is selected as RTC TimeStamp Pin only for STM32F446xx devices + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTimeStamp_IT(RTC_HandleTypeDef *hrtc, uint32_t TimeStampEdge, uint32_t RTC_TimeStampPin) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_TIMESTAMP_EDGE(TimeStampEdge)); + assert_param(IS_RTC_TIMESTAMP_PIN(RTC_TimeStampPin)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + tmpreg |= TimeStampEdge; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Configure the Time Stamp TSEDGE and Enable bits */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_TSINSEL; + hrtc->Instance->TAFCR |= (uint32_t)(RTC_TimeStampPin); + + __HAL_RTC_TIMESTAMP_ENABLE(hrtc); + + /* Enable IT timestamp */ + __HAL_RTC_TIMESTAMP_ENABLE_IT(hrtc,RTC_IT_TS); + + /* RTC timestamp Interrupt Configuration: EXTI configuration */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates TimeStamp. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTimeStamp(RTC_HandleTypeDef *hrtc) +{ + uint32_t tmpreg = 0; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_TIMESTAMP_DISABLE_IT(hrtc, RTC_IT_TS); + + /* Get the RTC_CR register and clear the bits to be configured */ + tmpreg = (uint32_t)(hrtc->Instance->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE)); + + /* Configure the Time Stamp TSEDGE and Enable bits */ + hrtc->Instance->CR = (uint32_t)tmpreg; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets the RTC TimeStamp value. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTimeStamp: Pointer to Time structure + * @param sTimeStampDate: Pointer to Date structure + * @param Format: specifies the format of the entered parameters. + * This parameter can be one of the following values: + * RTC_FORMAT_BIN: Binary data format + * RTC_FORMAT_BCD: BCD data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_GetTimeStamp(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef* sTimeStamp, RTC_DateTypeDef* sTimeStampDate, uint32_t Format) +{ + uint32_t tmptime = 0, tmpdate = 0; + + /* Check the parameters */ + assert_param(IS_RTC_FORMAT(Format)); + + /* Get the TimeStamp time and date registers values */ + tmptime = (uint32_t)(hrtc->Instance->TSTR & RTC_TR_RESERVED_MASK); + tmpdate = (uint32_t)(hrtc->Instance->TSDR & RTC_DR_RESERVED_MASK); + + /* Fill the Time structure fields with the read parameters */ + sTimeStamp->Hours = (uint8_t)((tmptime & (RTC_TR_HT | RTC_TR_HU)) >> 16); + sTimeStamp->Minutes = (uint8_t)((tmptime & (RTC_TR_MNT | RTC_TR_MNU)) >> 8); + sTimeStamp->Seconds = (uint8_t)(tmptime & (RTC_TR_ST | RTC_TR_SU)); + sTimeStamp->TimeFormat = (uint8_t)((tmptime & (RTC_TR_PM)) >> 16); + sTimeStamp->SubSeconds = (uint32_t) hrtc->Instance->TSSSR; + + /* Fill the Date structure fields with the read parameters */ + sTimeStampDate->Year = 0; + sTimeStampDate->Month = (uint8_t)((tmpdate & (RTC_DR_MT | RTC_DR_MU)) >> 8); + sTimeStampDate->Date = (uint8_t)(tmpdate & (RTC_DR_DT | RTC_DR_DU)); + sTimeStampDate->WeekDay = (uint8_t)((tmpdate & (RTC_DR_WDU)) >> 13); + + /* Check the input parameters format */ + if(Format == RTC_FORMAT_BIN) + { + /* Convert the TimeStamp structure parameters to Binary format */ + sTimeStamp->Hours = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Hours); + sTimeStamp->Minutes = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Minutes); + sTimeStamp->Seconds = (uint8_t)RTC_Bcd2ToByte(sTimeStamp->Seconds); + + /* Convert the DateTimeStamp structure parameters to Binary format */ + sTimeStampDate->Month = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Month); + sTimeStampDate->Date = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->Date); + sTimeStampDate->WeekDay = (uint8_t)RTC_Bcd2ToByte(sTimeStampDate->WeekDay); + } + + /* Clear the TIMESTAMP Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSF); + + return HAL_OK; +} + +/** + * @brief Sets Tamper + * @note By calling this API we disable the tamper interrupt for all tampers. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTamper: Pointer to Tamper Structure. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_PIN(sTamper->PinSelection)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + if(sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE) + { + sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1); + } + + tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->PinSelection | (uint32_t)sTamper->Trigger |\ + (uint32_t)sTamper->Filter | (uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration |\ + (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection); + + hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAFCR_TAMPTS |\ + (uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH |\ + (uint32_t)RTC_TAFCR_TAMPPUDIS | (uint32_t)RTC_TAFCR_TAMPINSEL | (uint32_t)RTC_TAFCR_TAMPIE); + + hrtc->Instance->TAFCR |= tmpreg; + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets Tamper with interrupt. + * @note By calling this API we force the tamper interrupt for all tampers. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param sTamper: Pointer to RTC Tamper. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef* sTamper) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RTC_TAMPER(sTamper->Tamper)); + assert_param(IS_RTC_TAMPER_PIN(sTamper->PinSelection)); + assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger)); + assert_param(IS_RTC_TAMPER_FILTER(sTamper->Filter)); + assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(sTamper->SamplingFrequency)); + assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(sTamper->PrechargeDuration)); + assert_param(IS_RTC_TAMPER_PULLUP_STATE(sTamper->TamperPullUp)); + assert_param(IS_RTC_TAMPER_TIMESTAMPONTAMPER_DETECTION(sTamper->TimeStampOnTamperDetection)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Configure the tamper trigger */ + if(sTamper->Trigger != RTC_TAMPERTRIGGER_RISINGEDGE) + { + sTamper->Trigger = (uint32_t)(sTamper->Tamper << 1); + } + + tmpreg = ((uint32_t)sTamper->Tamper | (uint32_t)sTamper->PinSelection | (uint32_t)sTamper->Trigger |\ + (uint32_t)sTamper->Filter | (uint32_t)sTamper->SamplingFrequency | (uint32_t)sTamper->PrechargeDuration |\ + (uint32_t)sTamper->TamperPullUp | sTamper->TimeStampOnTamperDetection); + + hrtc->Instance->TAFCR &= (uint32_t)~((uint32_t)sTamper->Tamper | (uint32_t)(sTamper->Tamper << 1) | (uint32_t)RTC_TAFCR_TAMPTS |\ + (uint32_t)RTC_TAFCR_TAMPFREQ | (uint32_t)RTC_TAFCR_TAMPFLT | (uint32_t)RTC_TAFCR_TAMPPRCH |\ + (uint32_t)RTC_TAFCR_TAMPPUDIS | (uint32_t)RTC_TAFCR_TAMPINSEL); + + hrtc->Instance->TAFCR |= tmpreg; + + /* Configure the Tamper Interrupt in the RTC_TAFCR */ + hrtc->Instance->TAFCR |= (uint32_t)RTC_TAFCR_TAMPIE; + + /* RTC Tamper Interrupt Configuration: EXTI configuration */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_TAMPER_TIMESTAMP_EVENT; + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates Tamper. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Tamper: Selected tamper pin. + * This parameter can be RTC_Tamper_1 and/or RTC_TAMPER_2. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper) +{ + assert_param(IS_RTC_TAMPER(Tamper)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the selected Tamper pin */ + hrtc->Instance->TAFCR &= (uint32_t)~Tamper; + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief This function handles TimeStamp interrupt request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTCEx_TamperTimeStampIRQHandler(RTC_HandleTypeDef *hrtc) +{ + if(__HAL_RTC_TIMESTAMP_GET_IT(hrtc, RTC_IT_TS)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_TS) != (uint32_t)RESET) + { + /* TIMESTAMP callback */ + HAL_RTCEx_TimeStampEventCallback(hrtc); + + /* Clear the TIMESTAMP interrupt pending bit */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc,RTC_FLAG_TSF); + } + } + + /* Get the status of the Interrupt */ + if(__HAL_RTC_TAMPER_GET_IT(hrtc,RTC_IT_TAMP1)) + { + /* Get the TAMPER Interrupt enable bit and pending bit */ + if(((hrtc->Instance->TAFCR & (RTC_TAFCR_TAMPIE))) != (uint32_t)RESET) + { + /* Tamper callback */ + HAL_RTCEx_Tamper1EventCallback(hrtc); + + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F); + } + } + + /* Get the status of the Interrupt */ + if(__HAL_RTC_TAMPER_GET_IT(hrtc, RTC_IT_TAMP2)) + { + /* Get the TAMPER Interrupt enable bit and pending bit */ + if(((hrtc->Instance->TAFCR & RTC_TAFCR_TAMPIE)) != (uint32_t)RESET) + { + /* Tamper callback */ + HAL_RTCEx_Tamper2EventCallback(hrtc); + + /* Clear the Tamper interrupt pending bit */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP2F); + } + } + /* Clear the EXTI's Flag for RTC TimeStamp and Tamper */ + __HAL_RTC_TAMPER_TIMESTAMP_EXTI_CLEAR_FLAG(); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief TimeStamp callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_TimeStampEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_TimeStampEventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 1 callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_Tamper1EventCallback could be implemented in the user file + */ +} + +/** + * @brief Tamper 2 callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_Tamper2EventCallback(RTC_HandleTypeDef *hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_Tamper2EventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles TimeStamp polling request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTimeStampEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSF) == RESET) + { + if(__HAL_RTC_TIMESTAMP_GET_FLAG(hrtc, RTC_FLAG_TSOVF) != RESET) + { + /* Clear the TIMESTAMP Overrun Flag */ + __HAL_RTC_TIMESTAMP_CLEAR_FLAG(hrtc, RTC_FLAG_TSOVF); + + /* Change TIMESTAMP state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + return HAL_ERROR; + } + + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles Tamper1 Polling. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F)== RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP1F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles Tamper2 Polling. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForTamper2Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Get the status of the Interrupt */ + while(__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP2F) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Tamper Flag */ + __HAL_RTC_TAMPER_CLEAR_FLAG(hrtc,RTC_FLAG_TAMP2F); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup RTCEx_Exported_Functions_Group2 RTC Wake-up functions + * @brief RTC Wake-up functions + * +@verbatim + =============================================================================== + ##### RTC Wake-up functions ##### + =============================================================================== + + [..] This section provides functions allowing to configure Wake-up feature + +@endverbatim + * @{ + */ + +/** + * @brief Sets wake up timer. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param WakeUpCounter: Wake up counter + * @param WakeUpClock: Wake up clock + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Clear the Wake-up Timer clock source bits in CR register */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; + + /* Configure the clock source */ + hrtc->Instance->CR |= (uint32_t)WakeUpClock; + + /* Configure the Wake-up Timer counter */ + hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; + + /* Enable the Wake-up Timer */ + __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets wake up timer with interrupt + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param WakeUpCounter: Wake up counter + * @param WakeUpClock: Wake up clock + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetWakeUpTimer_IT(RTC_HandleTypeDef *hrtc, uint32_t WakeUpCounter, uint32_t WakeUpClock) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_WAKEUP_CLOCK(WakeUpClock)); + assert_param(IS_RTC_WAKEUP_COUNTER(WakeUpCounter)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Configure the Wake-up Timer counter */ + hrtc->Instance->WUTR = (uint32_t)WakeUpCounter; + + /* Clear the Wake-up Timer clock source bits in CR register */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_WUCKSEL; + + /* Configure the clock source */ + hrtc->Instance->CR |= (uint32_t)WakeUpClock; + + /* RTC WakeUpTimer Interrupt Configuration: EXTI configuration */ + __HAL_RTC_WAKEUPTIMER_EXTI_ENABLE_IT(); + + EXTI->RTSR |= RTC_EXTI_LINE_WAKEUPTIMER_EVENT; + + /* Configure the Interrupt in the RTC_CR register */ + __HAL_RTC_WAKEUPTIMER_ENABLE_IT(hrtc,RTC_IT_WUT); + + /* Enable the Wake-up Timer */ + __HAL_RTC_WAKEUPTIMER_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates wake up timer counter. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +uint32_t HAL_RTCEx_DeactivateWakeUpTimer(RTC_HandleTypeDef *hrtc) +{ + uint32_t tickstart = 0; + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Disable the Wake-up Timer */ + __HAL_RTC_WAKEUPTIMER_DISABLE(hrtc); + + /* In case of interrupt mode is used, the interrupt source must disabled */ + __HAL_RTC_WAKEUPTIMER_DISABLE_IT(hrtc,RTC_IT_WUT); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait till RTC WUTWF flag is set and if Time out is reached exit */ + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTWF) == RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Gets wake up timer counter. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval Counter value + */ +uint32_t HAL_RTCEx_GetWakeUpTimer(RTC_HandleTypeDef *hrtc) +{ + /* Get the counter value */ + return ((uint32_t)(hrtc->Instance->WUTR & RTC_WUTR_WUT)); +} + +/** + * @brief This function handles Wake Up Timer interrupt request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +void HAL_RTCEx_WakeUpTimerIRQHandler(RTC_HandleTypeDef *hrtc) +{ + if(__HAL_RTC_WAKEUPTIMER_GET_IT(hrtc, RTC_IT_WUT)) + { + /* Get the status of the Interrupt */ + if((uint32_t)(hrtc->Instance->CR & RTC_IT_WUT) != (uint32_t)RESET) + { + /* WAKEUPTIMER callback */ + HAL_RTCEx_WakeUpTimerEventCallback(hrtc); + + /* Clear the WAKEUPTIMER interrupt pending bit */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + } + } + + /* Clear the EXTI's line Flag for RTC WakeUpTimer */ + __HAL_RTC_WAKEUPTIMER_EXTI_CLEAR_FLAG(); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; +} + +/** + * @brief Wake Up Timer callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_WakeUpTimerEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_WakeUpTimerEventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles Wake Up Timer Polling. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForWakeUpTimerEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_WAKEUPTIMER_GET_FLAG(hrtc, RTC_FLAG_WUTF) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + + /* Clear the WAKEUPTIMER Flag */ + __HAL_RTC_WAKEUPTIMER_CLEAR_FLAG(hrtc, RTC_FLAG_WUTF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + + +/** @defgroup RTCEx_Exported_Functions_Group3 Extension Peripheral Control functions + * @brief Extension Peripheral Control functions + * +@verbatim + =============================================================================== + ##### Extension Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides functions allowing to + (+) Write a data in a specified RTC Backup data register + (+) Read a data in a specified RTC Backup data register + (+) Set the Coarse calibration parameters. + (+) Deactivate the Coarse calibration parameters + (+) Set the Smooth calibration parameters. + (+) Configure the Synchronization Shift Control Settings. + (+) Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Deactivate the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + (+) Enable the RTC reference clock detection. + (+) Disable the RTC reference clock detection. + (+) Enable the Bypass Shadow feature. + (+) Disable the Bypass Shadow feature. + +@endverbatim + * @{ + */ + +/** + * @brief Writes a data in a specified RTC Backup data register. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param BackupRegister: RTC Backup data Register number. + * This parameter can be: RTC_BKP_DRx where x can be from 0 to 19 to + * specify the register. + * @param Data: Data to be written in the specified RTC Backup data register. + * @retval None + */ +void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t)&(hrtc->Instance->BKP0R); + tmp += (BackupRegister * 4); + + /* Write the specified register */ + *(__IO uint32_t *)tmp = (uint32_t)Data; +} + +/** + * @brief Reads data from the specified RTC Backup data Register. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param BackupRegister: RTC Backup data Register number. + * This parameter can be: RTC_BKP_DRx where x can be from 0 to 19 to + * specify the register. + * @retval Read value + */ +uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_RTC_BKP(BackupRegister)); + + tmp = (uint32_t)&(hrtc->Instance->BKP0R); + tmp += (BackupRegister * 4); + + /* Read the specified register */ + return (*(__IO uint32_t *)tmp); +} + +/** + * @brief Sets the Coarse calibration parameters. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param CalibSign: Specifies the sign of the coarse calibration value. + * This parameter can be one of the following values : + * @arg RTC_CALIBSIGN_POSITIVE: The value sign is positive + * @arg RTC_CALIBSIGN_NEGATIVE: The value sign is negative + * @param Value: value of coarse calibration expressed in ppm (coded on 5 bits). + * + * @note This Calibration value should be between 0 and 63 when using negative + * sign with a 2-ppm step. + * + * @note This Calibration value should be between 0 and 126 when using positive + * sign with a 4-ppm step. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetCoarseCalib(RTC_HandleTypeDef* hrtc, uint32_t CalibSign, uint32_t Value) +{ + /* Check the parameters */ + assert_param(IS_RTC_CALIB_SIGN(CalibSign)); + assert_param(IS_RTC_CALIB_VALUE(Value)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Enable the Coarse Calibration */ + __HAL_RTC_COARSE_CALIB_ENABLE(hrtc); + + /* Set the coarse calibration value */ + hrtc->Instance->CALIBR = (uint32_t)(CalibSign|Value); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates the Coarse calibration parameters. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateCoarseCalib(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + /* Enable the Coarse Calibration */ + __HAL_RTC_COARSE_CALIB_DISABLE(hrtc); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Sets the Smooth calibration parameters. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param SmoothCalibPeriod: Select the Smooth Calibration Period. + * This parameter can be can be one of the following values : + * @arg RTC_SMOOTHCALIB_PERIOD_32SEC: The smooth calibration period is 32s. + * @arg RTC_SMOOTHCALIB_PERIOD_16SEC: The smooth calibration period is 16s. + * @arg RTC_SMOOTHCALIB_PERIOD_8SEC: The smooth calibration period is 8s. + * @param SmoothCalibPlusPulses: Select to Set or reset the CALP bit. + * This parameter can be one of the following values: + * @arg RTC_SMOOTHCALIB_PLUSPULSES_SET: Add one RTCCLK pulse every 2*11 pulses. + * @arg RTC_SMOOTHCALIB_PLUSPULSES_RESET: No RTCCLK pulses are added. + * @param SmouthCalibMinusPulsesValue: Select the value of CALM[8:0] bits. + * This parameter can be one any value from 0 to 0x000001FF. + * @note To deactivate the smooth calibration, the field SmoothCalibPlusPulses + * must be equal to SMOOTHCALIB_PLUSPULSES_RESET and the field + * SmouthCalibMinusPulsesValue must be equal to 0. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef* hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmouthCalibMinusPulsesValue) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(SmoothCalibPeriod)); + assert_param(IS_RTC_SMOOTH_CALIB_PLUS(SmoothCalibPlusPulses)); + assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmouthCalibMinusPulsesValue)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* check if a calibration is pending*/ + if((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET) + { + /* Get tick */ + tickstart = HAL_GetTick(); + + /* check if a calibration is pending*/ + while((hrtc->Instance->ISR & RTC_ISR_RECALPF) != RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + } + + /* Configure the Smooth calibration settings */ + hrtc->Instance->CALR = (uint32_t)((uint32_t)SmoothCalibPeriod | (uint32_t)SmoothCalibPlusPulses | (uint32_t)SmouthCalibMinusPulsesValue); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configures the Synchronization Shift Control Settings. + * @note When REFCKON is set, firmware must not write to Shift control register. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param ShiftAdd1S: Select to add or not 1 second to the time calendar. + * This parameter can be one of the following values : + * @arg RTC_SHIFTADD1S_SET: Add one second to the clock calendar. + * @arg RTC_SHIFTADD1S_RESET: No effect. + * @param ShiftSubFS: Select the number of Second Fractions to substitute. + * This parameter can be one any value from 0 to 0x7FFF. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetSynchroShift(RTC_HandleTypeDef* hrtc, uint32_t ShiftAdd1S, uint32_t ShiftSubFS) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_RTC_SHIFT_ADD1S(ShiftAdd1S)); + assert_param(IS_RTC_SHIFT_SUBFS(ShiftSubFS)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until the shift is completed*/ + while((hrtc->Instance->ISR & RTC_ISR_SHPF) != RESET) + { + if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_TIMEOUT; + } + } + + /* Check if the reference clock detection is disabled */ + if((hrtc->Instance->CR & RTC_CR_REFCKON) == RESET) + { + /* Configure the Shift settings */ + hrtc->Instance->SHIFTR = (uint32_t)(uint32_t)(ShiftSubFS) | (uint32_t)(ShiftAdd1S); + + /* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */ + if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET) + { + if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + } + } + else + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Configures the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param CalibOutput: Select the Calibration output Selection . + * This parameter can be one of the following values: + * @arg RTC_CALIBOUTPUT_512HZ: A signal has a regular waveform at 512Hz. + * @arg RTC_CALIBOUTPUT_1HZ: A signal has a regular waveform at 1Hz. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetCalibrationOutPut(RTC_HandleTypeDef* hrtc, uint32_t CalibOutput) +{ + /* Check the parameters */ + assert_param(IS_RTC_CALIB_OUTPUT(CalibOutput)); + + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Clear flags before config */ + hrtc->Instance->CR &= (uint32_t)~RTC_CR_COSEL; + + /* Configure the RTC_CR register */ + hrtc->Instance->CR |= (uint32_t)CalibOutput; + + __HAL_RTC_CALIBRATION_OUTPUT_ENABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Deactivates the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz). + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateCalibrationOutPut(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + __HAL_RTC_CALIBRATION_OUTPUT_DISABLE(hrtc); + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Enables the RTC reference clock detection. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_SetRefClock(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + __HAL_RTC_CLOCKREF_DETECTION_ENABLE(hrtc); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Disable the RTC reference clock detection. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DeactivateRefClock(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set Initialization mode */ + if(RTC_EnterInitMode(hrtc) != HAL_OK) + { + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Set RTC state*/ + hrtc->State = HAL_RTC_STATE_ERROR; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_ERROR; + } + else + { + __HAL_RTC_CLOCKREF_DETECTION_DISABLE(hrtc); + + /* Exit Initialization mode */ + hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT; + } + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Enables the Bypass Shadow feature. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_EnableBypassShadow(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Set the BYPSHAD bit */ + hrtc->Instance->CR |= (uint8_t)RTC_CR_BYPSHAD; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @brief Disables the Bypass Shadow feature. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @note When the Bypass Shadow is enabled the calendar value are taken + * directly from the Calendar counter. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_DisableBypassShadow(RTC_HandleTypeDef* hrtc) +{ + /* Process Locked */ + __HAL_LOCK(hrtc); + + hrtc->State = HAL_RTC_STATE_BUSY; + + /* Disable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc); + + /* Reset the BYPSHAD bit */ + hrtc->Instance->CR &= (uint8_t)~RTC_CR_BYPSHAD; + + /* Enable the write protection for RTC registers */ + __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hrtc); + + return HAL_OK; +} + +/** + * @} + */ + + /** @defgroup RTCEx_Exported_Functions_Group4 Extended features functions + * @brief Extended features functions + * +@verbatim + =============================================================================== + ##### Extended features functions ##### + =============================================================================== + [..] This section provides functions allowing to: + (+) RTC Alarm B callback + (+) RTC Poll for Alarm B request + +@endverbatim + * @{ + */ + +/** + * @brief Alarm B callback. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @retval None + */ +__weak void HAL_RTCEx_AlarmBEventCallback(RTC_HandleTypeDef *hrtc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_RTC_AlarmBEventCallback could be implemented in the user file + */ +} + +/** + * @brief This function handles AlarmB Polling request. + * @param hrtc: pointer to a RTC_HandleTypeDef structure that contains + * the configuration information for RTC. + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_RTCEx_PollForAlarmBEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + hrtc->State = HAL_RTC_STATE_TIMEOUT; + return HAL_TIMEOUT; + } + } + } + + /* Clear the Alarm Flag */ + __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF); + + /* Change RTC state */ + hrtc->State = HAL_RTC_STATE_READY; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_RTC_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sai.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sai.c new file mode 100644 index 0000000..1b18728 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sai.c @@ -0,0 +1,1908 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_sai.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SAI HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Serial Audio Interface (SAI) peripheral: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + + [..] + The SAI HAL driver can be used as follows: + + (#) Declare a SAI_HandleTypeDef handle structure. + (#) Initialize the SAI low level resources by implementing the HAL_SAI_MspInit() API: + (##) Enable the SAI interface clock. + (##) SAI pins configuration: + (+++) Enable the clock for the SAI GPIOs. + (+++) Configure these SAI pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_SAI_Transmit_IT() + and HAL_SAI_Receive_IT() APIs): + (+++) Configure the SAI interrupt priority. + (+++) Enable the NVIC SAI IRQ handle. + + (##) DMA Configuration if you need to use DMA process (HAL_SAI_Transmit_DMA() + and HAL_SAI_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the SAI DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the + DMA Tx/Rx Stream. + + (#) Program the SAI Mode, Standard, Data Format, MCLK Output, Audio frequency and Polarity + using HAL_SAI_Init() function. + + -@- The specific SAI interrupts (FIFO request and Overrun underrun interrupt) + will be managed using the macros __SAI_ENABLE_IT() and __SAI_DISABLE_IT() + inside the transmit and receive process. + + [..] + (@) SAI Clock Source configuration is managed differently depending on the selected + STM32F4 devices : + (+@) For STM32F446xx devices, the configuration is managed through RCCEx_PeriphCLKConfig() + function in the HAL RCC drivers + (+@) For STM32F439xx/STM32F437xx/STM32F429xx/STM32F427xx devices, the configuration + is managed within HAL SAI drivers through HAL_SAI_Init() function using + ClockSource field of SAI_InitTypeDef structure. + [..] + (@) Make sure that either: + (+@) I2S PLL is configured or + (+@) SAI PLL is configured or + (+@) External clock source is configured after setting correctly + the define constant EXTERNAL_CLOCK_VALUE in the stm32f4xx_hal_conf.h file. + + [..] + (@) In master Tx mode: enabling the audio block immediately generates the bit clock + for the external slaves even if there is no data in the FIFO, However FS signal + generation is conditioned by the presence of data in the FIFO. + + [..] + (@) In master Rx mode: enabling the audio block immediately generates the bit clock + and FS signal for the external slaves. + + [..] + (@) It is mandatory to respect the following conditions in order to avoid bad SAI behavior: + (+@) First bit Offset <= (SLOT size - Data size) + (+@) Data size <= SLOT size + (+@) Number of SLOT x SLOT size = Frame length + (+@) The number of slots should be even when SAI_FS_CHANNEL_IDENTIFICATION is selected. + + [..] + Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_SAI_Transmit() + (+) Receive an amount of data in blocking mode using HAL_SAI_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_SAI_Transmit_IT() + (+) At transmission end of transfer HAL_SAI_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SAI_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_SAI_Receive_IT() + (+) At reception end of transfer HAL_SAI_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SAI_RxCpltCallback + (+) In case of transfer Error, HAL_SAI_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SAI_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_SAI_Transmit_DMA() + (+) At transmission end of transfer HAL_SAI_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SAI_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_SAI_Receive_DMA() + (+) At reception end of transfer HAL_SAI_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SAI_RxCpltCallback + (+) In case of transfer Error, HAL_SAI_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SAI_ErrorCallback + (+) Pause the DMA Transfer using HAL_SAI_DMAPause() + (+) Resume the DMA Transfer using HAL_SAI_DMAResume() + (+) Stop the DMA Transfer using HAL_SAI_DMAStop() + + *** SAI HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in USART HAL driver : + + (+) __HAL_SAI_ENABLE: Enable the SAI peripheral + (+) __HAL_SAI_DISABLE: Disable the SAI peripheral + (+) __HAL_SAI_ENABLE_IT : Enable the specified SAI interrupts + (+) __HAL_SAI_DISABLE_IT : Disable the specified SAI interrupts + (+) __HAL_SAI_GET_IT_SOURCE: Check if the specified SAI interrupt source is + enabled or disabled + (+) __HAL_SAI_GET_FLAG: Check whether the specified SAI flag is set or not + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup SAI SAI + * @brief SAI HAL module driver + * @{ + */ + +#ifdef HAL_SAI_MODULE_ENABLED + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/** @defgroup SAI_Private_Typedefs SAI Private Typedefs + * @{ + */ +typedef enum { + SAI_MODE_DMA, + SAI_MODE_IT +}SAI_ModeTypedef; +/** + * @} + */ +/* Private define ------------------------------------------------------------*/ +/** @defgroup SAI_Private_Constants SAI Private Constants + * @{ + */ +#define SAI_FIFO_SIZE 8 +#define SAI_DEFAULT_TIMEOUT 4 +/** + * @} + */ + +/* SAI registers Masks */ +#define CR1_CLEAR_MASK ((uint32_t)0xFF04C010) +#define FRCR_CLEAR_MASK ((uint32_t)0xFFF88000) +#define SLOTR_CLEAR_MASK ((uint32_t)0x0000F020) + +#define SAI_TIMEOUT_VALUE 10 +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +static void SAI_FillFifo(SAI_HandleTypeDef *hsai); +static uint32_t SAI_InterruptFlag(SAI_HandleTypeDef *hsai, uint32_t mode); +static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot); +static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot); + +static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai); +static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai); +static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai); +static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai); +static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai); +static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai); +static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai); + +static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void SAI_DMAError(DMA_HandleTypeDef *hdma); + +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup SAI_Exported_Functions SAI Exported Functions + * @{ + */ + +/** @defgroup SAI_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SAIx peripheral: + + (+) User must implement HAL_SAI_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SAI_Init() to configure the selected device with + the selected configuration: + (++) Mode (Master/slave TX/RX) + (++) Protocol + (++) Data Size + (++) MCLK Output + (++) Audio frequency + (++) FIFO Threshold + (++) Frame Config + (++) Slot Config + + (+) Call the function HAL_SAI_DeInit() to restore the default configuration + of the selected SAI peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the structure FrameInit, SlotInit and the low part of + * Init according to the specified parameters and call the function + * HAL_SAI_Init to initialize the SAI block. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param protocol : one of the supported protocol @ref SAI_Protocol + * @param datasize : one of the supported datasize @ref SAI_Protocol_DataSize + * the configuration information for SAI module. + * @param nbslot : Number of slot. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_InitProtocol(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Check the parameters */ + assert_param(IS_SAI_SUPPORTED_PROTOCOL(protocol)); + assert_param(IS_SAI_PROTOCOL_DATASIZE(datasize)); + + switch(protocol) + { + case SAI_I2S_STANDARD : + case SAI_I2S_MSBJUSTIFIED : + case SAI_I2S_LSBJUSTIFIED : + status = SAI_InitI2S(hsai, protocol, datasize, nbslot); + break; + case SAI_PCM_LONG : + case SAI_PCM_SHORT : + status = SAI_InitPCM(hsai, protocol, datasize, nbslot); + break; + default : + status = HAL_ERROR; + break; + } + + if(status == HAL_OK) + { + status = HAL_SAI_Init(hsai); + } + + return status; +} + +/** + * @brief Initializes the SAI according to the specified parameters + * in the SAI_InitTypeDef and create the associated handle. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Init(SAI_HandleTypeDef *hsai) +{ + uint32_t tmpclock = 0; + + /* This variable used to store the SAI_CK_x (value in Hz) */ + uint32_t freq = 0; + + /* Check the SAI handle allocation */ + if(hsai == NULL) + { + return HAL_ERROR; + } + + /* Check the SAI Block parameters */ + assert_param(IS_SAI_AUDIO_FREQUENCY(hsai->Init.AudioFrequency)); + assert_param(IS_SAI_BLOCK_PROTOCOL(hsai->Init.Protocol)); + assert_param(IS_SAI_BLOCK_MODE(hsai->Init.AudioMode)); + assert_param(IS_SAI_BLOCK_SYNCEXT(hsai->Init.SynchroExt)); + assert_param(IS_SAI_BLOCK_DATASIZE(hsai->Init.DataSize)); + assert_param(IS_SAI_BLOCK_FIRST_BIT(hsai->Init.FirstBit)); + assert_param(IS_SAI_BLOCK_CLOCK_STROBING(hsai->Init.ClockStrobing)); + assert_param(IS_SAI_BLOCK_SYNCHRO(hsai->Init.Synchro)); + assert_param(IS_SAI_BLOCK_OUTPUT_DRIVE(hsai->Init.OutputDrive)); + assert_param(IS_SAI_BLOCK_NODIVIDER(hsai->Init.NoDivider)); + assert_param(IS_SAI_BLOCK_FIFO_THRESHOLD(hsai->Init.FIFOThreshold)); + assert_param(IS_SAI_MONO_STEREO_MODE(hsai->Init.MonoStereoMode)); + assert_param(IS_SAI_BLOCK_COMPANDING_MODE(hsai->Init.CompandingMode)); + assert_param(IS_SAI_BLOCK_TRISTATE_MANAGEMENT(hsai->Init.TriState)); + + /* Check the SAI Block Frame parameters */ + assert_param(IS_SAI_BLOCK_FRAME_LENGTH(hsai->FrameInit.FrameLength)); + assert_param(IS_SAI_BLOCK_ACTIVE_FRAME(hsai->FrameInit.ActiveFrameLength)); + assert_param(IS_SAI_BLOCK_FS_DEFINITION(hsai->FrameInit.FSDefinition)); + assert_param(IS_SAI_BLOCK_FS_POLARITY(hsai->FrameInit.FSPolarity)); + assert_param(IS_SAI_BLOCK_FS_OFFSET(hsai->FrameInit.FSOffset)); + + /* Check the SAI Block Slot parameters */ + assert_param(IS_SAI_BLOCK_FIRSTBIT_OFFSET(hsai->SlotInit.FirstBitOffset)); + assert_param(IS_SAI_BLOCK_SLOT_SIZE(hsai->SlotInit.SlotSize)); + assert_param(IS_SAI_BLOCK_SLOT_NUMBER(hsai->SlotInit.SlotNumber)); + assert_param(IS_SAI_SLOT_ACTIVE(hsai->SlotInit.SlotActive)); + + if(hsai->State == HAL_SAI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsai->Lock = HAL_UNLOCKED; + + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_SAI_MspInit(hsai); + } + + hsai->State = HAL_SAI_STATE_BUSY; + + /* Disable the selected SAI peripheral */ + SAI_Disable(hsai); + + /* SAI Block Synchro Configuration -----------------------------------------*/ + SAI_BlockSynchroConfig(hsai); + + /* Configure Master Clock using the following formula : + MCLK_x = SAI_CK_x / (MCKDIV[3:0] * 2) with MCLK_x = 256 * FS + FS = SAI_CK_x / (MCKDIV[3:0] * 2) * 256 + MCKDIV[3:0] = SAI_CK_x / FS * 512 */ + if(hsai->Init.AudioFrequency != SAI_AUDIO_FREQUENCY_MCKDIV) + { + /* Get SAI clock source based on Source clock selection from RCC */ + freq = SAI_GetInputClock(hsai); + + /* (saiclocksource x 10) to keep Significant digits */ + tmpclock = (((freq * 10) / ((hsai->Init.AudioFrequency) * 512))); + + hsai->Init.Mckdiv = tmpclock / 10; + + /* Round result to the nearest integer */ + if((tmpclock % 10) > 8) + { + hsai->Init.Mckdiv+= 1; + } + } + + /* SAI Block Configuration ------------------------------------------------------------*/ + /* SAI CR1 Configuration */ + hsai->Instance->CR1&=~(SAI_xCR1_MODE | SAI_xCR1_PRTCFG | SAI_xCR1_DS | \ + SAI_xCR1_LSBFIRST | SAI_xCR1_CKSTR | SAI_xCR1_SYNCEN |\ + SAI_xCR1_MONO | SAI_xCR1_OUTDRIV | SAI_xCR1_DMAEN | \ + SAI_xCR1_NODIV | SAI_xCR1_MCKDIV); + + hsai->Instance->CR1|= (hsai->Init.AudioMode | hsai->Init.Protocol | \ + hsai->Init.DataSize | hsai->Init.FirstBit | \ + hsai->Init.ClockStrobing | hsai->Init.Synchro | \ + hsai->Init.MonoStereoMode | hsai->Init.OutputDrive | \ + hsai->Init.NoDivider | (hsai->Init.Mckdiv << 20) | hsai->Init.CompandingMode); + + /* SAI CR2 Configuration */ + hsai->Instance->CR2&= ~(SAI_xCR2_FTH | SAI_xCR2_FFLUSH | SAI_xCR2_COMP); + hsai->Instance->CR2|= (hsai->Init.FIFOThreshold | hsai->Init.CompandingMode | hsai->Init.TriState); + + + /* SAI Frame Configuration -----------------------------------------*/ + hsai->Instance->FRCR&=(~(SAI_xFRCR_FRL | SAI_xFRCR_FSALL | SAI_xFRCR_FSDEF | \ + SAI_xFRCR_FSPO | SAI_xFRCR_FSOFF)); + hsai->Instance->FRCR|=((hsai->FrameInit.FrameLength - 1) | + hsai->FrameInit.FSOffset | + hsai->FrameInit.FSDefinition | + hsai->FrameInit.FSPolarity | + ((hsai->FrameInit.ActiveFrameLength - 1) << 8)); + + /* SAI Block_x SLOT Configuration ------------------------------------------*/ + /* This register has no meaning in AC’97 and SPDIF audio protocol */ + hsai->Instance->SLOTR&= (~(SAI_xSLOTR_FBOFF | SAI_xSLOTR_SLOTSZ | \ + SAI_xSLOTR_NBSLOT | SAI_xSLOTR_SLOTEN )); + + hsai->Instance->SLOTR|= hsai->SlotInit.FirstBitOffset | hsai->SlotInit.SlotSize + | hsai->SlotInit.SlotActive | ((hsai->SlotInit.SlotNumber - 1) << 8); + + /* Initialise the error code */ + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + + /* Initialize the SAI state */ + hsai->State= HAL_SAI_STATE_READY; + + /* Release Lock */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief DeInitializes the SAI peripheral. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DeInit(SAI_HandleTypeDef *hsai) +{ + /* Check the SAI handle allocation */ + if(hsai == NULL) + { + return HAL_ERROR; + } + + hsai->State = HAL_SAI_STATE_BUSY; + + /* Disabled All interrupt and clear all the flag */ + hsai->Instance->IMR = 0; + hsai->Instance->CLRFR = 0xFFFFFFFF; + + /* Disable the SAI */ + SAI_Disable(hsai); + + /* Flush the fifo */ + SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_SAI_MspDeInit(hsai); + + /* Initialize the error code */ + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + + /* Initialize the SAI state */ + hsai->State = HAL_SAI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief SAI MSP Init. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_MspInit(SAI_HandleTypeDef *hsai) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SAI_MspInit could be implemented in the user file + */ +} + +/** + * @brief SAI MSP DeInit. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_MspDeInit(SAI_HandleTypeDef *hsai) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SAI_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SAI_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SAI data + transfers. + + (+) There are two modes of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer startup. + The end of the data processing will be indicated through the + dedicated SAI IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (+) Blocking mode functions are : + (++) HAL_SAI_Transmit() + (++) HAL_SAI_Receive() + (++) HAL_SAI_TransmitReceive() + + (+) Non Blocking mode functions with Interrupt are : + (++) HAL_SAI_Transmit_IT() + (++) HAL_SAI_Receive_IT() + (++) HAL_SAI_TransmitReceive_IT() + + (+) Non Blocking mode functions with DMA are : + (++) HAL_SAI_Transmit_DMA() + (++) HAL_SAI_Receive_DMA() + (++) HAL_SAI_TransmitReceive_DMA() + + (+) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_SAI_TxCpltCallback() + (++) HAL_SAI_RxCpltCallback() + (++) HAL_SAI_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Transmits an amount of data in blocking mode. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Transmit(SAI_HandleTypeDef *hsai, uint8_t* pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->State = HAL_SAI_STATE_BUSY_TX; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + hsai->XferSize = Size; + hsai->XferCount = Size; + hsai->pBuffPtr = pData; + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != SAI_xCR1_SAIEN) + { + /* fill the fifo with data before to enabled the SAI */ + SAI_FillFifo(hsai); + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + while(hsai->XferCount > 0) + { + /* Write data if the FIFO is not full */ + if((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL) + { + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->Instance->DR = (*hsai->pBuffPtr++); + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->Instance->DR = *((uint16_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 2; + } + else + { + hsai->Instance->DR = *((uint32_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 4; + } + hsai->XferCount--; + } + else + { + /* Get tick */ + tickstart = HAL_GetTick(); + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + /* Change the SAI state */ + hsai->State = HAL_SAI_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + } + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in blocking mode. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Receive(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->State = HAL_SAI_STATE_BUSY_RX; + hsai->ErrorCode = HAL_SAI_ERROR_NONE; + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != SAI_xCR1_SAIEN) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Receive data */ + while(hsai->XferCount > 0) + { + + if((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_EMPTY) + { + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + (*hsai->pBuffPtr++) = hsai->Instance->DR; + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + *((uint16_t*)hsai->pBuffPtr) = hsai->Instance->DR; + hsai->pBuffPtr+= 2; + } + else + { + *((uint32_t*)hsai->pBuffPtr) = hsai->Instance->DR; + hsai->pBuffPtr+= 4; + } + hsai->XferCount--; + } + else + { + /* Get tick */ + tickstart = HAL_GetTick(); + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Update error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + /* Change the SAI state */ + hsai->State = HAL_SAI_STATE_TIMEOUT; + + return HAL_TIMEOUT; + } + } + } + } + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmits an amount of data in no-blocking mode with Interrupt. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Transmit_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + if(hsai->State == HAL_SAI_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->State = HAL_SAI_STATE_BUSY_TX; + + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->InterruptServiceRoutine = SAI_Transmit_IT8Bit; + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->InterruptServiceRoutine = SAI_Transmit_IT16Bit; + } + else + { + hsai->InterruptServiceRoutine = SAI_Transmit_IT32Bit; + } + + /* Enable FRQ and OVRUDR interrupts */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != SAI_xCR1_SAIEN) + { + /* Fill the fifo before starting the communication */ + SAI_FillFifo(hsai); + + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in no-blocking mode with Interrupt. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Receive_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + + if(hsai->State == HAL_SAI_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->State = HAL_SAI_STATE_BUSY_RX; + + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->InterruptServiceRoutine = SAI_Receive_IT8Bit; + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->InterruptServiceRoutine = SAI_Receive_IT16Bit; + } + else + { + hsai->InterruptServiceRoutine = SAI_Receive_IT32Bit; + } + /* Enable TXE and OVRUDR interrupts */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != SAI_xCR1_SAIEN) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the audio stream playing from the Media. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DMAPause(SAI_HandleTypeDef *hsai) +{ + /* Process Locked */ + __HAL_LOCK(hsai); + + /* Pause the audio file playing by disabling the SAI DMA requests */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Resumes the audio stream playing from the Media. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DMAResume(SAI_HandleTypeDef *hsai) +{ + /* Process Locked */ + __HAL_LOCK(hsai); + + /* Enable the SAI DMA requests */ + hsai->Instance->CR1 |= SAI_xCR1_DMAEN; + + /* If the SAI peripheral is still not enabled, enable it */ + if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == RESET) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Stops the audio stream playing from the Media. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DMAStop(SAI_HandleTypeDef *hsai) +{ + /* Process Locked */ + __HAL_LOCK(hsai); + + /* Disable the SAI DMA request */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Abort the SAI DMA Tx Stream */ + if(hsai->hdmatx != NULL) + { + HAL_DMA_Abort(hsai->hdmatx); + } + /* Abort the SAI DMA Rx Stream */ + if(hsai->hdmarx != NULL) + { + HAL_DMA_Abort(hsai->hdmarx); + } + + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Abort the current transfer and disbaled the SAI. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Abort(SAI_HandleTypeDef *hsai) +{ + /* Disable the SAI DMA request */ + hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN; + + /* Abort the SAI DMA Tx Stream */ + if(hsai->hdmatx != NULL) + { + HAL_DMA_Abort(hsai->hdmatx); + } + /* Abort the SAI DMA Rx Stream */ + if(hsai->hdmarx != NULL) + { + HAL_DMA_Abort(hsai->hdmarx); + } + + /* Disabled All interrupt and clear all the flag */ + hsai->Instance->IMR = 0; + hsai->Instance->CLRFR = 0xFFFFFFFF; + + /* Disable SAI peripheral */ + SAI_Disable(hsai); + + /* Flush the fifo */ + SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH); + + hsai->State = HAL_SAI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; +} + +/** + * @brief Transmits an amount of data in no-blocking mode with DMA. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Transmit_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->State = HAL_SAI_STATE_BUSY_TX; + + /* Set the SAI Tx DMA Half transfer complete callback */ + hsai->hdmatx->XferHalfCpltCallback = SAI_DMATxHalfCplt; + + /* Set the SAI TxDMA transfer complete callback */ + hsai->hdmatx->XferCpltCallback = SAI_DMATxCplt; + + /* Set the DMA error callback */ + hsai->hdmatx->XferErrorCallback = SAI_DMAError; + + /* Enable the Tx DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hsai->hdmatx, *(uint32_t*)tmp, (uint32_t)&hsai->Instance->DR, hsai->XferSize); + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != SAI_xCR1_SAIEN) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Enable the interrupts for error handling */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + /* Enable SAI Tx DMA Request */ + hsai->Instance->CR1 |= SAI_xCR1_DMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in no-blocking mode with DMA. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_Receive_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hsai->State == HAL_SAI_STATE_READY) + { + hsai->pBuffPtr = pData; + hsai->XferSize = Size; + hsai->XferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hsai); + + hsai->State = HAL_SAI_STATE_BUSY_RX; + + /* Set the SAI Rx DMA Half transfer complete callback */ + hsai->hdmarx->XferHalfCpltCallback = SAI_DMARxHalfCplt; + + /* Set the SAI Rx DMA transfer complete callback */ + hsai->hdmarx->XferCpltCallback = SAI_DMARxCplt; + + /* Set the DMA error callback */ + hsai->hdmarx->XferErrorCallback = SAI_DMAError; + + /* Enable the Rx DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hsai->hdmarx, (uint32_t)&hsai->Instance->DR, *(uint32_t*)tmp, hsai->XferSize); + + /* Check if the SAI is already enabled */ + if((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != SAI_xCR1_SAIEN) + { + /* Enable SAI peripheral */ + __HAL_SAI_ENABLE(hsai); + } + + /* Enable the interrupts for error handling */ + __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + /* Enable SAI Rx DMA Request */ + hsai->Instance->CR1 |= SAI_xCR1_DMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hsai); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Enable the tx mute mode. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param val : value sent during the mute @ref SAI_Block_Mute_Value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_EnableTxMuteMode(SAI_HandleTypeDef *hsai, uint16_t val) +{ + assert_param(IS_SAI_BLOCK_MUTE_VALUE(val)); + + if(hsai->State != HAL_SAI_STATE_RESET) + { + CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE); + SET_BIT(hsai->Instance->CR2, SAI_xCR2_MUTE | val); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief Disable the tx mute mode. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DisableTxMuteMode(SAI_HandleTypeDef *hsai) +{ + if(hsai->State != HAL_SAI_STATE_RESET) + { + CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief Enable the rx mute detection. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param callback : function called when the mute is detected + * @param counter : number a data before mute detection max 63. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_EnableRxMuteMode(SAI_HandleTypeDef *hsai, SAIcallback callback, uint16_t counter) +{ + assert_param(IS_SAI_BLOCK_MUTE_COUNTER(counter)); + + if(hsai->State != HAL_SAI_STATE_RESET) + { + /* set the mute counter */ + CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTECNT); + SET_BIT(hsai->Instance->CR2, (uint32_t)((uint32_t)counter << 6)); + hsai->mutecallback = callback; + /* enable the IT interrupt */ + __HAL_SAI_ENABLE_IT(hsai, SAI_IT_MUTEDET); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief Disable the rx mute detection. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SAI_DisableRxMuteMode(SAI_HandleTypeDef *hsai) +{ + if(hsai->State != HAL_SAI_STATE_RESET) + { + /* set the mutecallback to NULL */ + hsai->mutecallback = (SAIcallback)NULL; + /* enable the IT interrupt */ + __HAL_SAI_DISABLE_IT(hsai, SAI_IT_MUTEDET); + return HAL_OK; + } + return HAL_ERROR; +} + +/** + * @brief This function handles SAI interrupt request. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL status + */ +void HAL_SAI_IRQHandler(SAI_HandleTypeDef *hsai) +{ + if(hsai->State != HAL_SAI_STATE_RESET) + { + uint32_t tmpFlag = hsai->Instance->SR; + uint32_t tmpItSource = hsai->Instance->IMR; + + if(((tmpFlag & SAI_xSR_FREQ) == SAI_xSR_FREQ) && ((tmpItSource & SAI_IT_FREQ) == SAI_IT_FREQ)) + { + hsai->InterruptServiceRoutine(hsai); + } + + /* check the flag only if one of them is set */ + if(tmpFlag != 0x00000000) + { + /* SAI Overrun error interrupt occurred ----------------------------------*/ + if(((tmpFlag & SAI_FLAG_OVRUDR) == SAI_FLAG_OVRUDR) && ((tmpItSource & SAI_IT_OVRUDR) == SAI_IT_OVRUDR)) + { + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + /* Change the SAI error code */ + hsai->ErrorCode = ((hsai->State == HAL_SAI_STATE_BUSY_RX) ? HAL_SAI_ERROR_OVR : HAL_SAI_ERROR_UDR); + /* the transfer is not stopped, we will forward the information to the user and we let the user decide what needs to be done */ + HAL_SAI_ErrorCallback(hsai); + } + + /* SAI mutedet interrupt occurred ----------------------------------*/ + if(((tmpFlag & SAI_FLAG_MUTEDET) == SAI_FLAG_MUTEDET) && ((tmpItSource & SAI_IT_MUTEDET) == SAI_IT_MUTEDET)) + { + /* Clear the SAI mutedet flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_MUTEDET); + /* call the call back function */ + if(hsai->mutecallback != (SAIcallback)NULL) + { + /* inform the user that an RX mute event has been detected */ + hsai->mutecallback(); + } + } + + /* SAI AFSDET interrupt occurred ----------------------------------*/ + if(((tmpFlag & SAI_FLAG_AFSDET) == SAI_FLAG_AFSDET) && ((tmpItSource & SAI_IT_AFSDET) == SAI_IT_AFSDET)) + { + /* Change the SAI error code */ + hsai->ErrorCode = HAL_SAI_ERROR_AFSDET; + HAL_SAI_Abort(hsai); + HAL_SAI_ErrorCallback(hsai); + } + + /* SAI LFSDET interrupt occurred ----------------------------------*/ + if(((tmpFlag & SAI_FLAG_LFSDET) == SAI_FLAG_LFSDET) && ((tmpItSource & SAI_IT_LFSDET) == SAI_IT_LFSDET)) + { + /* Change the SAI error code */ + hsai->ErrorCode = HAL_SAI_ERROR_LFSDET; + HAL_SAI_Abort(hsai); + HAL_SAI_ErrorCallback(hsai); + } + + /* SAI WCKCFG interrupt occurred ----------------------------------*/ + if(((tmpFlag & SAI_FLAG_WCKCFG) == SAI_FLAG_WCKCFG) && ((tmpItSource & SAI_IT_WCKCFG) == SAI_IT_WCKCFG)) + { + /* Change the SAI error code */ + hsai->ErrorCode = HAL_SAI_ERROR_WCKCFG; + HAL_SAI_Abort(hsai); + HAL_SAI_ErrorCallback(hsai); + } + } + } +} + +/** + * @brief Tx Transfer completed callbacks. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ + __weak void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SAI_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Transfer Half completed callbacks + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ + __weak void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SAI_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SAI_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer half completed callbacks + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SAI_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SAI error callbacks. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None + */ +__weak void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SAI_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + + +/** @defgroup SAI_Exported_Functions_Group3 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the SAI state. + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval HAL state + */ +HAL_SAI_StateTypeDef HAL_SAI_GetState(SAI_HandleTypeDef *hsai) +{ + return hsai->State; +} + +/** +* @brief Return the SAI error code +* @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for the specified SAI Block. +* @retval SAI Error Code +*/ +uint32_t HAL_SAI_GetError(SAI_HandleTypeDef *hsai) +{ + return hsai->ErrorCode; +} +/** + * @} + */ + +/** + * @brief Initializes the SAI I2S protocol according to the specified parameters + * in the SAI_InitTypeDef and create the associated handle. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param protocol : one of the supported protocol + * @param datasize : one of the supported datasize @ref SAI_Protocol_DataSize + * the configuration information for SAI module. + * @param nbslot : number of slot minimum value is 2 and max is 16. + * the value must be a multiple of 2. + * @retval HAL status + */ +static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot) +{ + /* Check the parameters */ + assert_param(IS_SAI_SUPPORTED_PROTOCOL(protocol)); + assert_param(IS_SAI_PROTOCOL_DATASIZE(datasize)); + + hsai->Init.Protocol = SAI_FREE_PROTOCOL; + hsai->Init.FirstBit = SAI_FIRSTBIT_MSB; + hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE; + hsai->FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; + hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL; + hsai->SlotInit.FirstBitOffset = 0; + hsai->SlotInit.SlotNumber = nbslot; + + /* in IS2 the number of slot must be even */ + if((nbslot & 0x1) != 0 ) + { + return HAL_ERROR; + } + + switch(protocol) + { + case SAI_I2S_STANDARD : + hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; + hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; + break; + case SAI_I2S_MSBJUSTIFIED : + case SAI_I2S_LSBJUSTIFIED : + hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH; + hsai->FrameInit.FSOffset = SAI_FS_FIRSTBIT; + break; + default : + return HAL_ERROR; + } + + /* Frame definition */ + hsai->Init.DataSize = 0xFFFFFFFF; + switch(datasize) + { + case SAI_PROTOCOL_DATASIZE_16BIT: + hsai->Init.DataSize = SAI_DATASIZE_16; + hsai->FrameInit.FrameLength = 32*(nbslot/2); + hsai->FrameInit.ActiveFrameLength = 16*(nbslot/2); + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B; + break; + case SAI_PROTOCOL_DATASIZE_16BITEXTENDED : + if(hsai->Init.DataSize == 0xFFFFFFFF) + { + hsai->Init.DataSize = SAI_DATASIZE_16; + } + break; + case SAI_PROTOCOL_DATASIZE_24BIT: + if(hsai->Init.DataSize == 0xFFFFFFFF) + { + hsai->Init.DataSize = SAI_DATASIZE_24; + } + break; + case SAI_PROTOCOL_DATASIZE_32BIT: + if(hsai->Init.DataSize == 0xFFFFFFFF) + { + hsai->Init.DataSize = SAI_DATASIZE_32; + } + hsai->FrameInit.FrameLength = 64*(nbslot/2); + hsai->FrameInit.ActiveFrameLength = 32*(nbslot/2); + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + if(protocol == SAI_I2S_LSBJUSTIFIED) + { + if (datasize == SAI_PROTOCOL_DATASIZE_16BITEXTENDED) + { + hsai->SlotInit.FirstBitOffset = 16; + } + if (datasize == SAI_PROTOCOL_DATASIZE_24BIT) + { + hsai->SlotInit.FirstBitOffset = 8; + } + } + break; + default : + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Initializes the SAI PCM protocol according to the specified parameters + * in the SAI_InitTypeDef and create the associated handle. + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param protocol : one of the supported protocol + * @param datasize : one of the supported datasize @ref SAI_Protocol_DataSize + * @param nbslot : number of slot minimum value is 1 and the max is 16. + * @retval HAL status + */ +static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot) +{ + /* Check the parameters */ + assert_param(IS_SAI_SUPPORTED_PROTOCOL(protocol)); + assert_param(IS_SAI_PROTOCOL_DATASIZE(datasize)); + + hsai->Init.Protocol = SAI_FREE_PROTOCOL; + hsai->Init.FirstBit = SAI_FIRSTBIT_MSB; + hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE; + hsai->FrameInit.FSDefinition = SAI_FS_STARTFRAME; + hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH; + hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; + hsai->SlotInit.FirstBitOffset = 0; + hsai->SlotInit.SlotNumber = nbslot; + hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL; + + switch(protocol) + { + case SAI_PCM_SHORT : + hsai->FrameInit.ActiveFrameLength = 1; + break; + case SAI_PCM_LONG : + hsai->FrameInit.ActiveFrameLength = 13; + break; + default : + return HAL_ERROR; + } + + switch(datasize) + { + case SAI_PROTOCOL_DATASIZE_16BIT: + hsai->Init.DataSize = SAI_DATASIZE_16; + hsai->FrameInit.FrameLength = 16 * nbslot; + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B; + break; + case SAI_PROTOCOL_DATASIZE_16BITEXTENDED : + hsai->Init.DataSize = SAI_DATASIZE_16; + hsai->FrameInit.FrameLength = 32 * nbslot; + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + + case SAI_PROTOCOL_DATASIZE_32BIT: + hsai->Init.DataSize = SAI_DATASIZE_32; + hsai->FrameInit.FrameLength = 32 * nbslot; + hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B; + break; + default : + return HAL_ERROR; + } + + return HAL_OK; +} + +/** + * @brief Fill the fifo + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static void SAI_FillFifo(SAI_HandleTypeDef *hsai) +{ + /* fill the fifo with data before to enabled the SAI */ + while((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL) + { + if((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING)) + { + hsai->Instance->DR = (*hsai->pBuffPtr++); + } + else if(hsai->Init.DataSize <= SAI_DATASIZE_16) + { + hsai->Instance->DR = *((uint32_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 2; + } + else + { + hsai->Instance->DR = *((uint32_t *)hsai->pBuffPtr); + hsai->pBuffPtr+= 4; + } + hsai->XferCount--; + } +} + +/** + * @brief return the interrupt flag to set according the SAI setup + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @param mode : SAI_MODE_DMA or SAI_MODE_IT + * @retval the list of the IT flag to enable + */ +static uint32_t SAI_InterruptFlag(SAI_HandleTypeDef *hsai, uint32_t mode) +{ + uint32_t tmpIT = SAI_IT_OVRUDR; + + if(mode == SAI_MODE_IT) + { + tmpIT|= SAI_IT_FREQ; + } + + if((hsai->Init.AudioMode == SAI_MODESLAVE_RX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX)) + { + tmpIT|= SAI_IT_AFSDET | SAI_IT_LFSDET; + } + else + { + /* hsai has been configured in master mode */ + tmpIT|= SAI_IT_WCKCFG; + } + return tmpIT; +} + +/** + * @brief disabled the SAI and wait the disabling + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai) +{ + uint32_t tickstart = HAL_GetTick(); + HAL_StatusTypeDef status = HAL_OK; + + __HAL_SAI_DISABLE(hsai); + while((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > SAI_TIMEOUT_VALUE) + { + /* Update error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT; + + status = HAL_TIMEOUT; + + /* Change the SAI state */ + HAL_SAI_ErrorCallback(hsai); + } + } + return status; +} + +/** + * @brief Tx Handler for Transmit in Interrupt mode 8Bit transfer + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai) +{ + /* Write data on DR register */ + hsai->Instance->DR = (*hsai->pBuffPtr++); + hsai->XferCount--; + + /* Handle the end of the transmission */ + if(hsai->XferCount == 0) + { + /* Disable FREQ and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_TxCpltCallback(hsai); + } +} + +/** + * @brief Tx Handler for Transmit in Interrupt mode for 16Bit transfer + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai) +{ + /* Write data on DR register */ + hsai->Instance->DR = *(uint16_t *)hsai->pBuffPtr; + hsai->pBuffPtr+=2; + hsai->XferCount--; + + /* Handle the end of the transmission */ + if(hsai->XferCount == 0) + { + /* Disable FREQ and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_TxCpltCallback(hsai); + } +} + +/** + * @brief Tx Handler for Transmit in Interrupt mode for 32Bit transfer + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai) +{ + /* Write data on DR register */ + hsai->Instance->DR = *(uint32_t *)hsai->pBuffPtr; + hsai->pBuffPtr+=4; + hsai->XferCount--; + + /* Handle the end of the transmission */ + if(hsai->XferCount == 0) + { + /* Disable FREQ and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_TxCpltCallback(hsai); + } +} + +/** + * @brief Rx Handler for Receive in Interrupt mode 8Bit transfer + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai) +{ + /* Receive data */ + (*hsai->pBuffPtr++) = hsai->Instance->DR; + hsai->XferCount--; + + /* Check end of the transfer */ + if(hsai->XferCount == 0) + { + /* Disable TXE and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_RxCpltCallback(hsai); + } +} + +/** + * @brief Rx Handler for Receive in Interrupt mode for 16Bit transfer + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai) +{ + /* Receive data */ + *(uint16_t*)hsai->pBuffPtr = hsai->Instance->DR; + hsai->pBuffPtr+=2; + hsai->XferCount--; + + /* Check end of the transfer */ + if(hsai->XferCount == 0) + { + /* Disable TXE and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_RxCpltCallback(hsai); + } +} +/** + * @brief Rx Handler for Receive in Interrupt mode for 32Bit transfer + * @param hsai : pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval None. + */ +static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai) +{ + /* Receive data */ + *(uint32_t*)hsai->pBuffPtr = hsai->Instance->DR; + hsai->pBuffPtr+=4; + hsai->XferCount--; + + /* Check end of the transfer */ + if(hsai->XferCount == 0) + { + /* Disable TXE and OVRUDR interrupts */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT)); + + /* Clear the SAI Overrun flag */ + __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR); + + hsai->State = HAL_SAI_STATE_READY; + HAL_SAI_RxCpltCallback(hsai); + } +} + +/** + * @brief DMA SAI transmit process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma) +{ + uint32_t tickstart = 0; + + SAI_HandleTypeDef* hsai = (SAI_HandleTypeDef*)((DMA_HandleTypeDef* )hdma)->Parent; + + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + hsai->XferCount = 0; + + /* Disable SAI Tx DMA Request */ + hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Set timeout: 10 is the max delay to send the remaining data in the SAI FIFO */ + /* Wait until FIFO is empty */ + while(__HAL_SAI_GET_FLAG(hsai, SAI_xSR_FLVL) != RESET) + { + /* Check for the Timeout */ + if((HAL_GetTick() - tickstart ) > SAI_TIMEOUT_VALUE) + { + /* Update error code */ + hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT; + + /* Change the SAI state */ + HAL_SAI_ErrorCallback(hsai); + } + } + + /* Stop the interrupts error handling */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + hsai->State= HAL_SAI_STATE_READY; + } + HAL_SAI_TxCpltCallback(hsai); +} + +/** + * @brief DMA SAI transmit process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = (SAI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SAI_TxHalfCpltCallback(hsai); +} + +/** + * @brief DMA SAI receive process complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = ( SAI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Disable Rx DMA Request */ + hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN); + hsai->XferCount = 0; + + /* Stop the interrupts error handling */ + __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA)); + + hsai->State = HAL_SAI_STATE_READY; + } + HAL_SAI_RxCpltCallback(hsai); +} + +/** + * @brief DMA SAI receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = (SAI_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SAI_RxHalfCpltCallback(hsai); +} +/** + * @brief DMA SAI communication error callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SAI_DMAError(DMA_HandleTypeDef *hdma) +{ + SAI_HandleTypeDef* hsai = ( SAI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Stop the DMA transfer */ + HAL_SAI_DMAStop(hsai); + + /* Set the SAI state ready to be able to start again the process */ + hsai->State= HAL_SAI_STATE_READY; + HAL_SAI_ErrorCallback(hsai); + + hsai->XferCount = 0; +} + +/** + * @} + */ + +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_SAI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sai_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sai_ex.c new file mode 100644 index 0000000..cad89d5 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sai_ex.c @@ -0,0 +1,269 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_sai_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SAI Extension HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of SAI extension peripheral: + * + Extension features functions + * + @verbatim + ============================================================================== + ##### SAI peripheral extension features ##### + ============================================================================== + + [..] Comparing to other previous devices, the SAI interface for STM32F446xx + devices contains the following additional features : + + (+) Possibility to be clocked from PLLR + + ##### How to use this driver ##### + ============================================================================== + [..] This driver provides functions to manage several sources to clock SAI + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup SAIEx SAIEx + * @brief SAI Extension HAL module driver + * @{ + */ + +#ifdef HAL_SAI_MODULE_ENABLED + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* SAI registers Masks */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup SAI_Private_Functions SAI Private Functions + * @{ + */ + /** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SAIEx_Exported_Functions SAI Extended Exported Functions + * @{ + */ + +/** @defgroup SAIEx_Exported_Functions_Group1 Extension features functions + * @brief Extension features functions + * +@verbatim + =============================================================================== + ##### Extension features Functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the possible + SAI clock sources. + +@endverbatim + * @{ + */ + +/** + * @brief Configure SAI Block synchronization mode + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval SAI Clock Input + */ +void SAI_BlockSynchroConfig(SAI_HandleTypeDef *hsai) +{ + uint32_t tmpregisterGCR = 0; + +#if defined(STM32F446xx) + /* This setting must be done with both audio block (A & B) disabled */ + switch(hsai->Init.SynchroExt) + { + case SAI_SYNCEXT_DISABLE : + tmpregisterGCR = 0; + break; + case SAI_SYNCEXT_IN_ENABLE : + tmpregisterGCR = SAI_GCR_SYNCIN_0; + break; + case SAI_SYNCEXT_OUTBLOCKA_ENABLE : + tmpregisterGCR = SAI_GCR_SYNCOUT_0; + break; + case SAI_SYNCEXT_OUTBLOCKB_ENABLE : + tmpregisterGCR = SAI_GCR_SYNCOUT_1; + break; + } + + if((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B)) + { + SAI1->GCR = tmpregisterGCR; + } + else + { + SAI2->GCR = tmpregisterGCR; + } +#endif /* STM32F446xx */ +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) + /* This setting must be done with both audio block (A & B) disabled */ + switch(hsai->Init.SynchroExt) + { + case SAI_SYNCEXT_DISABLE : + tmpregisterGCR = 0; + break; + case SAI_SYNCEXT_OUTBLOCKA_ENABLE : + tmpregisterGCR = SAI_GCR_SYNCOUT_0; + break; + case SAI_SYNCEXT_OUTBLOCKB_ENABLE : + tmpregisterGCR = SAI_GCR_SYNCOUT_1; + break; + } + SAI1->GCR = tmpregisterGCR; +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ +} + /** + * @brief Get SAI Input Clock based on SAI source clock selection + * @param hsai: pointer to a SAI_HandleTypeDef structure that contains + * the configuration information for SAI module. + * @retval SAI Clock Input + */ +uint32_t SAI_GetInputClock(SAI_HandleTypeDef *hsai) +{ + /* This variable used to store the SAI_CK_x (value in Hz) */ + uint32_t saiclocksource = 0; + +#if defined(STM32F446xx) + if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B)) + { + saiclocksource = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI1); + } + else /* SAI2_Block_A || SAI2_Block_B*/ + { + saiclocksource = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI2); + } +#endif /* STM32F446xx */ +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) + uint32_t vcoinput = 0, tmpreg = 0; + + /* Check the SAI Block parameters */ + assert_param(IS_SAI_CLK_SOURCE(hsai->Init.ClockSource)); + + /* SAI Block clock source selection */ + if(hsai->Instance == SAI1_Block_A) + { + __HAL_RCC_SAI_BLOCKACLKSOURCE_CONFIG(hsai->Init.ClockSource); + } + else + { + __HAL_RCC_SAI_BLOCKBCLKSOURCE_CONFIG((uint32_t)(hsai->Init.ClockSource << 2)); + } + + /* VCO Input Clock value calculation */ + if((RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC) == RCC_PLLSOURCE_HSI) + { + /* In Case the PLL Source is HSI (Internal Clock) */ + vcoinput = (HSI_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM)); + } + else + { + /* In Case the PLL Source is HSE (External Clock) */ + vcoinput = ((HSE_VALUE / (uint32_t)(RCC->PLLCFGR & RCC_PLLCFGR_PLLM))); + } + + /* SAI_CLK_x : SAI Block Clock configuration for different clock sources selected */ + if(hsai->Init.ClockSource == SAI_CLKSOURCE_PLLSAI) + { + /* Configure the PLLI2S division factor */ + /* PLLSAI_VCO Input = PLL_SOURCE/PLLM */ + /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN */ + /* SAI_CLK(first level) = PLLSAI_VCO Output/PLLSAIQ */ + tmpreg = (RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIQ) >> 24; + saiclocksource = (vcoinput * ((RCC->PLLSAICFGR & RCC_PLLSAICFGR_PLLSAIN) >> 6))/(tmpreg); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLSAIDIVQ */ + tmpreg = (((RCC->DCKCFGR & RCC_DCKCFGR_PLLSAIDIVQ) >> 8) + 1); + saiclocksource = saiclocksource/(tmpreg); + + } + else if(hsai->Init.ClockSource == SAI_CLKSOURCE_PLLI2S) + { + /* Configure the PLLI2S division factor */ + /* PLLI2S_VCO Input = PLL_SOURCE/PLLM */ + /* PLLI2S_VCO Output = PLLI2S_VCO Input * PLLI2SN */ + /* SAI_CLK(first level) = PLLI2S_VCO Output/PLLI2SQ */ + tmpreg = (RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SQ) >> 24; + saiclocksource = (vcoinput * ((RCC->PLLI2SCFGR & RCC_PLLI2SCFGR_PLLI2SN) >> 6))/(tmpreg); + + /* SAI_CLK_x = SAI_CLK(first level)/PLLI2SDIVQ */ + tmpreg = ((RCC->DCKCFGR & RCC_DCKCFGR_PLLI2SDIVQ) + 1); + saiclocksource = saiclocksource/(tmpreg); + } + else /* sConfig->ClockSource == SAI_CLKSource_Ext */ + { + /* Enable the External Clock selection */ + __HAL_RCC_I2S_CONFIG(RCC_I2SCLKSOURCE_EXT); + + saiclocksource = EXTERNAL_CLOCK_VALUE; + } +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + /* the return result is the value of SAI clock */ + return saiclocksource; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_SAI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sd.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sd.c new file mode 100644 index 0000000..d579fe8 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sd.c @@ -0,0 +1,3488 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_sd.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SD card HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Secure Digital (SD) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver implements a high level communication layer for read and write from/to + this memory. The needed STM32 hardware resources (SDIO and GPIO) are performed by + the user in HAL_SD_MspInit() function (MSP layer). + Basically, the MSP layer configuration should be the same as we provide in the + examples. + You can easily tailor this configuration according to hardware resources. + + [..] + This driver is a generic layered driver for SDIO memories which uses the HAL + SDIO driver functions to interface with SD and uSD cards devices. + It is used as follows: + + (#)Initialize the SDIO low level resources by implement the HAL_SD_MspInit() API: + (##) Enable the SDIO interface clock using __HAL_RCC_SDIO_CLK_ENABLE(); + (##) SDIO pins configuration for SD card + (+++) Enable the clock for the SDIO GPIOs using the functions __HAL_RCC_GPIOx_CLK_ENABLE(); + (+++) Configure these SDIO pins as alternate function pull-up using HAL_GPIO_Init() + and according to your pin assignment; + (##) DMA Configuration if you need to use DMA process (HAL_SD_ReadBlocks_DMA() + and HAL_SD_WriteBlocks_DMA() APIs). + (+++) Enable the DMAx interface clock using __HAL_RCC_DMAx_CLK_ENABLE(); + (+++) Configure the DMA using the function HAL_DMA_Init() with predeclared and filled. + (##) NVIC configuration if you need to use interrupt process when using DMA transfer. + (+++) Configure the SDIO and DMA interrupt priorities using functions + HAL_NVIC_SetPriority(); DMA priority is superior to SDIO's priority + (+++) Enable the NVIC DMA and SDIO IRQs using function HAL_NVIC_EnableIRQ() + (+++) SDIO interrupts are managed using the macros __HAL_SD_SDIO_ENABLE_IT() + and __HAL_SD_SDIO_DISABLE_IT() inside the communication process. + (+++) SDIO interrupts pending bits are managed using the macros __HAL_SD_SDIO_GET_IT() + and __HAL_SD_SDIO_CLEAR_IT() + (#) At this stage, you can perform SD read/write/erase operations after SD card initialization + + + *** SD Card Initialization and configuration *** + ================================================ + [..] + To initialize the SD Card, use the HAL_SD_Init() function. It Initializes + the SD Card and put it into Standby State (Ready for data transfer). + This function provide the following operations: + + (#) Apply the SD Card initialization process at 400KHz and check the SD Card + type (Standard Capacity or High Capacity). You can change or adapt this + frequency by adjusting the "ClockDiv" field. + The SD Card frequency (SDIO_CK) is computed as follows: + + SDIO_CK = SDIOCLK / (ClockDiv + 2) + + In initialization mode and according to the SD Card standard, + make sure that the SDIO_CK frequency doesn't exceed 400KHz. + + (#) Get the SD CID and CSD data. All these information are managed by the SDCardInfo + structure. This structure provide also ready computed SD Card capacity + and Block size. + + -@- These information are stored in SD handle structure in case of future use. + + (#) Configure the SD Card Data transfer frequency. By Default, the card transfer + frequency is set to 24MHz. You can change or adapt this frequency by adjusting + the "ClockDiv" field. + In transfer mode and according to the SD Card standard, make sure that the + SDIO_CK frequency doesn't exceed 25MHz and 50MHz in High-speed mode switch. + To be able to use a frequency higher than 24MHz, you should use the SDIO + peripheral in bypass mode. Refer to the corresponding reference manual + for more details. + + (#) Select the corresponding SD Card according to the address read with the step 2. + + (#) Configure the SD Card in wide bus mode: 4-bits data. + + *** SD Card Read operation *** + ============================== + [..] + (+) You can read from SD card in polling mode by using function HAL_SD_ReadBlocks(). + This function support only 512-bytes block length (the block size should be + chosen as 512 bytes). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + + (+) You can read from SD card in DMA mode by using function HAL_SD_ReadBlocks_DMA(). + This function support only 512-bytes block length (the block size should be + chosen as 512 bytes). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + After this, you have to call the function HAL_SD_CheckReadOperation(), to insure + that the read transfer is done correctly in both DMA and SD sides. + + *** SD Card Write operation *** + =============================== + [..] + (+) You can write to SD card in polling mode by using function HAL_SD_WriteBlocks(). + This function support only 512-bytes block length (the block size should be + chosen as 512 bytes). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + + (+) You can write to SD card in DMA mode by using function HAL_SD_WriteBlocks_DMA(). + This function support only 512-bytes block length (the block size should be + chosen as 512 byte). + You can choose either one block read operation or multiple block read operation + by adjusting the "NumberOfBlocks" parameter. + After this, you have to call the function HAL_SD_CheckWriteOperation(), to insure + that the write transfer is done correctly in both DMA and SD sides. + + *** SD card status *** + ====================== + [..] + (+) At any time, you can check the SD Card status and get the SD card state + by using the HAL_SD_GetStatus() function. This function checks first if the + SD card is still connected and then get the internal SD Card transfer state. + (+) You can also get the SD card SD Status register by using the HAL_SD_SendSDStatus() + function. + + *** SD HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in SD HAL driver. + + (+) __HAL_SD_SDIO_ENABLE : Enable the SD device + (+) __HAL_SD_SDIO_DISABLE : Disable the SD device + (+) __HAL_SD_SDIO_DMA_ENABLE: Enable the SDIO DMA transfer + (+) __HAL_SD_SDIO_DMA_DISABLE: Disable the SDIO DMA transfer + (+) __HAL_SD_SDIO_ENABLE_IT: Enable the SD device interrupt + (+) __HAL_SD_SDIO_DISABLE_IT: Disable the SD device interrupt + (+) __HAL_SD_SDIO_GET_FLAG:Check whether the specified SD flag is set or not + (+) __HAL_SD_SDIO_CLEAR_FLAG: Clear the SD's pending flags + + (@) You can refer to the SD HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +#ifdef HAL_SD_MODULE_ENABLED + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @addtogroup SD + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup SD_Private_Defines + * @{ + */ +/** + * @brief SDIO Data block size + */ +#define DATA_BLOCK_SIZE ((uint32_t)(9 << 4)) +/** + * @brief SDIO Static flags, Timeout, FIFO Address + */ +#define SDIO_STATIC_FLAGS ((uint32_t)(SDIO_FLAG_CCRCFAIL | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_CTIMEOUT |\ + SDIO_FLAG_DTIMEOUT | SDIO_FLAG_TXUNDERR | SDIO_FLAG_RXOVERR |\ + SDIO_FLAG_CMDREND | SDIO_FLAG_CMDSENT | SDIO_FLAG_DATAEND |\ + SDIO_FLAG_DBCKEND)) + +#define SDIO_CMD0TIMEOUT ((uint32_t)0x00010000) + +/** + * @brief Mask for errors Card Status R1 (OCR Register) + */ +#define SD_OCR_ADDR_OUT_OF_RANGE ((uint32_t)0x80000000) +#define SD_OCR_ADDR_MISALIGNED ((uint32_t)0x40000000) +#define SD_OCR_BLOCK_LEN_ERR ((uint32_t)0x20000000) +#define SD_OCR_ERASE_SEQ_ERR ((uint32_t)0x10000000) +#define SD_OCR_BAD_ERASE_PARAM ((uint32_t)0x08000000) +#define SD_OCR_WRITE_PROT_VIOLATION ((uint32_t)0x04000000) +#define SD_OCR_LOCK_UNLOCK_FAILED ((uint32_t)0x01000000) +#define SD_OCR_COM_CRC_FAILED ((uint32_t)0x00800000) +#define SD_OCR_ILLEGAL_CMD ((uint32_t)0x00400000) +#define SD_OCR_CARD_ECC_FAILED ((uint32_t)0x00200000) +#define SD_OCR_CC_ERROR ((uint32_t)0x00100000) +#define SD_OCR_GENERAL_UNKNOWN_ERROR ((uint32_t)0x00080000) +#define SD_OCR_STREAM_READ_UNDERRUN ((uint32_t)0x00040000) +#define SD_OCR_STREAM_WRITE_OVERRUN ((uint32_t)0x00020000) +#define SD_OCR_CID_CSD_OVERWRITE ((uint32_t)0x00010000) +#define SD_OCR_WP_ERASE_SKIP ((uint32_t)0x00008000) +#define SD_OCR_CARD_ECC_DISABLED ((uint32_t)0x00004000) +#define SD_OCR_ERASE_RESET ((uint32_t)0x00002000) +#define SD_OCR_AKE_SEQ_ERROR ((uint32_t)0x00000008) +#define SD_OCR_ERRORBITS ((uint32_t)0xFDFFE008) + +/** + * @brief Masks for R6 Response + */ +#define SD_R6_GENERAL_UNKNOWN_ERROR ((uint32_t)0x00002000) +#define SD_R6_ILLEGAL_CMD ((uint32_t)0x00004000) +#define SD_R6_COM_CRC_FAILED ((uint32_t)0x00008000) + +#define SD_VOLTAGE_WINDOW_SD ((uint32_t)0x80100000) +#define SD_HIGH_CAPACITY ((uint32_t)0x40000000) +#define SD_STD_CAPACITY ((uint32_t)0x00000000) +#define SD_CHECK_PATTERN ((uint32_t)0x000001AA) + +#define SD_MAX_VOLT_TRIAL ((uint32_t)0x0000FFFF) +#define SD_ALLZERO ((uint32_t)0x00000000) + +#define SD_WIDE_BUS_SUPPORT ((uint32_t)0x00040000) +#define SD_SINGLE_BUS_SUPPORT ((uint32_t)0x00010000) +#define SD_CARD_LOCKED ((uint32_t)0x02000000) + +#define SD_DATATIMEOUT ((uint32_t)0xFFFFFFFF) +#define SD_0TO7BITS ((uint32_t)0x000000FF) +#define SD_8TO15BITS ((uint32_t)0x0000FF00) +#define SD_16TO23BITS ((uint32_t)0x00FF0000) +#define SD_24TO31BITS ((uint32_t)0xFF000000) +#define SD_MAX_DATA_LENGTH ((uint32_t)0x01FFFFFF) + +#define SD_HALFFIFO ((uint32_t)0x00000008) +#define SD_HALFFIFOBYTES ((uint32_t)0x00000020) + +/** + * @brief Command Class Supported + */ +#define SD_CCCC_LOCK_UNLOCK ((uint32_t)0x00000080) +#define SD_CCCC_WRITE_PROT ((uint32_t)0x00000040) +#define SD_CCCC_ERASE ((uint32_t)0x00000020) + +/** + * @brief Following commands are SD Card Specific commands. + * SDIO_APP_CMD should be sent before sending these commands. + */ +#define SD_SDIO_SEND_IF_COND ((uint32_t)SD_CMD_HS_SEND_EXT_CSD) + +/** + * @} + */ + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup SD_Private_Functions_Prototypes + * @{ + */ +static HAL_SD_ErrorTypedef SD_Initialize_Cards(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_Select_Deselect(SD_HandleTypeDef *hsd, uint64_t addr); +static HAL_SD_ErrorTypedef SD_PowerON(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_PowerOFF(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_SendStatus(SD_HandleTypeDef *hsd, uint32_t *pCardStatus); +static HAL_SD_CardStateTypedef SD_GetState(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_IsCardProgramming(SD_HandleTypeDef *hsd, uint8_t *pStatus); +static HAL_SD_ErrorTypedef SD_CmdError(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp1Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD); +static HAL_SD_ErrorTypedef SD_CmdResp7Error(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp3Error(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp2Error(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_CmdResp6Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD, uint16_t *pRCA); +static HAL_SD_ErrorTypedef SD_WideBus_Enable(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_WideBus_Disable(SD_HandleTypeDef *hsd); +static HAL_SD_ErrorTypedef SD_FindSCR(SD_HandleTypeDef *hsd, uint32_t *pSCR); +static void SD_DMA_RxCplt(DMA_HandleTypeDef *hdma); +static void SD_DMA_RxError(DMA_HandleTypeDef *hdma); +static void SD_DMA_TxCplt(DMA_HandleTypeDef *hdma); +static void SD_DMA_TxError(DMA_HandleTypeDef *hdma); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @addtogroup SD_Exported_Functions + * @{ + */ + +/** @addtogroup SD_Exported_Functions_Group1 + * @brief Initialization and de-initialization functions + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize the SD + card device to be ready for use. + + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the SD card according to the specified parameters in the + SD_HandleTypeDef and create the associated handle. + * @param hsd: SD handle + * @param SDCardInfo: HAL_SD_CardInfoTypedef structure for SD card information + * @retval HAL SD error state + */ +HAL_SD_ErrorTypedef HAL_SD_Init(SD_HandleTypeDef *hsd, HAL_SD_CardInfoTypedef *SDCardInfo) +{ + __IO HAL_SD_ErrorTypedef errorstate = SD_OK; + SD_InitTypeDef tmpinit; + + /* Allocate lock resource and initialize it */ + hsd->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_SD_MspInit(hsd); + + /* Default SDIO peripheral configuration for SD card initialization */ + tmpinit.ClockEdge = SDIO_CLOCK_EDGE_RISING; + tmpinit.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; + tmpinit.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; + tmpinit.BusWide = SDIO_BUS_WIDE_1B; + tmpinit.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; + tmpinit.ClockDiv = SDIO_INIT_CLK_DIV; + + /* Initialize SDIO peripheral interface with default configuration */ + SDIO_Init(hsd->Instance, tmpinit); + + /* Identify card operating voltage */ + errorstate = SD_PowerON(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Initialize the present SDIO card(s) and put them in idle state */ + errorstate = SD_Initialize_Cards(hsd); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Read CSD/CID MSD registers */ + errorstate = HAL_SD_Get_CardInfo(hsd, SDCardInfo); + + if (errorstate == SD_OK) + { + /* Select the Card */ + errorstate = SD_Select_Deselect(hsd, (uint32_t)(((uint32_t)SDCardInfo->RCA) << 16)); + } + + /* Configure SDIO peripheral interface */ + SDIO_Init(hsd->Instance, hsd->Init); + + return errorstate; +} + +/** + * @brief De-Initializes the SD card. + * @param hsd: SD handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SD_DeInit(SD_HandleTypeDef *hsd) +{ + + /* Set SD power state to off */ + SD_PowerOFF(hsd); + + /* De-Initialize the MSP layer */ + HAL_SD_MspDeInit(hsd); + + return HAL_OK; +} + + +/** + * @brief Initializes the SD MSP. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_MspInit(SD_HandleTypeDef *hsd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_MspInit could be implemented in the user file + */ +} + +/** + * @brief De-Initialize SD MSP. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup SD_Exported_Functions_Group2 + * @brief Data transfer functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the data + transfer from/to SD card. + +@endverbatim + * @{ + */ + +/** + * @brief Reads block(s) from a specified address in a card. The Data transfer + * is managed by polling mode. + * @param hsd: SD handle + * @param pReadBuffer: pointer to the buffer that will contain the received data + * @param ReadAddr: Address from where data is to be read + * @param BlockSize: SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of SD blocks to read + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_ReadBlocks(SD_HandleTypeDef *hsd, uint32_t *pReadBuffer, uint64_t ReadAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + SDIO_DataInitTypeDef sdio_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t count = 0, *tempbuff = (uint32_t *)pReadBuffer; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + ReadAddr /= 512; + } + + /* Set Block Size for Card */ + sdio_cmdinitstructure.Argument = (uint32_t) BlockSize; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdio_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdio_datainitstructure.DataLength = NumberOfBlocks * BlockSize; + sdio_datainitstructure.DataBlockSize = DATA_BLOCK_SIZE; + sdio_datainitstructure.TransferDir = SDIO_TRANSFER_DIR_TO_SDIO; + sdio_datainitstructure.TransferMode = SDIO_TRANSFER_MODE_BLOCK; + sdio_datainitstructure.DPSM = SDIO_DPSM_ENABLE; + SDIO_DataConfig(hsd->Instance, &sdio_datainitstructure); + + if(NumberOfBlocks > 1) + { + /* Send CMD18 READ_MULT_BLOCK with argument data address */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_READ_MULT_BLOCK; + } + else + { + /* Send CMD17 READ_SINGLE_BLOCK */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_READ_SINGLE_BLOCK; + } + + sdio_cmdinitstructure.Argument = (uint32_t)ReadAddr; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Read block(s) in polling mode */ + if(NumberOfBlocks > 1) + { + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_MULT_BLOCK); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Poll on SDIO flags */ +#ifdef SDIO_STA_STBITERR + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DATAEND | SDIO_FLAG_STBITERR)) +#else /* SDIO_STA_STBITERR not defined */ + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DATAEND)) +#endif /* SDIO_STA_STBITERR */ + { + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXFIFOHF)) + { + /* Read data from SDIO Rx FIFO */ + for (count = 0; count < 8; count++) + { + *(tempbuff + count) = SDIO_ReadFIFO(hsd->Instance); + } + + tempbuff += 8; + } + } + } + else + { + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_SINGLE_BLOCK); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* In case of single block transfer, no need of stop transfer at all */ +#ifdef SDIO_STA_STBITERR + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND | SDIO_FLAG_STBITERR)) +#else /* SDIO_STA_STBITERR not defined */ + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND)) +#endif /* SDIO_STA_STBITERR */ + { + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXFIFOHF)) + { + /* Read data from SDIO Rx FIFO */ + for (count = 0; count < 8; count++) + { + *(tempbuff + count) = SDIO_ReadFIFO(hsd->Instance); + } + + tempbuff += 8; + } + } + } + + /* Send stop transmission command in case of multiblock read */ + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DATAEND) && (NumberOfBlocks > 1)) + { + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) ||\ + (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send stop transmission command */ + errorstate = HAL_SD_StopTransfer(hsd); + } + } + + /* Get error state */ + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DTIMEOUT)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DCRCFAIL)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } +#ifdef SDIO_STA_STBITERR + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_STBITERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_STBITERR); + + errorstate = SD_START_BIT_ERR; + + return errorstate; + } +#endif /* SDIO_STA_STBITERR */ + else + { + /* No error flag set */ + } + + count = SD_DATATIMEOUT; + + /* Empty FIFO if there is still any data */ + while ((__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXDAVL)) && (count > 0)) + { + *tempbuff = SDIO_ReadFIFO(hsd->Instance); + tempbuff++; + count--; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Allows to write block(s) to a specified address in a card. The Data + * transfer is managed by polling mode. + * @param hsd: SD handle + * @param pWriteBuffer: pointer to the buffer that will contain the data to transmit + * @param WriteAddr: Address from where data is to be written + * @param BlockSize: SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of SD blocks to write + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_WriteBlocks(SD_HandleTypeDef *hsd, uint32_t *pWriteBuffer, uint64_t WriteAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + SDIO_DataInitTypeDef sdio_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t totalnumberofbytes = 0, bytestransferred = 0, count = 0, restwords = 0; + uint32_t *tempbuff = (uint32_t *)pWriteBuffer; + uint8_t cardstate = 0; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + WriteAddr /= 512; + } + + /* Set Block Size for Card */ + sdio_cmdinitstructure.Argument = (uint32_t)BlockSize; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + if(NumberOfBlocks > 1) + { + /* Send CMD25 WRITE_MULT_BLOCK with argument data address */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_WRITE_MULT_BLOCK; + } + else + { + /* Send CMD24 WRITE_SINGLE_BLOCK */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_WRITE_SINGLE_BLOCK; + } + + sdio_cmdinitstructure.Argument = (uint32_t)WriteAddr; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + if(NumberOfBlocks > 1) + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_MULT_BLOCK); + } + else + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_SINGLE_BLOCK); + } + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Set total number of bytes to write */ + totalnumberofbytes = NumberOfBlocks * BlockSize; + + /* Configure the SD DPSM (Data Path State Machine) */ + sdio_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdio_datainitstructure.DataLength = NumberOfBlocks * BlockSize; + sdio_datainitstructure.DataBlockSize = SDIO_DATABLOCK_SIZE_512B; + sdio_datainitstructure.TransferDir = SDIO_TRANSFER_DIR_TO_CARD; + sdio_datainitstructure.TransferMode = SDIO_TRANSFER_MODE_BLOCK; + sdio_datainitstructure.DPSM = SDIO_DPSM_ENABLE; + SDIO_DataConfig(hsd->Instance, &sdio_datainitstructure); + + /* Write block(s) in polling mode */ + if(NumberOfBlocks > 1) + { +#ifdef SDIO_STA_STBITERR + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXUNDERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DATAEND | SDIO_FLAG_STBITERR)) +#else /* SDIO_STA_STBITERR not defined */ + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXUNDERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DATAEND)) +#endif /* SDIO_STA_STBITERR */ + { + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXFIFOHE)) + { + if ((totalnumberofbytes - bytestransferred) < 32) + { + restwords = ((totalnumberofbytes - bytestransferred) % 4 == 0) ? ((totalnumberofbytes - bytestransferred) / 4) : (( totalnumberofbytes - bytestransferred) / 4 + 1); + + /* Write data to SDIO Tx FIFO */ + for (count = 0; count < restwords; count++) + { + SDIO_WriteFIFO(hsd->Instance, tempbuff); + tempbuff++; + bytestransferred += 4; + } + } + else + { + /* Write data to SDIO Tx FIFO */ + for (count = 0; count < 8; count++) + { + SDIO_WriteFIFO(hsd->Instance, (tempbuff + count)); + } + + tempbuff += 8; + bytestransferred += 32; + } + } + } + } + else + { + /* In case of single data block transfer no need of stop command at all */ +#ifdef SDIO_STA_STBITERR + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXUNDERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND | SDIO_FLAG_STBITERR)) +#else /* SDIO_STA_STBITERR not defined */ + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXUNDERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND)) +#endif /* SDIO_STA_STBITERR */ + { + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXFIFOHE)) + { + if ((totalnumberofbytes - bytestransferred) < 32) + { + restwords = ((totalnumberofbytes - bytestransferred) % 4 == 0) ? ((totalnumberofbytes - bytestransferred) / 4) : (( totalnumberofbytes - bytestransferred) / 4 + 1); + + /* Write data to SDIO Tx FIFO */ + for (count = 0; count < restwords; count++) + { + SDIO_WriteFIFO(hsd->Instance, tempbuff); + tempbuff++; + bytestransferred += 4; + } + } + else + { + /* Write data to SDIO Tx FIFO */ + for (count = 0; count < 8; count++) + { + SDIO_WriteFIFO(hsd->Instance, (tempbuff + count)); + } + + tempbuff += 8; + bytestransferred += 32; + } + } + } + } + + /* Send stop transmission command in case of multiblock write */ + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DATAEND) && (NumberOfBlocks > 1)) + { + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send stop transmission command */ + errorstate = HAL_SD_StopTransfer(hsd); + } + } + + /* Get error state */ + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DTIMEOUT)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DCRCFAIL)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXUNDERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_TXUNDERR); + + errorstate = SD_TX_UNDERRUN; + + return errorstate; + } +#ifdef SDIO_STA_STBITERR + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_STBITERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_STBITERR); + + errorstate = SD_START_BIT_ERR; + + return errorstate; + } +#endif /* SDIO_STA_STBITERR */ + else + { + /* No error flag set */ + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + /* Wait till the card is in programming state */ + errorstate = SD_IsCardProgramming(hsd, &cardstate); + + while ((errorstate == SD_OK) && ((cardstate == SD_CARD_PROGRAMMING) || (cardstate == SD_CARD_RECEIVING))) + { + errorstate = SD_IsCardProgramming(hsd, &cardstate); + } + + return errorstate; +} + +/** + * @brief Reads block(s) from a specified address in a card. The Data transfer + * is managed by DMA mode. + * @note This API should be followed by the function HAL_SD_CheckReadOperation() + * to check the completion of the read process + * @param hsd: SD handle + * @param pReadBuffer: Pointer to the buffer that will contain the received data + * @param ReadAddr: Address from where data is to be read + * @param BlockSize: SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of blocks to read. + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_ReadBlocks_DMA(SD_HandleTypeDef *hsd, uint32_t *pReadBuffer, uint64_t ReadAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + SDIO_DataInitTypeDef sdio_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + /* Initialize handle flags */ + hsd->SdTransferCplt = 0; + hsd->DmaTransferCplt = 0; + hsd->SdTransferErr = SD_OK; + + /* Initialize SD Read operation */ + if(NumberOfBlocks > 1) + { + hsd->SdOperation = SD_READ_MULTIPLE_BLOCK; + } + else + { + hsd->SdOperation = SD_READ_SINGLE_BLOCK; + } + + /* Enable transfer interrupts */ +#ifdef SDIO_STA_STBITERR + __HAL_SD_SDIO_ENABLE_IT(hsd, (SDIO_IT_DCRCFAIL |\ + SDIO_IT_DTIMEOUT |\ + SDIO_IT_DATAEND |\ + SDIO_IT_RXOVERR |\ + SDIO_IT_STBITERR)); +#else /* SDIO_STA_STBITERR not defined */ + __HAL_SD_SDIO_ENABLE_IT(hsd, (SDIO_IT_DCRCFAIL |\ + SDIO_IT_DTIMEOUT |\ + SDIO_IT_DATAEND |\ + SDIO_IT_RXOVERR)); +#endif /* SDIO_STA_STBITERR */ + + /* Enable SDIO DMA transfer */ + __HAL_SD_SDIO_DMA_ENABLE(); + + /* Configure DMA user callbacks */ + hsd->hdmarx->XferCpltCallback = SD_DMA_RxCplt; + hsd->hdmarx->XferErrorCallback = SD_DMA_RxError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsd->hdmarx, (uint32_t)&hsd->Instance->FIFO, (uint32_t)pReadBuffer, (uint32_t)(BlockSize * NumberOfBlocks)/4); + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + ReadAddr /= 512; + } + + /* Set Block Size for Card */ + sdio_cmdinitstructure.Argument = (uint32_t)BlockSize; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdio_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdio_datainitstructure.DataLength = BlockSize * NumberOfBlocks; + sdio_datainitstructure.DataBlockSize = SDIO_DATABLOCK_SIZE_512B; + sdio_datainitstructure.TransferDir = SDIO_TRANSFER_DIR_TO_SDIO; + sdio_datainitstructure.TransferMode = SDIO_TRANSFER_MODE_BLOCK; + sdio_datainitstructure.DPSM = SDIO_DPSM_ENABLE; + SDIO_DataConfig(hsd->Instance, &sdio_datainitstructure); + + /* Check number of blocks command */ + if(NumberOfBlocks > 1) + { + /* Send CMD18 READ_MULT_BLOCK with argument data address */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_READ_MULT_BLOCK; + } + else + { + /* Send CMD17 READ_SINGLE_BLOCK */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_READ_SINGLE_BLOCK; + } + + sdio_cmdinitstructure.Argument = (uint32_t)ReadAddr; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + if(NumberOfBlocks > 1) + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_MULT_BLOCK); + } + else + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_READ_SINGLE_BLOCK); + } + + /* Update the SD transfer error in SD handle */ + hsd->SdTransferErr = errorstate; + + return errorstate; +} + + +/** + * @brief Writes block(s) to a specified address in a card. The Data transfer + * is managed by DMA mode. + * @note This API should be followed by the function HAL_SD_CheckWriteOperation() + * to check the completion of the write process (by SD current status polling). + * @param hsd: SD handle + * @param pWriteBuffer: pointer to the buffer that will contain the data to transmit + * @param WriteAddr: Address from where data is to be read + * @param BlockSize: the SD card Data block size + * @note BlockSize must be 512 bytes. + * @param NumberOfBlocks: Number of blocks to write + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_WriteBlocks_DMA(SD_HandleTypeDef *hsd, uint32_t *pWriteBuffer, uint64_t WriteAddr, uint32_t BlockSize, uint32_t NumberOfBlocks) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + SDIO_DataInitTypeDef sdio_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Initialize data control register */ + hsd->Instance->DCTRL = 0; + + /* Initialize handle flags */ + hsd->SdTransferCplt = 0; + hsd->DmaTransferCplt = 0; + hsd->SdTransferErr = SD_OK; + + /* Initialize SD Write operation */ + if(NumberOfBlocks > 1) + { + hsd->SdOperation = SD_WRITE_MULTIPLE_BLOCK; + } + else + { + hsd->SdOperation = SD_WRITE_SINGLE_BLOCK; + } + + /* Enable transfer interrupts */ +#ifdef SDIO_STA_STBITERR + __HAL_SD_SDIO_ENABLE_IT(hsd, (SDIO_IT_DCRCFAIL |\ + SDIO_IT_DTIMEOUT |\ + SDIO_IT_DATAEND |\ + SDIO_IT_TXUNDERR |\ + SDIO_IT_STBITERR)); +#else /* SDIO_STA_STBITERR not defined */ + __HAL_SD_SDIO_ENABLE_IT(hsd, (SDIO_IT_DCRCFAIL |\ + SDIO_IT_DTIMEOUT |\ + SDIO_IT_DATAEND |\ + SDIO_IT_TXUNDERR)); +#endif /* SDIO_STA_STBITERR */ + + /* Configure DMA user callbacks */ + hsd->hdmatx->XferCpltCallback = SD_DMA_TxCplt; + hsd->hdmatx->XferErrorCallback = SD_DMA_TxError; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsd->hdmatx, (uint32_t)pWriteBuffer, (uint32_t)&hsd->Instance->FIFO, (uint32_t)(BlockSize * NumberOfBlocks)/4); + + /* Enable SDIO DMA transfer */ + __HAL_SD_SDIO_DMA_ENABLE(); + + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + BlockSize = 512; + WriteAddr /= 512; + } + + /* Set Block Size for Card */ + sdio_cmdinitstructure.Argument = (uint32_t)BlockSize; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Check number of blocks command */ + if(NumberOfBlocks <= 1) + { + /* Send CMD24 WRITE_SINGLE_BLOCK */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_WRITE_SINGLE_BLOCK; + } + else + { + /* Send CMD25 WRITE_MULT_BLOCK with argument data address */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_WRITE_MULT_BLOCK; + } + + sdio_cmdinitstructure.Argument = (uint32_t)WriteAddr; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + if(NumberOfBlocks > 1) + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_MULT_BLOCK); + } + else + { + errorstate = SD_CmdResp1Error(hsd, SD_CMD_WRITE_SINGLE_BLOCK); + } + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdio_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdio_datainitstructure.DataLength = BlockSize * NumberOfBlocks; + sdio_datainitstructure.DataBlockSize = SDIO_DATABLOCK_SIZE_512B; + sdio_datainitstructure.TransferDir = SDIO_TRANSFER_DIR_TO_CARD; + sdio_datainitstructure.TransferMode = SDIO_TRANSFER_MODE_BLOCK; + sdio_datainitstructure.DPSM = SDIO_DPSM_ENABLE; + SDIO_DataConfig(hsd->Instance, &sdio_datainitstructure); + + hsd->SdTransferErr = errorstate; + + return errorstate; +} + +/** + * @brief This function waits until the SD DMA data read transfer is finished. + * This API should be called after HAL_SD_ReadBlocks_DMA() function + * to insure that all data sent by the card is already transferred by the + * DMA controller. + * @param hsd: SD handle + * @param Timeout: Timeout duration + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_CheckReadOperation(SD_HandleTypeDef *hsd, uint32_t Timeout) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t timeout = Timeout; + uint32_t tmp1, tmp2; + HAL_SD_ErrorTypedef tmp3; + + /* Wait for DMA/SD transfer end or SD error variables to be in SD handle */ + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + + while ((tmp1 == 0) && (tmp2 == 0) && (tmp3 == SD_OK) && (timeout > 0)) + { + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + timeout--; + } + + timeout = Timeout; + + /* Wait until the Rx transfer is no longer active */ + while((__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXACT)) && (timeout > 0)) + { + timeout--; + } + + /* Send stop command in multiblock read */ + if (hsd->SdOperation == SD_READ_MULTIPLE_BLOCK) + { + errorstate = HAL_SD_StopTransfer(hsd); + } + + if ((timeout == 0) && (errorstate == SD_OK)) + { + errorstate = SD_DATA_TIMEOUT; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + /* Return error state */ + if (hsd->SdTransferErr != SD_OK) + { + return (HAL_SD_ErrorTypedef)(hsd->SdTransferErr); + } + + return errorstate; +} + +/** + * @brief This function waits until the SD DMA data write transfer is finished. + * This API should be called after HAL_SD_WriteBlocks_DMA() function + * to insure that all data sent by the card is already transferred by the + * DMA controller. + * @param hsd: SD handle + * @param Timeout: Timeout duration + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_CheckWriteOperation(SD_HandleTypeDef *hsd, uint32_t Timeout) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t timeout = Timeout; + uint32_t tmp1, tmp2; + HAL_SD_ErrorTypedef tmp3; + + /* Wait for DMA/SD transfer end or SD error variables to be in SD handle */ + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + + while ((tmp1 == 0) && (tmp2 == 0) && (tmp3 == SD_OK) && (timeout > 0)) + { + tmp1 = hsd->DmaTransferCplt; + tmp2 = hsd->SdTransferCplt; + tmp3 = (HAL_SD_ErrorTypedef)hsd->SdTransferErr; + timeout--; + } + + timeout = Timeout; + + /* Wait until the Tx transfer is no longer active */ + while((__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_TXACT)) && (timeout > 0)) + { + timeout--; + } + + /* Send stop command in multiblock write */ + if (hsd->SdOperation == SD_WRITE_MULTIPLE_BLOCK) + { + errorstate = HAL_SD_StopTransfer(hsd); + } + + if ((timeout == 0) && (errorstate == SD_OK)) + { + errorstate = SD_DATA_TIMEOUT; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + /* Return error state */ + if (hsd->SdTransferErr != SD_OK) + { + return (HAL_SD_ErrorTypedef)(hsd->SdTransferErr); + } + + /* Wait until write is complete */ + while(HAL_SD_GetStatus(hsd) != SD_TRANSFER_OK) + { + } + + return errorstate; +} + +/** + * @brief Erases the specified memory area of the given SD card. + * @param hsd: SD handle + * @param startaddr: Start byte address + * @param endaddr: End byte address + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_Erase(SD_HandleTypeDef *hsd, uint64_t startaddr, uint64_t endaddr) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + + uint32_t delay = 0; + __IO uint32_t maxdelay = 0; + uint8_t cardstate = 0; + + /* Check if the card command class supports erase command */ + if (((hsd->CSD[1] >> 20) & SD_CCCC_ERASE) == 0) + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } + + /* Get max delay value */ + maxdelay = 120000 / (((hsd->Instance->CLKCR) & 0xFF) + 2); + + if((SDIO_GetResponse(SDIO_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Get start and end block for high capacity cards */ + if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + startaddr /= 512; + endaddr /= 512; + } + + /* According to sd-card spec 1.0 ERASE_GROUP_START (CMD32) and erase_group_end(CMD33) */ + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send CMD32 SD_ERASE_GRP_START with argument as addr */ + sdio_cmdinitstructure.Argument =(uint32_t)startaddr; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SD_ERASE_GRP_START; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_ERASE_GRP_START); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD33 SD_ERASE_GRP_END with argument as addr */ + sdio_cmdinitstructure.Argument = (uint32_t)endaddr; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SD_ERASE_GRP_END; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_ERASE_GRP_END); + + if (errorstate != SD_OK) + { + return errorstate; + } + } + + /* Send CMD38 ERASE */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_ERASE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_ERASE); + + if (errorstate != SD_OK) + { + return errorstate; + } + + for (; delay < maxdelay; delay++) + { + } + + /* Wait until the card is in programming state */ + errorstate = SD_IsCardProgramming(hsd, &cardstate); + + delay = SD_DATATIMEOUT; + + while ((delay > 0) && (errorstate == SD_OK) && ((cardstate == SD_CARD_PROGRAMMING) || (cardstate == SD_CARD_RECEIVING))) + { + errorstate = SD_IsCardProgramming(hsd, &cardstate); + delay--; + } + + return errorstate; +} + +/** + * @brief This function handles SD card interrupt request. + * @param hsd: SD handle + * @retval None + */ +void HAL_SD_IRQHandler(SD_HandleTypeDef *hsd) +{ + /* Check for SDIO interrupt flags */ + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_IT_DATAEND)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_IT_DATAEND); + + /* SD transfer is complete */ + hsd->SdTransferCplt = 1; + + /* No transfer error */ + hsd->SdTransferErr = SD_OK; + + HAL_SD_XferCpltCallback(hsd); + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_IT_DCRCFAIL)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DCRCFAIL); + + hsd->SdTransferErr = SD_DATA_CRC_FAIL; + + HAL_SD_XferErrorCallback(hsd); + + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_IT_DTIMEOUT)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DTIMEOUT); + + hsd->SdTransferErr = SD_DATA_TIMEOUT; + + HAL_SD_XferErrorCallback(hsd); + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_IT_RXOVERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_RXOVERR); + + hsd->SdTransferErr = SD_RX_OVERRUN; + + HAL_SD_XferErrorCallback(hsd); + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_IT_TXUNDERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_TXUNDERR); + + hsd->SdTransferErr = SD_TX_UNDERRUN; + + HAL_SD_XferErrorCallback(hsd); + } +#ifdef SDIO_STA_STBITERR + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_IT_STBITERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_STBITERR); + + hsd->SdTransferErr = SD_START_BIT_ERR; + + HAL_SD_XferErrorCallback(hsd); + } +#endif /* SDIO_STA_STBITERR */ + else + { + /* No error flag set */ + } + + /* Disable all SDIO peripheral interrupt sources */ +#ifdef SDIO_STA_STBITERR + __HAL_SD_SDIO_DISABLE_IT(hsd, SDIO_IT_DCRCFAIL | SDIO_IT_DTIMEOUT | SDIO_IT_DATAEND |\ + SDIO_IT_TXFIFOHE | SDIO_IT_RXFIFOHF | SDIO_IT_TXUNDERR |\ + SDIO_IT_RXOVERR | SDIO_IT_STBITERR); +#else /* SDIO_STA_STBITERR not defined */ + __HAL_SD_SDIO_DISABLE_IT(hsd, SDIO_IT_DCRCFAIL | SDIO_IT_DTIMEOUT | SDIO_IT_DATAEND |\ + SDIO_IT_TXFIFOHE | SDIO_IT_RXFIFOHF | SDIO_IT_TXUNDERR |\ + SDIO_IT_RXOVERR); +#endif /* SDIO_STA_STBITERR */ +} + + +/** + * @brief SD end of transfer callback. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_XferCpltCallback(SD_HandleTypeDef *hsd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_XferCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SD Transfer Error callback. + * @param hsd: SD handle + * @retval None + */ +__weak void HAL_SD_XferErrorCallback(SD_HandleTypeDef *hsd) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_XferErrorCallback could be implemented in the user file + */ +} + +/** + * @brief SD Transfer complete Rx callback in non blocking mode. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_RxCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SD DMA transfer complete Rx error callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_RxErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_RxErrorCallback could be implemented in the user file + */ +} + +/** + * @brief SD Transfer complete Tx callback in non blocking mode. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_TxCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SD DMA transfer complete error Tx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SD_DMA_TxErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SD_DMA_TxErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @addtogroup SD_Exported_Functions_Group3 + * @brief management functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the SD card + operations. + +@endverbatim + * @{ + */ + +/** + * @brief Returns information about specific card. + * @param hsd: SD handle + * @param pCardInfo: Pointer to a HAL_SD_CardInfoTypedef structure that + * contains all SD cardinformation + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_Get_CardInfo(SD_HandleTypeDef *hsd, HAL_SD_CardInfoTypedef *pCardInfo) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t tmp = 0; + + pCardInfo->CardType = (uint8_t)(hsd->CardType); + pCardInfo->RCA = (uint16_t)(hsd->RCA); + + /* Byte 0 */ + tmp = (hsd->CSD[0] & 0xFF000000) >> 24; + pCardInfo->SD_csd.CSDStruct = (uint8_t)((tmp & 0xC0) >> 6); + pCardInfo->SD_csd.SysSpecVersion = (uint8_t)((tmp & 0x3C) >> 2); + pCardInfo->SD_csd.Reserved1 = tmp & 0x03; + + /* Byte 1 */ + tmp = (hsd->CSD[0] & 0x00FF0000) >> 16; + pCardInfo->SD_csd.TAAC = (uint8_t)tmp; + + /* Byte 2 */ + tmp = (hsd->CSD[0] & 0x0000FF00) >> 8; + pCardInfo->SD_csd.NSAC = (uint8_t)tmp; + + /* Byte 3 */ + tmp = hsd->CSD[0] & 0x000000FF; + pCardInfo->SD_csd.MaxBusClkFrec = (uint8_t)tmp; + + /* Byte 4 */ + tmp = (hsd->CSD[1] & 0xFF000000) >> 24; + pCardInfo->SD_csd.CardComdClasses = (uint16_t)(tmp << 4); + + /* Byte 5 */ + tmp = (hsd->CSD[1] & 0x00FF0000) >> 16; + pCardInfo->SD_csd.CardComdClasses |= (uint16_t)((tmp & 0xF0) >> 4); + pCardInfo->SD_csd.RdBlockLen = (uint8_t)(tmp & 0x0F); + + /* Byte 6 */ + tmp = (hsd->CSD[1] & 0x0000FF00) >> 8; + pCardInfo->SD_csd.PartBlockRead = (uint8_t)((tmp & 0x80) >> 7); + pCardInfo->SD_csd.WrBlockMisalign = (uint8_t)((tmp & 0x40) >> 6); + pCardInfo->SD_csd.RdBlockMisalign = (uint8_t)((tmp & 0x20) >> 5); + pCardInfo->SD_csd.DSRImpl = (uint8_t)((tmp & 0x10) >> 4); + pCardInfo->SD_csd.Reserved2 = 0; /*!< Reserved */ + + if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0)) + { + pCardInfo->SD_csd.DeviceSize = (tmp & 0x03) << 10; + + /* Byte 7 */ + tmp = (uint8_t)(hsd->CSD[1] & 0x000000FF); + pCardInfo->SD_csd.DeviceSize |= (tmp) << 2; + + /* Byte 8 */ + tmp = (uint8_t)((hsd->CSD[2] & 0xFF000000) >> 24); + pCardInfo->SD_csd.DeviceSize |= (tmp & 0xC0) >> 6; + + pCardInfo->SD_csd.MaxRdCurrentVDDMin = (tmp & 0x38) >> 3; + pCardInfo->SD_csd.MaxRdCurrentVDDMax = (tmp & 0x07); + + /* Byte 9 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x00FF0000) >> 16); + pCardInfo->SD_csd.MaxWrCurrentVDDMin = (tmp & 0xE0) >> 5; + pCardInfo->SD_csd.MaxWrCurrentVDDMax = (tmp & 0x1C) >> 2; + pCardInfo->SD_csd.DeviceSizeMul = (tmp & 0x03) << 1; + /* Byte 10 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x0000FF00) >> 8); + pCardInfo->SD_csd.DeviceSizeMul |= (tmp & 0x80) >> 7; + + pCardInfo->CardCapacity = (pCardInfo->SD_csd.DeviceSize + 1) ; + pCardInfo->CardCapacity *= (1 << (pCardInfo->SD_csd.DeviceSizeMul + 2)); + pCardInfo->CardBlockSize = 1 << (pCardInfo->SD_csd.RdBlockLen); + pCardInfo->CardCapacity *= pCardInfo->CardBlockSize; + } + else if (hsd->CardType == HIGH_CAPACITY_SD_CARD) + { + /* Byte 7 */ + tmp = (uint8_t)(hsd->CSD[1] & 0x000000FF); + pCardInfo->SD_csd.DeviceSize = (tmp & 0x3F) << 16; + + /* Byte 8 */ + tmp = (uint8_t)((hsd->CSD[2] & 0xFF000000) >> 24); + + pCardInfo->SD_csd.DeviceSize |= (tmp << 8); + + /* Byte 9 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x00FF0000) >> 16); + + pCardInfo->SD_csd.DeviceSize |= (tmp); + + /* Byte 10 */ + tmp = (uint8_t)((hsd->CSD[2] & 0x0000FF00) >> 8); + + pCardInfo->CardCapacity = (uint64_t)((((uint64_t)pCardInfo->SD_csd.DeviceSize + 1)) * 512 * 1024); + pCardInfo->CardBlockSize = 512; + } + else + { + /* Not supported card type */ + errorstate = SD_ERROR; + } + + pCardInfo->SD_csd.EraseGrSize = (tmp & 0x40) >> 6; + pCardInfo->SD_csd.EraseGrMul = (tmp & 0x3F) << 1; + + /* Byte 11 */ + tmp = (uint8_t)(hsd->CSD[2] & 0x000000FF); + pCardInfo->SD_csd.EraseGrMul |= (tmp & 0x80) >> 7; + pCardInfo->SD_csd.WrProtectGrSize = (tmp & 0x7F); + + /* Byte 12 */ + tmp = (uint8_t)((hsd->CSD[3] & 0xFF000000) >> 24); + pCardInfo->SD_csd.WrProtectGrEnable = (tmp & 0x80) >> 7; + pCardInfo->SD_csd.ManDeflECC = (tmp & 0x60) >> 5; + pCardInfo->SD_csd.WrSpeedFact = (tmp & 0x1C) >> 2; + pCardInfo->SD_csd.MaxWrBlockLen = (tmp & 0x03) << 2; + + /* Byte 13 */ + tmp = (uint8_t)((hsd->CSD[3] & 0x00FF0000) >> 16); + pCardInfo->SD_csd.MaxWrBlockLen |= (tmp & 0xC0) >> 6; + pCardInfo->SD_csd.WriteBlockPaPartial = (tmp & 0x20) >> 5; + pCardInfo->SD_csd.Reserved3 = 0; + pCardInfo->SD_csd.ContentProtectAppli = (tmp & 0x01); + + /* Byte 14 */ + tmp = (uint8_t)((hsd->CSD[3] & 0x0000FF00) >> 8); + pCardInfo->SD_csd.FileFormatGrouop = (tmp & 0x80) >> 7; + pCardInfo->SD_csd.CopyFlag = (tmp & 0x40) >> 6; + pCardInfo->SD_csd.PermWrProtect = (tmp & 0x20) >> 5; + pCardInfo->SD_csd.TempWrProtect = (tmp & 0x10) >> 4; + pCardInfo->SD_csd.FileFormat = (tmp & 0x0C) >> 2; + pCardInfo->SD_csd.ECC = (tmp & 0x03); + + /* Byte 15 */ + tmp = (uint8_t)(hsd->CSD[3] & 0x000000FF); + pCardInfo->SD_csd.CSD_CRC = (tmp & 0xFE) >> 1; + pCardInfo->SD_csd.Reserved4 = 1; + + /* Byte 0 */ + tmp = (uint8_t)((hsd->CID[0] & 0xFF000000) >> 24); + pCardInfo->SD_cid.ManufacturerID = tmp; + + /* Byte 1 */ + tmp = (uint8_t)((hsd->CID[0] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.OEM_AppliID = tmp << 8; + + /* Byte 2 */ + tmp = (uint8_t)((hsd->CID[0] & 0x000000FF00) >> 8); + pCardInfo->SD_cid.OEM_AppliID |= tmp; + + /* Byte 3 */ + tmp = (uint8_t)(hsd->CID[0] & 0x000000FF); + pCardInfo->SD_cid.ProdName1 = tmp << 24; + + /* Byte 4 */ + tmp = (uint8_t)((hsd->CID[1] & 0xFF000000) >> 24); + pCardInfo->SD_cid.ProdName1 |= tmp << 16; + + /* Byte 5 */ + tmp = (uint8_t)((hsd->CID[1] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.ProdName1 |= tmp << 8; + + /* Byte 6 */ + tmp = (uint8_t)((hsd->CID[1] & 0x0000FF00) >> 8); + pCardInfo->SD_cid.ProdName1 |= tmp; + + /* Byte 7 */ + tmp = (uint8_t)(hsd->CID[1] & 0x000000FF); + pCardInfo->SD_cid.ProdName2 = tmp; + + /* Byte 8 */ + tmp = (uint8_t)((hsd->CID[2] & 0xFF000000) >> 24); + pCardInfo->SD_cid.ProdRev = tmp; + + /* Byte 9 */ + tmp = (uint8_t)((hsd->CID[2] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.ProdSN = tmp << 24; + + /* Byte 10 */ + tmp = (uint8_t)((hsd->CID[2] & 0x0000FF00) >> 8); + pCardInfo->SD_cid.ProdSN |= tmp << 16; + + /* Byte 11 */ + tmp = (uint8_t)(hsd->CID[2] & 0x000000FF); + pCardInfo->SD_cid.ProdSN |= tmp << 8; + + /* Byte 12 */ + tmp = (uint8_t)((hsd->CID[3] & 0xFF000000) >> 24); + pCardInfo->SD_cid.ProdSN |= tmp; + + /* Byte 13 */ + tmp = (uint8_t)((hsd->CID[3] & 0x00FF0000) >> 16); + pCardInfo->SD_cid.Reserved1 |= (tmp & 0xF0) >> 4; + pCardInfo->SD_cid.ManufactDate = (tmp & 0x0F) << 8; + + /* Byte 14 */ + tmp = (uint8_t)((hsd->CID[3] & 0x0000FF00) >> 8); + pCardInfo->SD_cid.ManufactDate |= tmp; + + /* Byte 15 */ + tmp = (uint8_t)(hsd->CID[3] & 0x000000FF); + pCardInfo->SD_cid.CID_CRC = (tmp & 0xFE) >> 1; + pCardInfo->SD_cid.Reserved2 = 1; + + return errorstate; +} + +/** + * @brief Enables wide bus operation for the requested card if supported by + * card. + * @param hsd: SD handle + * @param WideMode: Specifies the SD card wide bus mode + * This parameter can be one of the following values: + * @arg SDIO_BUS_WIDE_8B: 8-bit data transfer (Only for MMC) + * @arg SDIO_BUS_WIDE_4B: 4-bit data transfer + * @arg SDIO_BUS_WIDE_1B: 1-bit data transfer + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_WideBusOperation_Config(SD_HandleTypeDef *hsd, uint32_t WideMode) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + SDIO_InitTypeDef tmpinit; + + /* MMC Card does not support this feature */ + if (hsd->CardType == MULTIMEDIA_CARD) + { + errorstate = SD_UNSUPPORTED_FEATURE; + + return errorstate; + } + else if ((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + if (WideMode == SDIO_BUS_WIDE_8B) + { + errorstate = SD_UNSUPPORTED_FEATURE; + } + else if (WideMode == SDIO_BUS_WIDE_4B) + { + errorstate = SD_WideBus_Enable(hsd); + } + else if (WideMode == SDIO_BUS_WIDE_1B) + { + errorstate = SD_WideBus_Disable(hsd); + } + else + { + /* WideMode is not a valid argument*/ + errorstate = SD_INVALID_PARAMETER; + } + + if (errorstate == SD_OK) + { + /* Configure the SDIO peripheral */ + tmpinit.ClockEdge = hsd->Init.ClockEdge; + tmpinit.ClockBypass = hsd->Init.ClockBypass; + tmpinit.ClockPowerSave = hsd->Init.ClockPowerSave; + tmpinit.BusWide = WideMode; + tmpinit.HardwareFlowControl = hsd->Init.HardwareFlowControl; + tmpinit.ClockDiv = hsd->Init.ClockDiv; + SDIO_Init(hsd->Instance, tmpinit); + } + } + + return errorstate; +} + +/** + * @brief Aborts an ongoing data transfer. + * @param hsd: SD handle + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_StopTransfer(SD_HandleTypeDef *hsd) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Send CMD12 STOP_TRANSMISSION */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_STOP_TRANSMISSION; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_STOP_TRANSMISSION); + + return errorstate; +} + +/** + * @brief Switches the SD card to High Speed mode. + * This API must be used after "Transfer State" + * @note This operation should be followed by the configuration + * of PLL to have SDIOCK clock between 67 and 75 MHz + * @param hsd: SD handle + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_HighSpeed (SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + SDIO_DataInitTypeDef sdio_datainitstructure; + + uint8_t SD_hs[64] = {0}; + uint32_t SD_scr[2] = {0, 0}; + uint32_t SD_SPEC = 0 ; + uint32_t count = 0, *tempbuff = (uint32_t *)SD_hs; + + /* Initialize the Data control register */ + hsd->Instance->DCTRL = 0; + + /* Get SCR Register */ + errorstate = SD_FindSCR(hsd, SD_scr); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Test the Version supported by the card*/ + SD_SPEC = (SD_scr[1] & 0x01000000) | (SD_scr[1] & 0x02000000); + + if (SD_SPEC != SD_ALLZERO) + { + /* Set Block Size for Card */ + sdio_cmdinitstructure.Argument = (uint32_t)64; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdio_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdio_datainitstructure.DataLength = 64; + sdio_datainitstructure.DataBlockSize = SDIO_DATABLOCK_SIZE_64B ; + sdio_datainitstructure.TransferDir = SDIO_TRANSFER_DIR_TO_SDIO; + sdio_datainitstructure.TransferMode = SDIO_TRANSFER_MODE_BLOCK; + sdio_datainitstructure.DPSM = SDIO_DPSM_ENABLE; + SDIO_DataConfig(hsd->Instance, &sdio_datainitstructure); + + /* Send CMD6 switch mode */ + sdio_cmdinitstructure.Argument = 0x80FFFF01; + sdio_cmdinitstructure.CmdIndex = SD_CMD_HS_SWITCH; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_HS_SWITCH); + + if (errorstate != SD_OK) + { + return errorstate; + } +#ifdef SDIO_STA_STBITERR + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND | SDIO_FLAG_STBITERR)) +#else /* SDIO_STA_STBITERR */ + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND)) +#endif /* SDIO_STA_STBITERR */ + { + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXFIFOHF)) + { + for (count = 0; count < 8; count++) + { + *(tempbuff + count) = SDIO_ReadFIFO(hsd->Instance); + } + + tempbuff += 8; + } + } + + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DTIMEOUT)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DCRCFAIL)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } +#ifdef SDIO_STA_STBITERR + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_STBITERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_STBITERR); + + errorstate = SD_START_BIT_ERR; + + return errorstate; + } +#endif /* SDIO_STA_STBITERR */ + else + { + /* No error flag set */ + } + + count = SD_DATATIMEOUT; + + while ((__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXDAVL)) && (count > 0)) + { + *tempbuff = SDIO_ReadFIFO(hsd->Instance); + tempbuff++; + count--; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + /* Test if the switch mode HS is ok */ + if ((SD_hs[13]& 2) != 2) + { + errorstate = SD_UNSUPPORTED_FEATURE; + } + } + + return errorstate; +} + +/** + * @} + */ + +/** @addtogroup SD_Exported_Functions_Group4 + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in runtime the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the current SD card's status. + * @param hsd: SD handle + * @param pSDstatus: Pointer to the buffer that will contain the SD card status + * SD Status register) + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_SendSDStatus(SD_HandleTypeDef *hsd, uint32_t *pSDstatus) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + SDIO_DataInitTypeDef sdio_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t count = 0; + + /* Check SD response */ + if ((SDIO_GetResponse(SDIO_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Set block size for card if it is not equal to current block size for card */ + sdio_cmdinitstructure.Argument = 64; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD55 */ + sdio_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Configure the SD DPSM (Data Path State Machine) */ + sdio_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdio_datainitstructure.DataLength = 64; + sdio_datainitstructure.DataBlockSize = SDIO_DATABLOCK_SIZE_64B; + sdio_datainitstructure.TransferDir = SDIO_TRANSFER_DIR_TO_SDIO; + sdio_datainitstructure.TransferMode = SDIO_TRANSFER_MODE_BLOCK; + sdio_datainitstructure.DPSM = SDIO_DPSM_ENABLE; + SDIO_DataConfig(hsd->Instance, &sdio_datainitstructure); + + /* Send ACMD13 (SD_APP_STATUS) with argument as card's RCA */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SD_APP_STATUS; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_APP_STATUS); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Get status data */ +#ifdef SDIO_STA_STBITERR + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND | SDIO_FLAG_STBITERR)) +#else /* SDIO_STA_STBITERR not defined */ + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND)) +#endif /* SDIO_STA_STBITERR */ + { + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXFIFOHF)) + { + for (count = 0; count < 8; count++) + { + *(pSDstatus + count) = SDIO_ReadFIFO(hsd->Instance); + } + + pSDstatus += 8; + } + } + + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DTIMEOUT)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DCRCFAIL)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } +#ifdef SDIO_STA_STBITERR + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_STBITERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_STBITERR); + + errorstate = SD_START_BIT_ERR; + + return errorstate; + } +#endif /* SDIO_STA_STBITERR */ + else + { + /* No error flag set */ + } + + count = SD_DATATIMEOUT; + while ((__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXDAVL)) && (count > 0)) + { + *pSDstatus = SDIO_ReadFIFO(hsd->Instance); + pSDstatus++; + count--; + } + + /* Clear all the static status flags*/ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Gets the current sd card data status. + * @param hsd: SD handle + * @retval Data Transfer state + */ +HAL_SD_TransferStateTypedef HAL_SD_GetStatus(SD_HandleTypeDef *hsd) +{ + HAL_SD_CardStateTypedef cardstate = SD_CARD_TRANSFER; + + /* Get SD card state */ + cardstate = SD_GetState(hsd); + + /* Find SD status according to card state*/ + if (cardstate == SD_CARD_TRANSFER) + { + return SD_TRANSFER_OK; + } + else if(cardstate == SD_CARD_ERROR) + { + return SD_TRANSFER_ERROR; + } + else + { + return SD_TRANSFER_BUSY; + } +} + +/** + * @brief Gets the SD card status. + * @param hsd: SD handle + * @param pCardStatus: Pointer to the HAL_SD_CardStatusTypedef structure that + * will contain the SD card status information + * @retval SD Card error state + */ +HAL_SD_ErrorTypedef HAL_SD_GetCardStatus(SD_HandleTypeDef *hsd, HAL_SD_CardStatusTypedef *pCardStatus) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t tmp = 0; + uint32_t sd_status[16]; + + errorstate = HAL_SD_SendSDStatus(hsd, sd_status); + + if (errorstate != SD_OK) + { + return errorstate; + } + + /* Byte 0 */ + tmp = (sd_status[0] & 0xC0) >> 6; + pCardStatus->DAT_BUS_WIDTH = (uint8_t)tmp; + + /* Byte 0 */ + tmp = (sd_status[0] & 0x20) >> 5; + pCardStatus->SECURED_MODE = (uint8_t)tmp; + + /* Byte 2 */ + tmp = (sd_status[2] & 0xFF); + pCardStatus->SD_CARD_TYPE = (uint8_t)(tmp << 8); + + /* Byte 3 */ + tmp = (sd_status[3] & 0xFF); + pCardStatus->SD_CARD_TYPE |= (uint8_t)tmp; + + /* Byte 4 */ + tmp = (sd_status[4] & 0xFF); + pCardStatus->SIZE_OF_PROTECTED_AREA = (uint8_t)(tmp << 24); + + /* Byte 5 */ + tmp = (sd_status[5] & 0xFF); + pCardStatus->SIZE_OF_PROTECTED_AREA |= (uint8_t)(tmp << 16); + + /* Byte 6 */ + tmp = (sd_status[6] & 0xFF); + pCardStatus->SIZE_OF_PROTECTED_AREA |= (uint8_t)(tmp << 8); + + /* Byte 7 */ + tmp = (sd_status[7] & 0xFF); + pCardStatus->SIZE_OF_PROTECTED_AREA |= (uint8_t)tmp; + + /* Byte 8 */ + tmp = (sd_status[8] & 0xFF); + pCardStatus->SPEED_CLASS = (uint8_t)tmp; + + /* Byte 9 */ + tmp = (sd_status[9] & 0xFF); + pCardStatus->PERFORMANCE_MOVE = (uint8_t)tmp; + + /* Byte 10 */ + tmp = (sd_status[10] & 0xF0) >> 4; + pCardStatus->AU_SIZE = (uint8_t)tmp; + + /* Byte 11 */ + tmp = (sd_status[11] & 0xFF); + pCardStatus->ERASE_SIZE = (uint8_t)(tmp << 8); + + /* Byte 12 */ + tmp = (sd_status[12] & 0xFF); + pCardStatus->ERASE_SIZE |= (uint8_t)tmp; + + /* Byte 13 */ + tmp = (sd_status[13] & 0xFC) >> 2; + pCardStatus->ERASE_TIMEOUT = (uint8_t)tmp; + + /* Byte 13 */ + tmp = (sd_status[13] & 0x3); + pCardStatus->ERASE_OFFSET = (uint8_t)tmp; + + return errorstate; +} + +/** + * @} + */ + +/** + * @} + */ + +/* Private function ----------------------------------------------------------*/ +/** @addtogroup SD_Private_Functions + * @{ + */ + +/** + * @brief SD DMA transfer complete Rx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_RxCplt(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = (SD_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* DMA transfer is complete */ + hsd->DmaTransferCplt = 1; + + /* Wait until SD transfer is complete */ + while(hsd->SdTransferCplt == 0) + { + } + + /* Disable the DMA channel */ + HAL_DMA_Abort(hdma); + + /* Transfer complete user callback */ + HAL_SD_DMA_RxCpltCallback(hsd->hdmarx); +} + +/** + * @brief SD DMA transfer Error Rx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_RxError(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = (SD_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* Transfer complete user callback */ + HAL_SD_DMA_RxErrorCallback(hsd->hdmarx); +} + +/** + * @brief SD DMA transfer complete Tx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_TxCplt(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = (SD_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + /* DMA transfer is complete */ + hsd->DmaTransferCplt = 1; + + /* Wait until SD transfer is complete */ + while(hsd->SdTransferCplt == 0) + { + } + + /* Disable the DMA channel */ + HAL_DMA_Abort(hdma); + + /* Transfer complete user callback */ + HAL_SD_DMA_TxCpltCallback(hsd->hdmatx); +} + +/** + * @brief SD DMA transfer Error Tx callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SD_DMA_TxError(DMA_HandleTypeDef *hdma) +{ + SD_HandleTypeDef *hsd = ( SD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Transfer complete user callback */ + HAL_SD_DMA_TxErrorCallback(hsd->hdmatx); +} + +/** + * @brief Returns the SD current state. + * @param hsd: SD handle + * @retval SD card current state + */ +static HAL_SD_CardStateTypedef SD_GetState(SD_HandleTypeDef *hsd) +{ + uint32_t resp1 = 0; + + if (SD_SendStatus(hsd, &resp1) != SD_OK) + { + return SD_CARD_ERROR; + } + else + { + return (HAL_SD_CardStateTypedef)((resp1 >> 9) & 0x0F); + } +} + +/** + * @brief Initializes all cards or single card as the case may be Card(s) come + * into standby state. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_Initialize_Cards(SD_HandleTypeDef *hsd) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint16_t sd_rca = 1; + + if(SDIO_GetPowerState(hsd->Instance) == 0) /* Power off */ + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } + + if(hsd->CardType != SECURE_DIGITAL_IO_CARD) + { + /* Send CMD2 ALL_SEND_CID */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_ALL_SEND_CID; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_LONG; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp2Error(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get Card identification number data */ + hsd->CID[0] = SDIO_GetResponse(SDIO_RESP1); + hsd->CID[1] = SDIO_GetResponse(SDIO_RESP2); + hsd->CID[2] = SDIO_GetResponse(SDIO_RESP3); + hsd->CID[3] = SDIO_GetResponse(SDIO_RESP4); + } + + if((hsd->CardType == STD_CAPACITY_SD_CARD_V1_1) || (hsd->CardType == STD_CAPACITY_SD_CARD_V2_0) ||\ + (hsd->CardType == SECURE_DIGITAL_IO_COMBO_CARD) || (hsd->CardType == HIGH_CAPACITY_SD_CARD)) + { + /* Send CMD3 SET_REL_ADDR with argument 0 */ + /* SD Card publishes its RCA. */ + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_REL_ADDR; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp6Error(hsd, SD_CMD_SET_REL_ADDR, &sd_rca); + + if(errorstate != SD_OK) + { + return errorstate; + } + } + + if (hsd->CardType != SECURE_DIGITAL_IO_CARD) + { + /* Get the SD card RCA */ + hsd->RCA = sd_rca; + + /* Send CMD9 SEND_CSD with argument as card's RCA */ + sdio_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdio_cmdinitstructure.CmdIndex = SD_CMD_SEND_CSD; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_LONG; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp2Error(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get Card Specific Data */ + hsd->CSD[0] = SDIO_GetResponse(SDIO_RESP1); + hsd->CSD[1] = SDIO_GetResponse(SDIO_RESP2); + hsd->CSD[2] = SDIO_GetResponse(SDIO_RESP3); + hsd->CSD[3] = SDIO_GetResponse(SDIO_RESP4); + } + + /* All cards are initialized */ + return errorstate; +} + +/** + * @brief Selects of Deselects the corresponding card. + * @param hsd: SD handle + * @param addr: Address of the card to be selected + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_Select_Deselect(SD_HandleTypeDef *hsd, uint64_t addr) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Send CMD7 SDIO_SEL_DESEL_CARD */ + sdio_cmdinitstructure.Argument = (uint32_t)addr; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SEL_DESEL_CARD; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SEL_DESEL_CARD); + + return errorstate; +} + +/** + * @brief Enquires cards about their operating voltage and configures clock + * controls and stores SD information that will be needed in future + * in the SD handle. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_PowerON(SD_HandleTypeDef *hsd) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + __IO HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t response = 0, count = 0, validvoltage = 0; + uint32_t sdtype = SD_STD_CAPACITY; + + /* Power ON Sequence -------------------------------------------------------*/ + /* Disable SDIO Clock */ + __HAL_SD_SDIO_DISABLE(); + + /* Set Power State to ON */ + SDIO_PowerState_ON(hsd->Instance); + + /* 1ms: required power up waiting time before starting the SD initialization + sequence */ + HAL_Delay(1); + + /* Enable SDIO Clock */ + __HAL_SD_SDIO_ENABLE(); + + /* CMD0: GO_IDLE_STATE -----------------------------------------------------*/ + /* No CMD response required */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_GO_IDLE_STATE; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_NO; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdError(hsd); + + if(errorstate != SD_OK) + { + /* CMD Response Timeout (wait for CMDSENT flag) */ + return errorstate; + } + + /* CMD8: SEND_IF_COND ------------------------------------------------------*/ + /* Send CMD8 to verify SD card interface operating condition */ + /* Argument: - [31:12]: Reserved (shall be set to '0') + - [11:8]: Supply Voltage (VHS) 0x1 (Range: 2.7-3.6 V) + - [7:0]: Check Pattern (recommended 0xAA) */ + /* CMD Response: R7 */ + sdio_cmdinitstructure.Argument = SD_CHECK_PATTERN; + sdio_cmdinitstructure.CmdIndex = SD_SDIO_SEND_IF_COND; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp7Error(hsd); + + if (errorstate == SD_OK) + { + /* SD Card 2.0 */ + hsd->CardType = STD_CAPACITY_SD_CARD_V2_0; + sdtype = SD_HIGH_CAPACITY; + } + + /* Send CMD55 */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + /* If errorstate is Command Timeout, it is a MMC card */ + /* If errorstate is SD_OK it is a SD card: SD card 2.0 (voltage range mismatch) + or SD card 1.x */ + if(errorstate == SD_OK) + { + /* SD CARD */ + /* Send ACMD41 SD_APP_OP_COND with Argument 0x80100000 */ + while((!validvoltage) && (count < SD_MAX_VOLT_TRIAL)) + { + + /* SEND CMD55 APP_CMD with RCA as 0 */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD41 */ + sdio_cmdinitstructure.Argument = SD_VOLTAGE_WINDOW_SD | sdtype; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SD_APP_OP_COND; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp3Error(hsd); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get command response */ + response = SDIO_GetResponse(SDIO_RESP1); + + /* Get operating voltage*/ + validvoltage = (((response >> 31) == 1) ? 1 : 0); + + count++; + } + + if(count >= SD_MAX_VOLT_TRIAL) + { + errorstate = SD_INVALID_VOLTRANGE; + + return errorstate; + } + + if((response & SD_HIGH_CAPACITY) == SD_HIGH_CAPACITY) /* (response &= SD_HIGH_CAPACITY) */ + { + hsd->CardType = HIGH_CAPACITY_SD_CARD; + } + + } /* else MMC Card */ + + return errorstate; +} + +/** + * @brief Turns the SDIO output signals off. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_PowerOFF(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + + /* Set Power State to OFF */ + SDIO_PowerState_OFF(hsd->Instance); + + return errorstate; +} + +/** + * @brief Returns the current card's status. + * @param hsd: SD handle + * @param pCardStatus: pointer to the buffer that will contain the SD card + * status (Card Status register) + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_SendStatus(SD_HandleTypeDef *hsd, uint32_t *pCardStatus) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + if(pCardStatus == NULL) + { + errorstate = SD_INVALID_PARAMETER; + + return errorstate; + } + + /* Send Status command */ + sdio_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdio_cmdinitstructure.CmdIndex = SD_CMD_SEND_STATUS; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SEND_STATUS); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Get SD card status */ + *pCardStatus = SDIO_GetResponse(SDIO_RESP1); + + return errorstate; +} + +/** + * @brief Checks for error conditions for CMD0. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdError(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t timeout, tmp; + + timeout = SDIO_CMD0TIMEOUT; + + tmp = __HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CMDSENT); + + while((timeout > 0) && (!tmp)) + { + tmp = __HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CMDSENT); + timeout--; + } + + if(timeout == 0) + { + errorstate = SD_CMD_RSP_TIMEOUT; + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Checks for error conditions for R7 response. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp7Error(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_ERROR; + uint32_t timeout = SDIO_CMD0TIMEOUT, tmp; + + tmp = __HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT); + + while((!tmp) && (timeout > 0)) + { + tmp = __HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT); + timeout--; + } + + tmp = __HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CTIMEOUT); + + if((timeout == 0) || tmp) + { + /* Card is not V2.0 compliant or card does not support the set voltage range */ + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CTIMEOUT); + + return errorstate; + } + + if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CMDREND)) + { + /* Card is SD V2.0 compliant */ + errorstate = SD_OK; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CMDREND); + + return errorstate; + } + + return errorstate; +} + +/** + * @brief Checks for error conditions for R1 response. + * @param hsd: SD handle + * @param SD_CMD: The sent command index + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp1Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t response_r1; + + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT)) + { + } + + if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CTIMEOUT); + + return errorstate; + } + else if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CCRCFAIL); + + return errorstate; + } + + /* Check response received is of desired command */ + if(SDIO_GetCommandResponse(hsd->Instance) != SD_CMD) + { + errorstate = SD_ILLEGAL_CMD; + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + /* We have received response, retrieve it for analysis */ + response_r1 = SDIO_GetResponse(SDIO_RESP1); + + if((response_r1 & SD_OCR_ERRORBITS) == SD_ALLZERO) + { + return errorstate; + } + + if((response_r1 & SD_OCR_ADDR_OUT_OF_RANGE) == SD_OCR_ADDR_OUT_OF_RANGE) + { + return(SD_ADDR_OUT_OF_RANGE); + } + + if((response_r1 & SD_OCR_ADDR_MISALIGNED) == SD_OCR_ADDR_MISALIGNED) + { + return(SD_ADDR_MISALIGNED); + } + + if((response_r1 & SD_OCR_BLOCK_LEN_ERR) == SD_OCR_BLOCK_LEN_ERR) + { + return(SD_BLOCK_LEN_ERR); + } + + if((response_r1 & SD_OCR_ERASE_SEQ_ERR) == SD_OCR_ERASE_SEQ_ERR) + { + return(SD_ERASE_SEQ_ERR); + } + + if((response_r1 & SD_OCR_BAD_ERASE_PARAM) == SD_OCR_BAD_ERASE_PARAM) + { + return(SD_BAD_ERASE_PARAM); + } + + if((response_r1 & SD_OCR_WRITE_PROT_VIOLATION) == SD_OCR_WRITE_PROT_VIOLATION) + { + return(SD_WRITE_PROT_VIOLATION); + } + + if((response_r1 & SD_OCR_LOCK_UNLOCK_FAILED) == SD_OCR_LOCK_UNLOCK_FAILED) + { + return(SD_LOCK_UNLOCK_FAILED); + } + + if((response_r1 & SD_OCR_COM_CRC_FAILED) == SD_OCR_COM_CRC_FAILED) + { + return(SD_COM_CRC_FAILED); + } + + if((response_r1 & SD_OCR_ILLEGAL_CMD) == SD_OCR_ILLEGAL_CMD) + { + return(SD_ILLEGAL_CMD); + } + + if((response_r1 & SD_OCR_CARD_ECC_FAILED) == SD_OCR_CARD_ECC_FAILED) + { + return(SD_CARD_ECC_FAILED); + } + + if((response_r1 & SD_OCR_CC_ERROR) == SD_OCR_CC_ERROR) + { + return(SD_CC_ERROR); + } + + if((response_r1 & SD_OCR_GENERAL_UNKNOWN_ERROR) == SD_OCR_GENERAL_UNKNOWN_ERROR) + { + return(SD_GENERAL_UNKNOWN_ERROR); + } + + if((response_r1 & SD_OCR_STREAM_READ_UNDERRUN) == SD_OCR_STREAM_READ_UNDERRUN) + { + return(SD_STREAM_READ_UNDERRUN); + } + + if((response_r1 & SD_OCR_STREAM_WRITE_OVERRUN) == SD_OCR_STREAM_WRITE_OVERRUN) + { + return(SD_STREAM_WRITE_OVERRUN); + } + + if((response_r1 & SD_OCR_CID_CSD_OVERWRITE) == SD_OCR_CID_CSD_OVERWRITE) + { + return(SD_CID_CSD_OVERWRITE); + } + + if((response_r1 & SD_OCR_WP_ERASE_SKIP) == SD_OCR_WP_ERASE_SKIP) + { + return(SD_WP_ERASE_SKIP); + } + + if((response_r1 & SD_OCR_CARD_ECC_DISABLED) == SD_OCR_CARD_ECC_DISABLED) + { + return(SD_CARD_ECC_DISABLED); + } + + if((response_r1 & SD_OCR_ERASE_RESET) == SD_OCR_ERASE_RESET) + { + return(SD_ERASE_RESET); + } + + if((response_r1 & SD_OCR_AKE_SEQ_ERROR) == SD_OCR_AKE_SEQ_ERROR) + { + return(SD_AKE_SEQ_ERROR); + } + + return errorstate; +} + +/** + * @brief Checks for error conditions for R3 (OCR) response. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp3Error(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + + while (!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT)) + { + } + + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CTIMEOUT); + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Checks for error conditions for R2 (CID or CSD) response. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp2Error(SD_HandleTypeDef *hsd) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + + while (!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT)) + { + } + + if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CTIMEOUT); + + return errorstate; + } + else if (__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CCRCFAIL); + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + return errorstate; +} + +/** + * @brief Checks for error conditions for R6 (RCA) response. + * @param hsd: SD handle + * @param SD_CMD: The sent command index + * @param pRCA: Pointer to the variable that will contain the SD card relative + * address RCA + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_CmdResp6Error(SD_HandleTypeDef *hsd, uint8_t SD_CMD, uint16_t *pRCA) +{ + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t response_r1; + + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT)) + { + } + + if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CTIMEOUT); + + return errorstate; + } + else if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CCRCFAIL); + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Check response received is of desired command */ + if(SDIO_GetCommandResponse(hsd->Instance) != SD_CMD) + { + errorstate = SD_ILLEGAL_CMD; + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + /* We have received response, retrieve it. */ + response_r1 = SDIO_GetResponse(SDIO_RESP1); + + if((response_r1 & (SD_R6_GENERAL_UNKNOWN_ERROR | SD_R6_ILLEGAL_CMD | SD_R6_COM_CRC_FAILED)) == SD_ALLZERO) + { + *pRCA = (uint16_t) (response_r1 >> 16); + + return errorstate; + } + + if((response_r1 & SD_R6_GENERAL_UNKNOWN_ERROR) == SD_R6_GENERAL_UNKNOWN_ERROR) + { + return(SD_GENERAL_UNKNOWN_ERROR); + } + + if((response_r1 & SD_R6_ILLEGAL_CMD) == SD_R6_ILLEGAL_CMD) + { + return(SD_ILLEGAL_CMD); + } + + if((response_r1 & SD_R6_COM_CRC_FAILED) == SD_R6_COM_CRC_FAILED) + { + return(SD_COM_CRC_FAILED); + } + + return errorstate; +} + +/** + * @brief Enables the SDIO wide bus mode. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_WideBus_Enable(SD_HandleTypeDef *hsd) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + uint32_t scr[2] = {0, 0}; + + if((SDIO_GetResponse(SDIO_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Get SCR Register */ + errorstate = SD_FindSCR(hsd, scr); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* If requested card supports wide bus operation */ + if((scr[1] & SD_WIDE_BUS_SUPPORT) != SD_ALLZERO) + { + /* Send CMD55 APP_CMD with argument as card's RCA.*/ + sdio_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send ACMD6 APP_CMD with argument as 2 for wide bus mode */ + sdio_cmdinitstructure.Argument = 2; + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_SD_SET_BUSWIDTH; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_SD_SET_BUSWIDTH); + + if(errorstate != SD_OK) + { + return errorstate; + } + + return errorstate; + } + else + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } +} + +/** + * @brief Disables the SDIO wide bus mode. + * @param hsd: SD handle + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_WideBus_Disable(SD_HandleTypeDef *hsd) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + + uint32_t scr[2] = {0, 0}; + + if((SDIO_GetResponse(SDIO_RESP1) & SD_CARD_LOCKED) == SD_CARD_LOCKED) + { + errorstate = SD_LOCK_UNLOCK_FAILED; + + return errorstate; + } + + /* Get SCR Register */ + errorstate = SD_FindSCR(hsd, scr); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* If requested card supports 1 bit mode operation */ + if((scr[1] & SD_SINGLE_BUS_SUPPORT) != SD_ALLZERO) + { + /* Send CMD55 APP_CMD with argument as card's RCA */ + sdio_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send ACMD6 APP_CMD with argument as 0 for single bus mode */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_SD_SET_BUSWIDTH; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_SD_SET_BUSWIDTH); + + if(errorstate != SD_OK) + { + return errorstate; + } + + return errorstate; + } + else + { + errorstate = SD_REQUEST_NOT_APPLICABLE; + + return errorstate; + } +} + + +/** + * @brief Finds the SD card SCR register value. + * @param hsd: SD handle + * @param pSCR: pointer to the buffer that will contain the SCR value + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_FindSCR(SD_HandleTypeDef *hsd, uint32_t *pSCR) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + SDIO_DataInitTypeDef sdio_datainitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + uint32_t index = 0; + uint32_t tempscr[2] = {0, 0}; + + /* Set Block Size To 8 Bytes */ + /* Send CMD55 APP_CMD with argument as card's RCA */ + sdio_cmdinitstructure.Argument = (uint32_t)8; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SET_BLOCKLEN; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SET_BLOCKLEN); + + if(errorstate != SD_OK) + { + return errorstate; + } + + /* Send CMD55 APP_CMD with argument as card's RCA */ + sdio_cmdinitstructure.Argument = (uint32_t)((hsd->RCA) << 16); + sdio_cmdinitstructure.CmdIndex = SD_CMD_APP_CMD; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_APP_CMD); + + if(errorstate != SD_OK) + { + return errorstate; + } + sdio_datainitstructure.DataTimeOut = SD_DATATIMEOUT; + sdio_datainitstructure.DataLength = 8; + sdio_datainitstructure.DataBlockSize = SDIO_DATABLOCK_SIZE_8B; + sdio_datainitstructure.TransferDir = SDIO_TRANSFER_DIR_TO_SDIO; + sdio_datainitstructure.TransferMode = SDIO_TRANSFER_MODE_BLOCK; + sdio_datainitstructure.DPSM = SDIO_DPSM_ENABLE; + SDIO_DataConfig(hsd->Instance, &sdio_datainitstructure); + + /* Send ACMD51 SD_APP_SEND_SCR with argument as 0 */ + sdio_cmdinitstructure.Argument = 0; + sdio_cmdinitstructure.CmdIndex = SD_CMD_SD_APP_SEND_SCR; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + /* Check for error conditions */ + errorstate = SD_CmdResp1Error(hsd, SD_CMD_SD_APP_SEND_SCR); + + if(errorstate != SD_OK) + { + return errorstate; + } +#ifdef SDIO_STA_STBITERR + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND | SDIO_FLAG_STBITERR)) +#else /* SDIO_STA_STBITERR not defined */ + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR | SDIO_FLAG_DCRCFAIL | SDIO_FLAG_DTIMEOUT | SDIO_FLAG_DBCKEND)) +#endif /* SDIO_STA_STBITERR */ + { + if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXDAVL)) + { + *(tempscr + index) = SDIO_ReadFIFO(hsd->Instance); + index++; + } + } + + if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DTIMEOUT)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DTIMEOUT); + + errorstate = SD_DATA_TIMEOUT; + + return errorstate; + } + else if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_DCRCFAIL)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_DCRCFAIL); + + errorstate = SD_DATA_CRC_FAIL; + + return errorstate; + } + else if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_RXOVERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_RXOVERR); + + errorstate = SD_RX_OVERRUN; + + return errorstate; + } +#ifdef SDIO_STA_STBITERR + else if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_STBITERR)) + { + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_STBITERR); + + errorstate = SD_START_BIT_ERR; + + return errorstate; + } +#endif /* SDIO_STA_STBITERR */ + else + { + /* No error flag set */ + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + *(pSCR + 1) = ((tempscr[0] & SD_0TO7BITS) << 24) | ((tempscr[0] & SD_8TO15BITS) << 8) |\ + ((tempscr[0] & SD_16TO23BITS) >> 8) | ((tempscr[0] & SD_24TO31BITS) >> 24); + + *(pSCR) = ((tempscr[1] & SD_0TO7BITS) << 24) | ((tempscr[1] & SD_8TO15BITS) << 8) |\ + ((tempscr[1] & SD_16TO23BITS) >> 8) | ((tempscr[1] & SD_24TO31BITS) >> 24); + + return errorstate; +} + +/** + * @brief Checks if the SD card is in programming state. + * @param hsd: SD handle + * @param pStatus: pointer to the variable that will contain the SD card state + * @retval SD Card error state + */ +static HAL_SD_ErrorTypedef SD_IsCardProgramming(SD_HandleTypeDef *hsd, uint8_t *pStatus) +{ + SDIO_CmdInitTypeDef sdio_cmdinitstructure; + HAL_SD_ErrorTypedef errorstate = SD_OK; + __IO uint32_t responseR1 = 0; + + sdio_cmdinitstructure.Argument = (uint32_t)(hsd->RCA << 16); + sdio_cmdinitstructure.CmdIndex = SD_CMD_SEND_STATUS; + sdio_cmdinitstructure.Response = SDIO_RESPONSE_SHORT; + sdio_cmdinitstructure.WaitForInterrupt = SDIO_WAIT_NO; + sdio_cmdinitstructure.CPSM = SDIO_CPSM_ENABLE; + SDIO_SendCommand(hsd->Instance, &sdio_cmdinitstructure); + + while(!__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL | SDIO_FLAG_CMDREND | SDIO_FLAG_CTIMEOUT)) + { + } + + if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CTIMEOUT)) + { + errorstate = SD_CMD_RSP_TIMEOUT; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CTIMEOUT); + + return errorstate; + } + else if(__HAL_SD_SDIO_GET_FLAG(hsd, SDIO_FLAG_CCRCFAIL)) + { + errorstate = SD_CMD_CRC_FAIL; + + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_FLAG_CCRCFAIL); + + return errorstate; + } + else + { + /* No error flag set */ + } + + /* Check response received is of desired command */ + if((uint32_t)SDIO_GetCommandResponse(hsd->Instance) != SD_CMD_SEND_STATUS) + { + errorstate = SD_ILLEGAL_CMD; + + return errorstate; + } + + /* Clear all the static flags */ + __HAL_SD_SDIO_CLEAR_FLAG(hsd, SDIO_STATIC_FLAGS); + + + /* We have received response, retrieve it for analysis */ + responseR1 = SDIO_GetResponse(SDIO_RESP1); + + /* Find out card status */ + *pStatus = (uint8_t)((responseR1 >> 9) & 0x0000000F); + + if((responseR1 & SD_OCR_ERRORBITS) == SD_ALLZERO) + { + return errorstate; + } + + if((responseR1 & SD_OCR_ADDR_OUT_OF_RANGE) == SD_OCR_ADDR_OUT_OF_RANGE) + { + return(SD_ADDR_OUT_OF_RANGE); + } + + if((responseR1 & SD_OCR_ADDR_MISALIGNED) == SD_OCR_ADDR_MISALIGNED) + { + return(SD_ADDR_MISALIGNED); + } + + if((responseR1 & SD_OCR_BLOCK_LEN_ERR) == SD_OCR_BLOCK_LEN_ERR) + { + return(SD_BLOCK_LEN_ERR); + } + + if((responseR1 & SD_OCR_ERASE_SEQ_ERR) == SD_OCR_ERASE_SEQ_ERR) + { + return(SD_ERASE_SEQ_ERR); + } + + if((responseR1 & SD_OCR_BAD_ERASE_PARAM) == SD_OCR_BAD_ERASE_PARAM) + { + return(SD_BAD_ERASE_PARAM); + } + + if((responseR1 & SD_OCR_WRITE_PROT_VIOLATION) == SD_OCR_WRITE_PROT_VIOLATION) + { + return(SD_WRITE_PROT_VIOLATION); + } + + if((responseR1 & SD_OCR_LOCK_UNLOCK_FAILED) == SD_OCR_LOCK_UNLOCK_FAILED) + { + return(SD_LOCK_UNLOCK_FAILED); + } + + if((responseR1 & SD_OCR_COM_CRC_FAILED) == SD_OCR_COM_CRC_FAILED) + { + return(SD_COM_CRC_FAILED); + } + + if((responseR1 & SD_OCR_ILLEGAL_CMD) == SD_OCR_ILLEGAL_CMD) + { + return(SD_ILLEGAL_CMD); + } + + if((responseR1 & SD_OCR_CARD_ECC_FAILED) == SD_OCR_CARD_ECC_FAILED) + { + return(SD_CARD_ECC_FAILED); + } + + if((responseR1 & SD_OCR_CC_ERROR) == SD_OCR_CC_ERROR) + { + return(SD_CC_ERROR); + } + + if((responseR1 & SD_OCR_GENERAL_UNKNOWN_ERROR) == SD_OCR_GENERAL_UNKNOWN_ERROR) + { + return(SD_GENERAL_UNKNOWN_ERROR); + } + + if((responseR1 & SD_OCR_STREAM_READ_UNDERRUN) == SD_OCR_STREAM_READ_UNDERRUN) + { + return(SD_STREAM_READ_UNDERRUN); + } + + if((responseR1 & SD_OCR_STREAM_WRITE_OVERRUN) == SD_OCR_STREAM_WRITE_OVERRUN) + { + return(SD_STREAM_WRITE_OVERRUN); + } + + if((responseR1 & SD_OCR_CID_CSD_OVERWRITE) == SD_OCR_CID_CSD_OVERWRITE) + { + return(SD_CID_CSD_OVERWRITE); + } + + if((responseR1 & SD_OCR_WP_ERASE_SKIP) == SD_OCR_WP_ERASE_SKIP) + { + return(SD_WP_ERASE_SKIP); + } + + if((responseR1 & SD_OCR_CARD_ECC_DISABLED) == SD_OCR_CARD_ECC_DISABLED) + { + return(SD_CARD_ECC_DISABLED); + } + + if((responseR1 & SD_OCR_ERASE_RESET) == SD_OCR_ERASE_RESET) + { + return(SD_ERASE_RESET); + } + + if((responseR1 & SD_OCR_AKE_SEQ_ERROR) == SD_OCR_AKE_SEQ_ERROR) + { + return(SD_AKE_SEQ_ERROR); + } + + return errorstate; +} + +/** + * @} + */ + +#endif /* HAL_SD_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sdram.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sdram.c new file mode 100644 index 0000000..375293e --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sdram.c @@ -0,0 +1,842 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_sdram.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SDRAM HAL module driver. + * This file provides a generic firmware to drive SDRAM memories mounted + * as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control SDRAM memories. It uses the FMC layer functions to interface + with SDRAM devices. + The following sequence should be followed to configure the FMC to interface + with SDRAM memories: + + (#) Declare a SDRAM_HandleTypeDef handle structure, for example: + SDRAM_HandleTypeDef hdsram + + (++) Fill the SDRAM_HandleTypeDef handle "Init" field with the allowed + values of the structure member. + + (++) Fill the SDRAM_HandleTypeDef handle "Instance" field with a predefined + base register instance for NOR or SDRAM device + + (#) Declare a FMC_SDRAM_TimingTypeDef structure; for example: + FMC_SDRAM_TimingTypeDef Timing; + and fill its fields with the allowed values of the structure member. + + (#) Initialize the SDRAM Controller by calling the function HAL_SDRAM_Init(). This function + performs the following sequence: + + (##) MSP hardware layer configuration using the function HAL_SDRAM_MspInit() + (##) Control register configuration using the FMC SDRAM interface function + FMC_SDRAM_Init() + (##) Timing register configuration using the FMC SDRAM interface function + FMC_SDRAM_Timing_Init() + (##) Program the SDRAM external device by applying its initialization sequence + according to the device plugged in your hardware. This step is mandatory + for accessing the SDRAM device. + + (#) At this stage you can perform read/write accesses from/to the memory connected + to the SDRAM Bank. You can perform either polling or DMA transfer using the + following APIs: + (++) HAL_SDRAM_Read()/HAL_SDRAM_Write() for polling read/write access + (++) HAL_SDRAM_Read_DMA()/HAL_SDRAM_Write_DMA() for DMA read/write transfer + + (#) You can also control the SDRAM device by calling the control APIs HAL_SDRAM_WriteOperation_Enable()/ + HAL_SDRAM_WriteOperation_Disable() to respectively enable/disable the SDRAM write operation or + the function HAL_SDRAM_SendCommand() to send a specified command to the SDRAM + device. The command to be sent must be configured with the FMC_SDRAM_CommandTypeDef + structure. + + (#) You can continuously monitor the SDRAM device HAL state by calling the function + HAL_SDRAM_GetState() + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup SDRAM SDRAM + * @brief SDRAM driver modules + * @{ + */ +#ifdef HAL_SDRAM_MODULE_ENABLED +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SDRAM_Exported_Functions SDRAM Exported Functions + * @{ + */ + +/** @defgroup SDRAM_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### SDRAM Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to initialize/de-initialize + the SDRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Performs the SDRAM device initialization sequence. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param Timing: Pointer to SDRAM control timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Init(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_TimingTypeDef *Timing) +{ + /* Check the SDRAM handle parameter */ + if(hsdram == NULL) + { + return HAL_ERROR; + } + + if(hsdram->State == HAL_SDRAM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsdram->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_SDRAM_MspInit(hsdram); + } + + /* Initialize the SDRAM controller state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Initialize SDRAM control Interface */ + FMC_SDRAM_Init(hsdram->Instance, &(hsdram->Init)); + + /* Initialize SDRAM timing Interface */ + FMC_SDRAM_Timing_Init(hsdram->Instance, Timing, hsdram->Init.SDBank); + + /* Update the SDRAM controller state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Perform the SDRAM device initialization sequence. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_DeInit(SDRAM_HandleTypeDef *hsdram) +{ + /* Initialize the low level hardware (MSP) */ + HAL_SDRAM_MspDeInit(hsdram); + + /* Configure the SDRAM registers with their reset values */ + FMC_SDRAM_DeInit(hsdram->Instance, hsdram->Init.SDBank); + + /* Reset the SDRAM controller state */ + hsdram->State = HAL_SDRAM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief SDRAM MSP Init. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval None + */ +__weak void HAL_SDRAM_MspInit(SDRAM_HandleTypeDef *hsdram) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_MspInit could be implemented in the user file + */ +} + +/** + * @brief SDRAM MSP DeInit. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval None + */ +__weak void HAL_SDRAM_MspDeInit(SDRAM_HandleTypeDef *hsdram) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief This function handles SDRAM refresh error interrupt request. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status +*/ +void HAL_SDRAM_IRQHandler(SDRAM_HandleTypeDef *hsdram) +{ + /* Check SDRAM interrupt Rising edge flag */ + if(__FMC_SDRAM_GET_FLAG(hsdram->Instance, FMC_SDRAM_FLAG_REFRESH_IT)) + { + /* SDRAM refresh error interrupt callback */ + HAL_SDRAM_RefreshErrorCallback(hsdram); + + /* Clear SDRAM refresh error interrupt pending bit */ + __FMC_SDRAM_CLEAR_FLAG(hsdram->Instance, FMC_SDRAM_FLAG_REFRESH_ERROR); + } +} + +/** + * @brief SDRAM Refresh error callback. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval None + */ +__weak void HAL_SDRAM_RefreshErrorCallback(SDRAM_HandleTypeDef *hsdram) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_RefreshErrorCallback could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +__weak void HAL_SDRAM_DMA_XferCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_DMA_XferCpltCallback could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete error callback. + * @param hdma: DMA handle + * @retval None + */ +__weak void HAL_SDRAM_DMA_XferErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_SDRAM_DMA_XferErrorCallback could be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup SDRAM_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### SDRAM Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the SDRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Reads 8-bit data buffer from the SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_8b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint8_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint8_t *pSdramAddress = (uint8_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(hsdram->State == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Read data from source */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint8_t *)pSdramAddress; + pDstBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Writes 8-bit data buffer to SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_8b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint8_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint8_t *pSdramAddress = (uint8_t *)pAddress; + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint8_t *)pSdramAddress = *pSrcBuffer; + pSrcBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Reads 16-bit data buffer from the SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_16b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint16_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint16_t *pSdramAddress = (uint16_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(hsdram->State == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Read data from source */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint16_t *)pSdramAddress; + pDstBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Writes 16-bit data buffer to SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_16b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint16_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint16_t *pSdramAddress = (uint16_t *)pAddress; + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint16_t *)pSdramAddress = *pSrcBuffer; + pSrcBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Reads 32-bit data buffer from the SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_32b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint32_t *pSdramAddress = (uint32_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(hsdram->State == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Read data from source */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint32_t *)pSdramAddress; + pDstBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Writes 32-bit data buffer to SDRAM memory. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_32b(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint32_t *pSdramAddress = (uint32_t *)pAddress; + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint32_t *)pSdramAddress = *pSrcBuffer; + pSrcBuffer++; + pSdramAddress++; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Reads a Words data from the SDRAM memory using DMA transfer. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Read_DMA(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if(tmp == HAL_SDRAM_STATE_PRECHARGED) + { + return HAL_ERROR; + } + + /* Configure DMA user callbacks */ + hsdram->hdma->XferCpltCallback = HAL_SDRAM_DMA_XferCpltCallback; + hsdram->hdma->XferErrorCallback = HAL_SDRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsdram->hdma, (uint32_t)pAddress, (uint32_t)pDstBuffer, (uint32_t)BufferSize); + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} + +/** + * @brief Writes a Words data buffer to SDRAM memory using DMA transfer. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_Write_DMA(SDRAM_HandleTypeDef *hsdram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + uint32_t tmp = 0; + + /* Process Locked */ + __HAL_LOCK(hsdram); + + /* Check the SDRAM controller state */ + tmp = hsdram->State; + + if(tmp == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + else if((tmp == HAL_SDRAM_STATE_PRECHARGED) || (tmp == HAL_SDRAM_STATE_WRITE_PROTECTED)) + { + return HAL_ERROR; + } + + /* Configure DMA user callbacks */ + hsdram->hdma->XferCpltCallback = HAL_SDRAM_DMA_XferCpltCallback; + hsdram->hdma->XferErrorCallback = HAL_SDRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsdram->hdma, (uint32_t)pSrcBuffer, (uint32_t)pAddress, (uint32_t)BufferSize); + + /* Process Unlocked */ + __HAL_UNLOCK(hsdram); + + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup SDRAM_Exported_Functions_Group3 Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### SDRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the SDRAM interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically SDRAM write protection. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_WriteProtection_Enable(SDRAM_HandleTypeDef *hsdram) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Enable write protection */ + FMC_SDRAM_WriteProtection_Enable(hsdram->Instance, hsdram->Init.SDBank); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_WRITE_PROTECTED; + + return HAL_OK; +} + +/** + * @brief Disables dynamically SDRAM write protection. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_WriteProtection_Disable(SDRAM_HandleTypeDef *hsdram) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Disable write protection */ + FMC_SDRAM_WriteProtection_Disable(hsdram->Instance, hsdram->Init.SDBank); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Sends Command to the SDRAM bank. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param Command: SDRAM command structure + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_SendCommand(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Send SDRAM command */ + FMC_SDRAM_SendCommand(hsdram->Instance, Command, Timeout); + + /* Update the SDRAM controller state */ + if(Command->CommandMode == FMC_SDRAM_CMD_PALL) + { + hsdram->State = HAL_SDRAM_STATE_PRECHARGED; + } + else + { + hsdram->State = HAL_SDRAM_STATE_READY; + } + + return HAL_OK; +} + +/** + * @brief Programs the SDRAM Memory Refresh rate. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param RefreshRate: The SDRAM refresh rate value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_ProgramRefreshRate(SDRAM_HandleTypeDef *hsdram, uint32_t RefreshRate) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Program the refresh rate */ + FMC_SDRAM_ProgramRefreshRate(hsdram->Instance ,RefreshRate); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Sets the Number of consecutive SDRAM Memory auto Refresh commands. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @param AutoRefreshNumber: The SDRAM auto Refresh number + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SDRAM_SetAutoRefreshNumber(SDRAM_HandleTypeDef *hsdram, uint32_t AutoRefreshNumber) +{ + /* Check the SDRAM controller state */ + if(hsdram->State == HAL_SDRAM_STATE_BUSY) + { + return HAL_BUSY; + } + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_BUSY; + + /* Set the Auto-Refresh number */ + FMC_SDRAM_SetAutoRefreshNumber(hsdram->Instance ,AutoRefreshNumber); + + /* Update the SDRAM state */ + hsdram->State = HAL_SDRAM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Returns the SDRAM memory current mode. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval The SDRAM memory mode. + */ +uint32_t HAL_SDRAM_GetModeStatus(SDRAM_HandleTypeDef *hsdram) +{ + /* Return the SDRAM memory current mode */ + return(FMC_SDRAM_GetModeStatus(hsdram->Instance, hsdram->Init.SDBank)); +} + +/** + * @} + */ + +/** @defgroup SDRAM_Exported_Functions_Group4 State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### SDRAM State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the SDRAM controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the SDRAM state. + * @param hsdram: pointer to a SDRAM_HandleTypeDef structure that contains + * the configuration information for SDRAM module. + * @retval HAL state + */ +HAL_SDRAM_StateTypeDef HAL_SDRAM_GetState(SDRAM_HandleTypeDef *hsdram) +{ + return hsdram->State; +} + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_SDRAM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_smartcard.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_smartcard.c new file mode 100644 index 0000000..094a060 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_smartcard.c @@ -0,0 +1,1303 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_smartcard.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SMARTCARD HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the SMARTCARD peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The SMARTCARD HAL driver can be used as follows: + + (#) Declare a SMARTCARD_HandleTypeDef handle structure. + (#) Initialize the SMARTCARD low level resources by implementing the HAL_SMARTCARD_MspInit() API: + (##) Enable the USARTx interface clock. + (##) SMARTCARD pins configuration: + (+++) Enable the clock for the SMARTCARD GPIOs. + (+++) Configure these SMARTCARD pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_SMARTCARD_Transmit_IT() + and HAL_SMARTCARD_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_SMARTCARD_Transmit_DMA() + and HAL_SMARTCARD_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the SMARTCARD DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Word Length , Stop Bit, Parity, Hardware + flow control and Mode(Receiver/Transmitter) in the SMARTCARD Init structure. + + (#) Initialize the SMARTCARD registers by calling the HAL_SMARTCARD_Init() API: + (++) These APIs configure also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_SMARTCARD_MspInit() API. + [..] + (@) The specific SMARTCARD interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_SMARTCARD_ENABLE_IT() and __HAL_SMARTCARD_DISABLE_IT() inside the transmit and receive process. + + [..] + Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_SMARTCARD_Transmit() + (+) Receive an amount of data in blocking mode using HAL_SMARTCARD_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_SMARTCARD_Transmit_IT() + (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_SMARTCARD_Receive_IT() + (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback + (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_SMARTCARD_Transmit_DMA() + (+) At transmission end of transfer HAL_SMARTCARD_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_SMARTCARD_Receive_DMA() + (+) At reception end of transfer HAL_SMARTCARD_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_RxCpltCallback + (+) In case of transfer Error, HAL_SMARTCARD_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SMARTCARD_ErrorCallback + + *** SMARTCARD HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in SMARTCARD HAL driver. + + (+) __HAL_SMARTCARD_ENABLE: Enable the SMARTCARD peripheral + (+) __HAL_SMARTCARD_DISABLE: Disable the SMARTCARD peripheral + (+) __HAL_SMARTCARD_GET_FLAG : Check whether the specified SMARTCARD flag is set or not + (+) __HAL_SMARTCARD_CLEAR_FLAG : Clear the specified SMARTCARD pending flag + (+) __HAL_SMARTCARD_ENABLE_IT: Enable the specified SMARTCARD interrupt + (+) __HAL_SMARTCARD_DISABLE_IT: Disable the specified SMARTCARD interrupt + + [..] + (@) You can refer to the SMARTCARD HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup SMARTCARD SMARTCARD + * @brief HAL USART SMARTCARD module driver + * @{ + */ +#ifdef HAL_SMARTCARD_MODULE_ENABLED +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup SMARTCARD_Private_Constants + * @{ + */ +#define SMARTCARD_TIMEOUT_VALUE 22000 +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup SMARTCARD_Private_Functions + * @{ + */ +static void SMARTCARD_SetConfig (SMARTCARD_HandleTypeDef *hsc); +static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc); +static HAL_StatusTypeDef SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard); +static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc); +static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsc, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +/** + * @} + */ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SMARTCARD_Exported_Functions SMARTCARD Exported Functions + * @{ + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group1 SmartCard Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USART + in Smartcard mode. + [..] + The Smartcard interface is designed to support asynchronous protocol Smartcards as + defined in the ISO 7816-3 standard. + [..] + The USART can provide a clock to the smartcard through the SCLK output. + In smartcard mode, SCLK is not associated to the communication but is simply derived + from the internal peripheral input clock through a 5-bit prescaler. + [..] + (+) For the Smartcard mode only these parameters can be configured: + (++) Baud Rate + (++) Word Length => Should be 9 bits (8 bits + parity) + (++) Stop Bit + (++) Parity: => Should be enabled + +-------------------------------------------------------------+ + | M bit | PCE bit | SMARTCARD frame | + |---------------------|---------------------------------------| + | 1 | 1 | | SB | 8 bit data | PB | STB | | + +-------------------------------------------------------------+ + (++) USART polarity + (++) USART phase + (++) USART LastBit + (++) Receiver/transmitter modes + (++) Prescaler + (++) GuardTime + (++) NACKState: The Smartcard NACK state + + (+) Recommended SmartCard interface configuration to get the Answer to Reset from the Card: + (++) Word Length = 9 Bits + (++) 1.5 Stop Bit + (++) Even parity + (++) BaudRate = 12096 baud + (++) Tx and Rx enabled + [..] + Please refer to the ISO 7816-3 specification for more details. + + -@- It is also possible to choose 0.5 stop bit for receiving but it is recommended + to use 1.5 stop bits for both transmitting and receiving to avoid switching + between the two configurations. + [..] + The HAL_SMARTCARD_Init() function follows the USART SmartCard configuration + procedure (details for the procedure are available in reference manual (RM0329)). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the SmartCard mode according to the specified + * parameters in the SMARTCARD_InitTypeDef and create the associated handle . + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Init(SMARTCARD_HandleTypeDef *hsc) +{ + /* Check the SMARTCARD handle allocation */ + if(hsc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance)); + assert_param(IS_SMARTCARD_NACK_STATE(hsc->Init.NACKState)); + + if(hsc->State == HAL_SMARTCARD_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsc->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_SMARTCARD_MspInit(hsc); + } + + hsc->State = HAL_SMARTCARD_STATE_BUSY; + + /* Set the Prescaler */ + MODIFY_REG(hsc->Instance->GTPR, USART_GTPR_PSC, hsc->Init.Prescaler); + + /* Set the Guard Time */ + MODIFY_REG(hsc->Instance->GTPR, USART_GTPR_GT, ((hsc->Init.GuardTime)<<8)); + + /* Set the Smartcard Communication parameters */ + SMARTCARD_SetConfig(hsc); + + /* In SmartCard mode, the following bits must be kept cleared: + - LINEN bit in the USART_CR2 register + - HDSEL and IREN bits in the USART_CR3 register.*/ + hsc->Instance->CR2 &= ~USART_CR2_LINEN; + hsc->Instance->CR3 &= ~(USART_CR3_IREN | USART_CR3_HDSEL); + + /* Enable the SMARTCARD Parity Error Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_PE); + + /* Enable the SMARTCARD Framing Error Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_ERR); + + /* Enable the Peripheral */ + __HAL_SMARTCARD_ENABLE(hsc); + + /* Configure the Smartcard NACK state */ + MODIFY_REG(hsc->Instance->CR3, USART_CR3_NACK, hsc->Init.NACKState); + + /* Enable the SC mode by setting the SCEN bit in the CR3 register */ + hsc->Instance->CR3 |= (USART_CR3_SCEN); + + /* Initialize the SMARTCARD state*/ + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->State= HAL_SMARTCARD_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the USART SmartCard peripheral + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_DeInit(SMARTCARD_HandleTypeDef *hsc) +{ + /* Check the SMARTCARD handle allocation */ + if(hsc == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance)); + + hsc->State = HAL_SMARTCARD_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_SMARTCARD_DISABLE(hsc); + + /* DeInit the low level hardware */ + HAL_SMARTCARD_MspDeInit(hsc); + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + hsc->State = HAL_SMARTCARD_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsc); + + return HAL_OK; +} + +/** + * @brief SMARTCARD MSP Init + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval None + */ + __weak void HAL_SMARTCARD_MspInit(SMARTCARD_HandleTypeDef *hsc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_MspInit could be implemented in the user file + */ +} + +/** + * @brief SMARTCARD MSP DeInit + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval None + */ + __weak void HAL_SMARTCARD_MspDeInit(SMARTCARD_HandleTypeDef *hsc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group2 IO operation functions + * @brief SMARTCARD Transmit and Receive functions + * +@verbatim + =============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the SMARTCARD data transfers. + [..] + Smartcard is a single wire half duplex communication protocol. + The Smartcard interface is designed to support asynchronous protocol Smartcards as + defined in the ISO 7816-3 standard. The USART should be configured as: + (+) 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register + (+) 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2 register. + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) Non Blocking mode: The communication is performed using Interrupts + or DMA, These APIs return the HAL status. + The end of the data processing will be indicated through the + dedicated SMARTCARD IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_SMARTCARD_TxCpltCallback(), HAL_SMARTCARD_RxCpltCallback() user callbacks + will be executed respectively at the end of the Transmit or Receive process + The HAL_SMARTCARD_ErrorCallback() user callback will be executed when a communication error is detected + + (#) Blocking mode APIs are : + (++) HAL_SMARTCARD_Transmit() + (++) HAL_SMARTCARD_Receive() + + (#) Non Blocking mode APIs with Interrupt are : + (++) HAL_SMARTCARD_Transmit_IT() + (++) HAL_SMARTCARD_Receive_IT() + (++) HAL_SMARTCARD_IRQHandler() + + (#) Non Blocking mode functions with DMA are : + (++) HAL_SMARTCARD_Transmit_DMA() + (++) HAL_SMARTCARD_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_SMARTCARD_TxCpltCallback() + (++) HAL_SMARTCARD_RxCpltCallback() + (++) HAL_SMARTCARD_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Send an amount of data in blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_RX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + /* Check if a non-blocking receive process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_RX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX; + } + + hsc->TxXferSize = Size; + hsc->TxXferCount = Size; + while(hsc->TxXferCount > 0) + { + hsc->TxXferCount--; + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pData; + hsc->Instance->DR = (*tmp & (uint16_t)0x01FF); + pData +=1; + } + + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_TC, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Check if a non-blocking receive process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_RX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_READY; + } + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + + /* Check if a non-blocking transmit process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_RX; + } + + hsc->RxXferSize = Size; + hsc->RxXferCount = Size; + + /* Check the remain data to be received */ + while(hsc->RxXferCount > 0) + { + hsc->RxXferCount--; + if(SMARTCARD_WaitOnFlagUntilTimeout(hsc, SMARTCARD_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pData; + *tmp = (uint16_t)(hsc->Instance->DR & (uint16_t)0x00FF); + pData +=1; + } + + /* Check if a non-blocking transmit process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_READY; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in non blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_RX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pTxBuffPtr = pData; + hsc->TxXferSize = Size; + hsc->TxXferCount = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + /* Check if a non-blocking receive process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_RX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + /* Enable the SMARTCARD Parity Error Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_PE); + + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_ERR); + + /* Enable the SMARTCARD Transmit data register empty Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_TXE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pRxBuffPtr = pData; + hsc->RxXferSize = Size; + hsc->RxXferCount = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + /* Check if a non-blocking transmit process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_RX; + } + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + /* Enable the SMARTCARD Data Register not empty Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_RXNE); + + /* Enable the SMARTCARD Parity Error Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_PE); + + /* Enable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_ERR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in non blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Transmit_DMA(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_RX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pTxBuffPtr = pData; + hsc->TxXferSize = Size; + hsc->TxXferCount = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + /* Check if a non-blocking receive process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_RX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX; + } + + /* Set the SMARTCARD DMA transfer complete callback */ + hsc->hdmatx->XferCpltCallback = SMARTCARD_DMATransmitCplt; + + /* Set the DMA error callback */ + hsc->hdmatx->XferErrorCallback = SMARTCARD_DMAError; + + /* Enable the SMARTCARD transmit DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hsc->hdmatx, *(uint32_t*)tmp, (uint32_t)&hsc->Instance->DR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_SMARTCARD_CLEAR_FLAG(hsc, SMARTCARD_FLAG_TC); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the SMARTCARD CR3 register */ + hsc->Instance->CR3 |= USART_CR3_DMAT; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be received + * @note When the SMARTCARD parity is enabled (PCE = 1) the data received contain the parity bit.s + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SMARTCARD_Receive_DMA(SMARTCARD_HandleTypeDef *hsc, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_READY) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsc); + + hsc->pRxBuffPtr = pData; + hsc->RxXferSize = Size; + + hsc->ErrorCode = HAL_SMARTCARD_ERROR_NONE; + /* Check if a non-blocking transmit process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX_RX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_RX; + } + + /* Set the SMARTCARD DMA transfer complete callback */ + hsc->hdmarx->XferCpltCallback = SMARTCARD_DMAReceiveCplt; + + /* Set the DMA error callback */ + hsc->hdmarx->XferErrorCallback = SMARTCARD_DMAError; + + /* Enable the DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(hsc->hdmarx, (uint32_t)&hsc->Instance->DR, *(uint32_t*)tmp, Size); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the SMARTCARD CR3 register */ + hsc->Instance->CR3 |= USART_CR3_DMAR; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief This function handles SMARTCARD interrupt request. + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval None + */ +void HAL_SMARTCARD_IRQHandler(SMARTCARD_HandleTypeDef *hsc) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + tmp1 = hsc->Instance->SR; + tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_PE); + + /* SMARTCARD parity error interrupt occurred --------------------------------*/ + if(((tmp1 & SMARTCARD_FLAG_PE) != RESET) && (tmp2 != RESET)) + { + __HAL_SMARTCARD_CLEAR_PEFLAG(hsc); + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_PE; + } + + tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_ERR); + /* SMARTCARD frame error interrupt occurred ---------------------------------*/ + if(((tmp1 & SMARTCARD_FLAG_FE) != RESET) && (tmp2 != RESET)) + { + __HAL_SMARTCARD_CLEAR_FEFLAG(hsc); + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_FE; + } + + tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_ERR); + /* SMARTCARD noise error interrupt occurred ---------------------------------*/ + if(((tmp1 & SMARTCARD_FLAG_NE) != RESET) && (tmp2 != RESET)) + { + __HAL_SMARTCARD_CLEAR_NEFLAG(hsc); + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_NE; + } + + tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_ERR); + /* SMARTCARD Over-Run interrupt occurred ------------------------------------*/ + if(((tmp1 & SMARTCARD_FLAG_ORE) != RESET) && (tmp2 != RESET)) + { + __HAL_SMARTCARD_CLEAR_OREFLAG(hsc); + hsc->ErrorCode |= HAL_SMARTCARD_ERROR_ORE; + } + + tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_RXNE); + /* SMARTCARD in mode Receiver ----------------------------------------------*/ + if(((tmp1 & SMARTCARD_FLAG_RXNE) != RESET) && (tmp2 != RESET)) + { + SMARTCARD_Receive_IT(hsc); + } + + tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_TXE); + /* SMARTCARD in mode Transmitter -------------------------------------------*/ + if(((tmp1 & SMARTCARD_FLAG_TXE) != RESET) && (tmp2 != RESET)) + { + SMARTCARD_Transmit_IT(hsc); + } + + tmp2 = __HAL_SMARTCARD_GET_IT_SOURCE(hsc, SMARTCARD_IT_TC); + /* SMARTCARD in mode Transmitter (transmission end) ------------------------*/ + if(((tmp1 & SMARTCARD_FLAG_TC) != RESET) && (tmp2 != RESET)) + { + SMARTCARD_EndTransmit_IT(hsc); + } + + /* Call the Error call Back in case of Errors */ + if(hsc->ErrorCode != HAL_SMARTCARD_ERROR_NONE) + { + /* Set the SMARTCARD state ready to be able to start again the process */ + hsc->State= HAL_SMARTCARD_STATE_READY; + HAL_SMARTCARD_ErrorCallback(hsc); + } +} + +/** + * @brief Tx Transfer completed callbacks + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval None + */ + __weak void HAL_SMARTCARD_TxCpltCallback(SMARTCARD_HandleTypeDef *hsc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval None + */ +__weak void HAL_SMARTCARD_RxCpltCallback(SMARTCARD_HandleTypeDef *hsc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SMARTCARD error callbacks + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval None + */ + __weak void HAL_SMARTCARD_ErrorCallback(SMARTCARD_HandleTypeDef *hsc) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SMARTCARD_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SMARTCARD_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief SMARTCARD State and Errors functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SmartCard. + (+) HAL_SMARTCARD_GetState() API can be helpful to check in run-time the state of the SmartCard peripheral. + (+) HAL_SMARTCARD_GetError() check in run-time errors that could be occurred during communication. +@endverbatim + * @{ + */ + +/** + * @brief return the SMARTCARD state + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval HAL state + */ +HAL_SMARTCARD_StateTypeDef HAL_SMARTCARD_GetState(SMARTCARD_HandleTypeDef *hsc) +{ + return hsc->State; +} + +/** + * @brief Return the SMARTCARD error code + * @param hsc : pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD. + * @retval SMARTCARD Error Code + */ +uint32_t HAL_SMARTCARD_GetError(SMARTCARD_HandleTypeDef *hsc) +{ + return hsc->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief DMA SMARTCARD transmit process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SMARTCARD_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + hsc->TxXferCount = 0; + + /* Disable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + hsc->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAT); + + /* Enable the SMARTCARD Transmit Complete Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_TC); +} + +/** + * @brief DMA SMARTCARD receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SMARTCARD_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + hsc->RxXferCount = 0; + + /* Disable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + hsc->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAR); + + /* Check if a non-blocking transmit process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_READY; + } + + HAL_SMARTCARD_RxCpltCallback(hsc); +} + +/** + * @brief DMA SMARTCARD communication error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SMARTCARD_DMAError(DMA_HandleTypeDef *hdma) +{ + SMARTCARD_HandleTypeDef* hsc = ( SMARTCARD_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + hsc->RxXferCount = 0; + hsc->TxXferCount = 0; + hsc->ErrorCode = HAL_SMARTCARD_ERROR_DMA; + hsc->State= HAL_SMARTCARD_STATE_READY; + + HAL_SMARTCARD_ErrorCallback(hsc); +} + +/** + * @brief This function handles SMARTCARD Communication Timeout. + * @param hsc: SMARTCARD handle + * @param Flag: specifies the SMARTCARD flag to check. + * @param Status: The new Flag status (SET or RESET). + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_WaitOnFlagUntilTimeout(SMARTCARD_HandleTypeDef *hsc, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_SMARTCARD_GET_FLAG(hsc, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE and RXNE interrupts for the interrupt process */ + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_TXE); + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_RXNE); + + hsc->State= HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_SMARTCARD_GET_FLAG(hsc, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE and RXNE interrupts for the interrupt process */ + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_TXE); + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_RXNE); + + hsc->State= HAL_SMARTCARD_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hsc); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** + * @brief Send an amount of data in non blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_Transmit_IT(SMARTCARD_HandleTypeDef *hsc) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_BUSY_TX) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX_RX)) + { + tmp = (uint16_t*) hsc->pTxBuffPtr; + hsc->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); + hsc->pTxBuffPtr += 1; + + if(--hsc->TxXferCount == 0) + { + /* Disable the SMARTCARD Transmit data register empty Interrupt */ + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_TXE); + + /* Enable the SMARTCARD Transmit Complete Interrupt */ + __HAL_SMARTCARD_ENABLE_IT(hsc, SMARTCARD_IT_TC); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Wraps up transmission in non blocking mode. + * @param hsmartcard: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for the specified SMARTCARD module. + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_EndTransmit_IT(SMARTCARD_HandleTypeDef *hsmartcard) +{ + /* Disable the SMARTCARD Transmit Complete Interrupt */ + __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_TC); + + /* Check if a receive process is ongoing or not */ + if(hsmartcard->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) + { + hsmartcard->State = HAL_SMARTCARD_STATE_BUSY_RX; + } + else + { + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_SMARTCARD_DISABLE_IT(hsmartcard, SMARTCARD_IT_ERR); + + hsmartcard->State = HAL_SMARTCARD_STATE_READY; + } + + HAL_SMARTCARD_TxCpltCallback(hsmartcard); + + return HAL_OK; +} + +/** + * @brief Receive an amount of data in non blocking mode + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval HAL status + */ +static HAL_StatusTypeDef SMARTCARD_Receive_IT(SMARTCARD_HandleTypeDef *hsc) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = hsc->State; + if((tmp1 == HAL_SMARTCARD_STATE_BUSY_RX) || (tmp1 == HAL_SMARTCARD_STATE_BUSY_TX_RX)) + { + tmp = (uint16_t*) hsc->pRxBuffPtr; + *tmp = (uint16_t)(hsc->Instance->DR & (uint16_t)0x00FF); + hsc->pRxBuffPtr += 1; + + if(--hsc->RxXferCount == 0) + { + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_RXNE); + + /* Disable the SMARTCARD Parity Error Interrupt */ + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_PE); + + /* Disable the SMARTCARD Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_SMARTCARD_DISABLE_IT(hsc, SMARTCARD_IT_ERR); + + /* Check if a non-blocking transmit process is ongoing or not */ + if(hsc->State == HAL_SMARTCARD_STATE_BUSY_TX_RX) + { + hsc->State = HAL_SMARTCARD_STATE_BUSY_TX; + } + else + { + hsc->State = HAL_SMARTCARD_STATE_READY; + } + + HAL_SMARTCARD_RxCpltCallback(hsc); + + return HAL_OK; + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configure the SMARTCARD peripheral + * @param hsc: pointer to a SMARTCARD_HandleTypeDef structure that contains + * the configuration information for SMARTCARD module. + * @retval None + */ +static void SMARTCARD_SetConfig(SMARTCARD_HandleTypeDef *hsc) +{ + uint32_t tmpreg = 0x00; + + /* Check the parameters */ + assert_param(IS_SMARTCARD_INSTANCE(hsc->Instance)); + assert_param(IS_SMARTCARD_POLARITY(hsc->Init.CLKPolarity)); + assert_param(IS_SMARTCARD_PHASE(hsc->Init.CLKPhase)); + assert_param(IS_SMARTCARD_LASTBIT(hsc->Init.CLKLastBit)); + assert_param(IS_SMARTCARD_BAUDRATE(hsc->Init.BaudRate)); + assert_param(IS_SMARTCARD_WORD_LENGTH(hsc->Init.WordLength)); + assert_param(IS_SMARTCARD_STOPBITS(hsc->Init.StopBits)); + assert_param(IS_SMARTCARD_PARITY(hsc->Init.Parity)); + assert_param(IS_SMARTCARD_MODE(hsc->Init.Mode)); + assert_param(IS_SMARTCARD_NACK_STATE(hsc->Init.NACKState)); + + /* The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the + receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. */ + hsc->Instance->CR1 &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); + + /*---------------------------- USART CR2 Configuration ---------------------*/ + tmpreg = hsc->Instance->CR2; + /* Clear CLKEN, CPOL, CPHA and LBCL bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | USART_CR2_LBCL)); + /* Configure the SMARTCARD Clock, CPOL, CPHA and LastBit -----------------------*/ + /* Set CPOL bit according to hsc->Init.CLKPolarity value */ + /* Set CPHA bit according to hsc->Init.CLKPhase value */ + /* Set LBCL bit according to hsc->Init.CLKLastBit value */ + /* Set Stop Bits: Set STOP[13:12] bits according to hsc->Init.StopBits value */ + tmpreg |= (uint32_t)(USART_CR2_CLKEN | hsc->Init.CLKPolarity | + hsc->Init.CLKPhase| hsc->Init.CLKLastBit | hsc->Init.StopBits); + /* Write to USART CR2 */ + hsc->Instance->CR2 = (uint32_t)tmpreg; + + tmpreg = hsc->Instance->CR2; + + /* Clear STOP[13:12] bits */ + tmpreg &= (uint32_t)~((uint32_t)USART_CR2_STOP); + + /* Set Stop Bits: Set STOP[13:12] bits according to hsc->Init.StopBits value */ + tmpreg |= (uint32_t)(hsc->Init.StopBits); + + /* Write to USART CR2 */ + hsc->Instance->CR2 = (uint32_t)tmpreg; + + /*-------------------------- USART CR1 Configuration -----------------------*/ + tmpreg = hsc->Instance->CR1; + + /* Clear M, PCE, PS, TE and RE bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \ + USART_CR1_RE)); + + /* Configure the SMARTCARD Word Length, Parity and mode: + Set the M bits according to hsc->Init.WordLength value + Set PCE and PS bits according to hsc->Init.Parity value + Set TE and RE bits according to hsc->Init.Mode value */ + tmpreg |= (uint32_t)hsc->Init.WordLength | hsc->Init.Parity | hsc->Init.Mode; + + /* Write to USART CR1 */ + hsc->Instance->CR1 = (uint32_t)tmpreg; + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Clear CTSE and RTSE bits */ + hsc->Instance->CR3 &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE)); + + /*-------------------------- USART BRR Configuration -----------------------*/ + if((hsc->Instance == USART1) || (hsc->Instance == USART6)) + { + hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK2Freq(), hsc->Init.BaudRate); + } + else + { + hsc->Instance->BRR = SMARTCARD_BRR(HAL_RCC_GetPCLK1Freq(), hsc->Init.BaudRate); + } +} + +/** + * @} + */ + +#endif /* HAL_SMARTCARD_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_spdifrx.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_spdifrx.c new file mode 100644 index 0000000..acfda1e --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_spdifrx.c @@ -0,0 +1,1210 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_spdifrx.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief This file provides firmware functions to manage the following + * functionalities of the SPDIFRX audio interface: + * + Initialization and Configuration + * + Data transfers functions + * + DMA transfers management + * + Interrupts and flags management + @verbatim + =============================================================================== + ##### How to use this driver ##### + =============================================================================== + [..] + The SPDIFRX HAL driver can be used as follow: + + (#) Declare SPDIFRX_HandleTypeDef handle structure. + (#) Initialize the SPDIFRX low level resources by implement the HAL_SPDIFRX_MspInit() API: + (##) Enable the SPDIFRX interface clock. + (##) SPDIFRX pins configuration: + (+++) Enable the clock for the SPDIFRX GPIOs. + (+++) Configure these SPDIFRX pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_SPDIFRX_ReceiveControlFlow_IT() and HAL_SPDIFRX_ReceiveDataFlow_IT() API's). + (+++) Configure the SPDIFRX interrupt priority. + (+++) Enable the NVIC SPDIFRX IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_SPDIFRX_ReceiveDataFlow_DMA() and HAL_SPDIFRX_ReceiveControlFlow_DMA() API's). + (+++) Declare a DMA handle structure for the reception of the Data Flow channel. + (+++) Declare a DMA handle structure for the reception of the Control Flow channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure CtrlRx/DataRx with the required parameters. + (+++) Configure the DMA Channel. + (+++) Associate the initialized DMA handle to the SPDIFRX DMA CtrlRx/DataRx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the + DMA CtrlRx/DataRx channel. + + (#) Program the input selection, re-tries number, wait for activity, channel status selection, data format, stereo mode and masking of user bits + using HAL_SPDIFRX_Init() function. + + -@- The specific SPDIFRX interrupts (RXNE/CSRNE and Error Interrupts) will be managed using the macros + __SPDIFRX_ENABLE_IT() and __SPDIFRX_DISABLE_IT() inside the receive process. + -@- Make sure that ck_spdif clock is configured. + + (#) Three operation modes are available within this driver : + + *** Polling mode for reception operation (for debug purpose) *** + ================================================================ + [..] + (+) Receive data flow in blocking mode using HAL_SPDIFRX_ReceiveDataFlow() + (+) Receive control flow of data in blocking mode using HAL_SPDIFRX_ReceiveControlFlow() + + *** Interrupt mode for reception operation *** + ========================================= + [..] + (+) Receive an amount of data (Data Flow) in non blocking mode using HAL_SPDIFRX_ReceiveDataFlow_IT() + (+) Receive an amount of data (Control Flow) in non blocking mode using HAL_SPDIFRX_ReceiveControlFlow_IT() + (+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback + (+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback + (+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback + + *** DMA mode for reception operation *** + ======================================== + [..] + (+) Receive an amount of data (Data Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveDataFlow_DMA() + (+) Receive an amount of data (Control Flow) in non blocking mode (DMA) using HAL_SPDIFRX_ReceiveControlFlow_DMA() + (+) At reception end of half transfer HAL_SPDIFRX_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxHalfCpltCallback + (+) At reception end of transfer HAL_SPDIFRX_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_RxCpltCallback + (+) In case of transfer Error, HAL_SPDIFRX_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_SPDIFRX_ErrorCallback + (+) Stop the DMA Transfer using HAL_SPDIFRX_DMAStop() + + *** SPDIFRX HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in USART HAL driver. + (+) __HAL_SPDIFRX_IDLE: Disable the specified SPDIFRX peripheral (IDEL State) + (+) __HAL_SPDIFRX_SYNC: Enable the synchronization state of the specified SPDIFRX peripheral (SYNC State) + (+) __HAL_SPDIFRX_RCV: Enable the receive state of the specified SPDIFRX peripheral (RCV State) + (+) __HAL_SPDIFRX_ENABLE_IT : Enable the specified SPDIFRX interrupts + (+) __HAL_SPDIFRX_DISABLE_IT : Disable the specified SPDIFRX interrupts + (+) __HAL_SPDIFRX_GET_FLAG: Check whether the specified SPDIFRX flag is set or not. + + [..] + (@) You can refer to the SPDIFRX HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ +/** @defgroup SPDIFRX SPDIFRX + * @brief SPDIFRX HAL module driver + * @{ + */ + +#ifdef HAL_SPDIFRX_MODULE_ENABLED + +#if defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define SPDIFRX_TIMEOUT_VALUE 0xFFFF + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup SPDIFRX_Private_Functions + * @{ + */ +static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma); +static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma); +static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif); +static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif); +static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +/** + * @} + */ +/* Exported functions ---------------------------------------------------------*/ + +/** @defgroup SPDIFRX_Exported_Functions SPDIFRX Exported Functions + * @{ + */ + +/** @defgroup SPDIFRX_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SPDIFRX peripheral: + + (+) User must Implement HAL_SPDIFRX_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SPDIFRX_Init() to configure the SPDIFRX peripheral with + the selected configuration: + (++) Input Selection (IN0, IN1,...) + (++) Maximum allowed re-tries during synchronization phase + (++) Wait for activity on SPDIF selected input + (++) Channel status selection (from channel A or B) + (++) Data format (LSB, MSB, ...) + (++) Stereo mode + (++) User bits masking (PT,C,U,V,...) + + (+) Call the function HAL_SPDIFRX_DeInit() to restore the default configuration + of the selected SPDIFRXx peripheral. + @endverbatim + * @{ + */ + +/** + * @brief Initializes the SPDIFRX according to the specified parameters + * in the SPDIFRX_InitTypeDef and create the associated handle. + * @param hspdif: SPDIFRX handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_Init(SPDIFRX_HandleTypeDef *hspdif) +{ + uint32_t tmpreg = 0; + + /* Check the SPDIFRX handle allocation */ + if(hspdif == NULL) + { + return HAL_ERROR; + } + + /* Check the SPDIFRX parameters */ + assert_param(IS_STEREO_MODE(hspdif->Init.StereoMode)); + assert_param(IS_SPDIFRX_INPUT_SELECT(hspdif->Init.InputSelection)); + assert_param(IS_SPDIFRX_MAX_RETRIES(hspdif->Init.Retries)); + assert_param(IS_SPDIFRX_WAIT_FOR_ACTIVITY(hspdif->Init.WaitForActivity)); + assert_param(IS_SPDIFRX_CHANNEL(hspdif->Init.ChannelSelection)); + assert_param(IS_SPDIFRX_DATA_FORMAT(hspdif->Init.DataFormat)); + assert_param(IS_PREAMBLE_TYPE_MASK(hspdif->Init.PreambleTypeMask)); + assert_param(IS_CHANNEL_STATUS_MASK(hspdif->Init.ChannelStatusMask)); + assert_param(IS_VALIDITY_MASK(hspdif->Init.ValidityBitMask)); + assert_param(IS_PARITY_ERROR_MASK(hspdif->Init.ParityErrorMask)); + + if(hspdif->State == HAL_SPDIFRX_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hspdif->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */ + HAL_SPDIFRX_MspInit(hspdif); + } + + /* SPDIFRX peripheral state is BUSY*/ + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Disable SPDIFRX interface (IDLE State) */ + __HAL_SPDIFRX_IDLE(hspdif); + + /* Reset the old SPDIFRX CR configuration */ + tmpreg = hspdif->Instance->CR; + + tmpreg &= ~((uint16_t) SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK | + SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK | + SPDIFRX_CR_CHSEL | SPDIFRX_CR_NBTR | SPDIFRX_CR_WFA | + SPDIFRX_CR_INSEL); + + /* Sets the new configuration of the SPDIFRX peripheral */ + tmpreg |= ((uint16_t) hspdif->Init.StereoMode | + hspdif->Init.InputSelection | + hspdif->Init.Retries | + hspdif->Init.WaitForActivity | + hspdif->Init.ChannelSelection | + hspdif->Init.DataFormat | + hspdif->Init.PreambleTypeMask | + hspdif->Init.ChannelStatusMask | + hspdif->Init.ValidityBitMask | + hspdif->Init.ParityErrorMask); + + hspdif->Instance->CR = tmpreg; + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* SPDIFRX peripheral state is READY*/ + hspdif->State = HAL_SPDIFRX_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the SPDIFRX peripheral + * @param hspdif: SPDIFRX handle + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_DeInit(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Check the SPDIFRX handle allocation */ + if(hspdif == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPDIFRX_ALL_INSTANCE(hspdif->Instance)); + + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Disable SPDIFRX interface (IDLE state) */ + __HAL_SPDIFRX_IDLE(hspdif); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_SPDIFRX_MspDeInit(hspdif); + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* SPDIFRX peripheral state is RESET*/ + hspdif->State = HAL_SPDIFRX_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; +} + +/** + * @brief SPDIFRX MSP Init + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_MspInit(SPDIFRX_HandleTypeDef *hspdif) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_MspInit could be implemented in the user file + */ +} + +/** + * @brief SPDIFRX MSP DeInit + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_MspDeInit(SPDIFRX_HandleTypeDef *hspdif) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Sets the SPDIFRX dtat format according to the specified parameters + * in the SPDIFRX_InitTypeDef. + * @param hspdif: SPDIFRX handle + * @param sDataFormat: SPDIFRX data format + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_SetDataFormat(SPDIFRX_HandleTypeDef *hspdif, SPDIFRX_SetDataFormatTypeDef sDataFormat) +{ + uint32_t tmpreg = 0; + + /* Check the SPDIFRX handle allocation */ + if(hspdif == NULL) + { + return HAL_ERROR; + } + + /* Check the SPDIFRX parameters */ + assert_param(IS_STEREO_MODE(sDataFormat.StereoMode)); + assert_param(IS_SPDIFRX_DATA_FORMAT(sDataFormat.DataFormat)); + assert_param(IS_PREAMBLE_TYPE_MASK(sDataFormat.PreambleTypeMask)); + assert_param(IS_CHANNEL_STATUS_MASK(sDataFormat.ChannelStatusMask)); + assert_param(IS_VALIDITY_MASK(sDataFormat.ValidityBitMask)); + assert_param(IS_PARITY_ERROR_MASK(sDataFormat.ParityErrorMask)); + + /* Reset the old SPDIFRX CR configuration */ + tmpreg = hspdif->Instance->CR; + + if(((tmpreg & SPDIFRX_STATE_RCV) == SPDIFRX_STATE_RCV) && + (((tmpreg & SPDIFRX_CR_DRFMT) != sDataFormat.DataFormat) || + ((tmpreg & SPDIFRX_CR_RXSTEO) != sDataFormat.StereoMode))) + { + return HAL_ERROR; + } + + tmpreg &= ~((uint16_t) SPDIFRX_CR_RXSTEO | SPDIFRX_CR_DRFMT | SPDIFRX_CR_PMSK | + SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK); + + /* Sets the new configuration of the SPDIFRX peripheral */ + tmpreg |= ((uint16_t) sDataFormat.StereoMode | + sDataFormat.DataFormat | + sDataFormat.PreambleTypeMask | + sDataFormat.ChannelStatusMask | + sDataFormat.ValidityBitMask | + sDataFormat.ParityErrorMask); + + hspdif->Instance->CR = tmpreg; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup SPDIFRX_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim +=============================================================================== +##### IO operation functions ##### +=============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SPDIFRX data + transfers. + + (#) There is two mode of transfer: + (++) Blocking mode : The communication is performed in the polling mode. + The status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode : The communication is performed using Interrupts + or DMA. These functions return the status of the transfer start-up. + The end of the data processing will be indicated through the + dedicated SPDIFRX IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + + (#) Blocking mode functions are : + (++) HAL_SPDIFRX_ReceiveDataFlow() + (++) HAL_SPDIFRX_ReceiveControlFlow() + (+@) Do not use blocking mode to receive both control and data flow at the same time. + + (#) No-Blocking mode functions with Interrupt are : + (++) HAL_SPDIFRX_ReceiveControlFlow_IT() + (++) HAL_SPDIFRX_ReceiveDataFlow_IT() + + (#) No-Blocking mode functions with DMA are : + (++) HAL_SPDIFRX_ReceiveControlFlow_DMA() + (++) HAL_SPDIFRX_ReceiveDataFlow_DMA() + + (#) A set of Transfer Complete Callbacks are provided in No_Blocking mode: + (++) HAL_SPDIFRX_RxCpltCallback() + (++) HAL_SPDIFRX_ErrorCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Receives an amount of data (Data Flow) in blocking mode. + * @param hspdif: pointer to SPDIFRX_HandleTypeDef structure that contains + * the configuration information for SPDIFRX module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout) +{ + + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hspdif->State == HAL_SPDIFRX_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Start synchronisation */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + + /* Receive data flow */ + while(Size > 0) + { + /* Wait until RXNE flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*pData++) = hspdif->Instance->DR; + Size--; + } + + /* SPDIFRX ready */ + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data (Control Flow) in blocking mode. + * @param hspdif: pointer to a SPDIFRX_HandleTypeDef structure that contains + * the configuration information for SPDIFRX module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size, uint32_t Timeout) +{ + + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + if(hspdif->State == HAL_SPDIFRX_STATE_READY) + { + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->State = HAL_SPDIFRX_STATE_BUSY; + + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + + /* Receive control flow */ + while(Size > 0) + { + /* Wait until CSRNE flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_CSRNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*pData++) = hspdif->Instance->CSR; + Size--; + } + + /* SPDIFRX ready */ + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} +/** + * @brief Receive an amount of data (Data Flow) in non-blocking mode with Interrupt + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be received . + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_CX)) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->pRxBuffPtr = pData; + hspdif->RxXferSize = Size; + hspdif->RxXferCount = Size; + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* Check if a receive process is ongoing or not */ + hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX; + + + /* Enable the SPDIFRX PE Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + + /* Enable the SPDIFRX OVR Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + /* Enable the SPDIFRX RXNE interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_RXNE); + + if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC || (SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data (Control Flow) with Interrupt + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data sample (Control Flow) to be received : + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_RX)) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->pCsBuffPtr = pData; + hspdif->CsXferSize = Size; + hspdif->CsXferCount = Size; + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + + /* Check if a receive process is ongoing or not */ + hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX; + + + /* Enable the SPDIFRX PE Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + + /* Enable the SPDIFRX OVR Error Interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + /* Enable the SPDIFRX CSRNE interrupt */ + __HAL_SPDIFRX_ENABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + + if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC || (SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data (Data Flow) mode with DMA + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data sample to be received : + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveDataFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_CX)) + { + hspdif->pRxBuffPtr = pData; + hspdif->RxXferSize = Size; + hspdif->RxXferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + hspdif->State = HAL_SPDIFRX_STATE_BUSY_RX; + + /* Set the SPDIFRX Rx DMA Half transfer complete callback */ + hspdif->hdmaDrRx->XferHalfCpltCallback = SPDIFRX_DMARxHalfCplt; + + /* Set the SPDIFRX Rx DMA transfer complete callback */ + hspdif->hdmaDrRx->XferCpltCallback = SPDIFRX_DMARxCplt; + + /* Set the DMA error callback */ + hspdif->hdmaDrRx->XferErrorCallback = SPDIFRX_DMAError; + + /* Enable the DMA request */ + HAL_DMA_Start_IT(hspdif->hdmaDrRx, (uint32_t)&hspdif->Instance->DR, (uint32_t)hspdif->pRxBuffPtr, Size); + + /* Enable RXDMAEN bit in SPDIFRX CR register for data flow reception*/ + hspdif->Instance->CR |= SPDIFRX_CR_RXDMAEN; + + if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC || (SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data (Control Flow) with DMA + * @param hspdif: SPDIFRX handle + * @param pData: a 32-bit pointer to the Receive data buffer. + * @param Size: number of data (Control Flow) sample to be received : + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPDIFRX_ReceiveControlFlow_DMA(SPDIFRX_HandleTypeDef *hspdif, uint32_t *pData, uint16_t Size) +{ + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + if((hspdif->State == HAL_SPDIFRX_STATE_READY) || (hspdif->State == HAL_SPDIFRX_STATE_BUSY_RX)) + { + hspdif->pCsBuffPtr = pData; + hspdif->CsXferSize = Size; + hspdif->CsXferCount = Size; + + /* Process Locked */ + __HAL_LOCK(hspdif); + + hspdif->ErrorCode = HAL_SPDIFRX_ERROR_NONE; + hspdif->State = HAL_SPDIFRX_STATE_BUSY_CX; + + /* Set the SPDIFRX Rx DMA Half transfer complete callback */ + hspdif->hdmaCsRx->XferHalfCpltCallback = SPDIFRX_DMACxHalfCplt; + + /* Set the SPDIFRX Rx DMA transfer complete callback */ + hspdif->hdmaCsRx->XferCpltCallback = SPDIFRX_DMACxCplt; + + /* Set the DMA error callback */ + hspdif->hdmaCsRx->XferErrorCallback = SPDIFRX_DMAError; + + /* Enable the DMA request */ + HAL_DMA_Start_IT(hspdif->hdmaCsRx, (uint32_t)&hspdif->Instance->CSR, (uint32_t)hspdif->pCsBuffPtr, Size); + + /* Enable CBDMAEN bit in SPDIFRX CR register for control flow reception*/ + hspdif->Instance->CR |= SPDIFRX_CR_CBDMAEN; + + if ((SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != SPDIFRX_STATE_SYNC || (SPDIFRX->CR & SPDIFRX_CR_SPDIFEN) != 0x00) + { + /* Start synchronization */ + __HAL_SPDIFRX_SYNC(hspdif); + + /* Wait until SYNCD flag is set */ + if(SPDIFRX_WaitOnFlagUntilTimeout(hspdif, SPDIFRX_FLAG_SYNCD, RESET, SPDIFRX_TIMEOUT_VALUE) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Start reception */ + __HAL_SPDIFRX_RCV(hspdif); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief stop the audio stream receive from the Media. + * @param hspdif: SPDIFRX handle + * @retval None + */ +HAL_StatusTypeDef HAL_SPDIFRX_DMAStop(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Process Locked */ + __HAL_LOCK(hspdif); + + /* Disable the SPDIFRX DMA requests */ + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN); + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN); + + /* Disable the SPDIFRX DMA channel */ + __HAL_DMA_DISABLE(hspdif->hdmaDrRx); + __HAL_DMA_DISABLE(hspdif->hdmaCsRx); + + /* Disable SPDIFRX peripheral */ + __HAL_SPDIFRX_IDLE(hspdif); + + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_OK; +} + +/** + * @brief This function handles SPDIFRX interrupt request. + * @param hspdif: SPDIFRX handle + * @retval HAL status + */ +void HAL_SPDIFRX_IRQHandler(SPDIFRX_HandleTypeDef *hspdif) +{ + /* SPDIFRX in mode Data Flow Reception ------------------------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_RXNE) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_RXNE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_RXNE); + SPDIFRX_ReceiveDataFlow_IT(hspdif); + } + + /* SPDIFRX in mode Control Flow Reception ------------------------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_CSRNE) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_CSRNE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_IT_CSRNE); + SPDIFRX_ReceiveControlFlow_IT(hspdif); + } + + /* SPDIFRX Overrun error interrupt occurred ---------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_OVR) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_OVRIE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_FLAG_OVR); + + /* Change the SPDIFRX error code */ + hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_OVR; + + /* the transfer is not stopped */ + HAL_SPDIFRX_ErrorCallback(hspdif); + } + + /* SPDIFRX Parity error interrupt occurred ---------------------------------*/ + if((__HAL_SPDIFRX_GET_FLAG(hspdif, SPDIFRX_FLAG_PERR) != RESET) && (__HAL_SPDIFRX_GET_IT_SOURCE(hspdif, SPDIFRX_IT_PERRIE) != RESET)) + { + __HAL_SPDIFRX_CLEAR_IT(hspdif, SPDIFRX_FLAG_PERR); + + /* Change the SPDIFRX error code */ + hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_PE; + + /* the transfer is not stopped */ + HAL_SPDIFRX_ErrorCallback(hspdif); + } + +} + +/** + * @brief Rx Transfer (Data flow) half completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_RxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer (Data flow) completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_RxCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx (Control flow) Transfer half completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_CxHalfCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer (Control flow) completed callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_CxCpltCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_RxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief SPDIFRX error callbacks + * @param hspdif: SPDIFRX handle + * @retval None + */ +__weak void HAL_SPDIFRX_ErrorCallback(SPDIFRX_HandleTypeDef *hspdif) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPDIFRX_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SPDIFRX_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief Peripheral State functions + * +@verbatim +=============================================================================== +##### Peripheral State and Errors functions ##### +=============================================================================== +[..] +This subsection permit to get in run-time the status of the peripheral +and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the SPDIFRX state + * @param hspdif : SPDIFRX handle + * @retval HAL state + */ +HAL_SPDIFRX_StateTypeDef HAL_SPDIFRX_GetState(SPDIFRX_HandleTypeDef *hspdif) +{ + return hspdif->State; +} + +/** + * @brief Return the SPDIFRX error code + * @param hspdif : SPDIFRX handle + * @retval SPDIFRX Error Code + */ +uint32_t HAL_SPDIFRX_GetError(SPDIFRX_HandleTypeDef *hspdif) +{ + return hspdif->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief DMA SPDIFRX receive process (Data flow) complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMARxCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Rx DMA Request */ + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_RXDMAEN); + hspdif->RxXferCount = 0; + + hspdif->State = HAL_SPDIFRX_STATE_READY; + HAL_SPDIFRX_RxCpltCallback(hspdif); +} + +/** + * @brief DMA SPDIFRX receive process (Data flow) half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = (SPDIFRX_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SPDIFRX_RxHalfCpltCallback(hspdif); +} + + +/** + * @brief DMA SPDIFRX receive process (Control flow) complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMACxCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Cb DMA Request */ + hspdif->Instance->CR &= (uint16_t)(~SPDIFRX_CR_CBDMAEN); + hspdif->CsXferCount = 0; + + hspdif->State = HAL_SPDIFRX_STATE_READY; + HAL_SPDIFRX_CxCpltCallback(hspdif); +} + +/** + * @brief DMA SPDIFRX receive process (Control flow) half complete callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMACxHalfCplt(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = (SPDIFRX_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_SPDIFRX_CxHalfCpltCallback(hspdif); +} + +/** + * @brief DMA SPDIFRX communication error callback + * @param hdma : DMA handle + * @retval None + */ +static void SPDIFRX_DMAError(DMA_HandleTypeDef *hdma) +{ + SPDIFRX_HandleTypeDef* hspdif = ( SPDIFRX_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* Disable Rx and Cb DMA Request */ + hspdif->Instance->CR &= (uint16_t)(~(SPDIFRX_CR_RXDMAEN | SPDIFRX_CR_CBDMAEN)); + hspdif->RxXferCount = 0; + + hspdif->State= HAL_SPDIFRX_STATE_READY; + + /* Set the error code and execute error callback*/ + hspdif->ErrorCode |= HAL_SPDIFRX_ERROR_DMA; + HAL_SPDIFRX_ErrorCallback(hspdif); +} + + +/** + * @brief Receive an amount of data (Data Flow) with Interrupt + * @param hspdif: SPDIFRX handle + * @retval None + */ +static void SPDIFRX_ReceiveDataFlow_IT(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Receive data */ + (*hspdif->pRxBuffPtr++) = hspdif->Instance->DR; + hspdif->RxXferCount--; + + if(hspdif->RxXferCount == 0) + { + /* Disable RXNE/PE and OVR interrupts */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE | SPDIFRX_IT_PERRIE | SPDIFRX_IT_RXNE); + + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + HAL_SPDIFRX_RxCpltCallback(hspdif); + } +} + +/** + * @brief Receive an amount of data (Control Flow) with Interrupt + * @param hspdif: SPDIFRX handle + * @retval None + */ +static void SPDIFRX_ReceiveControlFlow_IT(SPDIFRX_HandleTypeDef *hspdif) +{ + /* Receive data */ + (*hspdif->pCsBuffPtr++) = hspdif->Instance->CSR; + hspdif->CsXferCount--; + + if(hspdif->CsXferCount == 0) + { + /* Disable CSRNE interrupt */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + + hspdif->State = HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + HAL_SPDIFRX_CxCpltCallback(hspdif); + } +} + +/** + * @brief This function handles SPDIFRX Communication Timeout. + * @param hspdif: SPDIFRX handle + * @param Flag: Flag checked + * @param Status: Value of the flag expected + * @param Timeout: Duration of the timeout + * @retval HAL status + */ +static HAL_StatusTypeDef SPDIFRX_WaitOnFlagUntilTimeout(SPDIFRX_HandleTypeDef *hspdif, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_SPDIFRX_GET_FLAG(hspdif, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); + + hspdif->State= HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_SPDIFRX_GET_FLAG(hspdif, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_RXNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_CSRNE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_PERRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_OVRIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SBLKIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_SYNCDIE); + __HAL_SPDIFRX_DISABLE_IT(hspdif, SPDIFRX_IT_IFEIE); + + hspdif->State= HAL_SPDIFRX_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspdif); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** + * @} + */ +#endif /* STM32F446xx */ + +#endif /* HAL_SPDIFRX_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ + diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_spi.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_spi.c new file mode 100644 index 0000000..481a52f --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_spi.c @@ -0,0 +1,2298 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_spi.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SPI HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Serial Peripheral Interface (SPI) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State functions + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The SPI HAL driver can be used as follows: + + (#) Declare a SPI_HandleTypeDef handle structure, for example: + SPI_HandleTypeDef hspi; + + (#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit ()API: + (##) Enable the SPIx interface clock + (##) SPI pins configuration + (+++) Enable the clock for the SPI GPIOs + (+++) Configure these SPI pins as alternate function push-pull + (##) NVIC configuration if you need to use interrupt process + (+++) Configure the SPIx interrupt priority + (+++) Enable the NVIC SPI IRQ handle + (##) DMA Configuration if you need to use DMA process + (+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive stream + (+++) Enable the DMAx interface clock using + (+++) Configure the DMA handle parameters + (+++) Configure the DMA Tx or Rx Stream + (+++) Associate the initialized hdma_tx handle to the hspi DMA Tx or Rx handle + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx or Rx Stream + + (#) Program the Mode, Direction , Data size, Baudrate Prescaler, NSS + management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure. + + (#) Initialize the SPI registers by calling the HAL_SPI_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_SPI_MspInit() API. + [..] + Circular mode restriction: + (#) The DMA circular mode cannot be used when the SPI is configured in these modes: + (##) Master 2Lines RxOnly + (##) Master 1Line Rx + (#) The CRC feature is not managed when the DMA circular mode is enabled + (#) When the SPI DMA Pause/Stop features are used, we must use the following APIs + the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks + + + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup SPI SPI + * @brief SPI HAL module driver + * @{ + */ + +#ifdef HAL_SPI_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +#define SPI_TIMEOUT_VALUE 10 +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup SPI_Private_Functions + * @{ + */ +static void SPI_TxCloseIRQHandler(SPI_HandleTypeDef *hspi); +static void SPI_TxISR(SPI_HandleTypeDef *hspi); +static void SPI_RxCloseIRQHandler(SPI_HandleTypeDef *hspi); +static void SPI_2LinesRxISR(SPI_HandleTypeDef *hspi); +static void SPI_RxISR(SPI_HandleTypeDef *hspi); +static void SPI_DMAEndTransmitReceive(SPI_HandleTypeDef *hspi); +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma); +static void SPI_DMAError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SPI_Exported_Functions SPI Exported Functions + * @{ + */ + +/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization and de-initialization functions ##### + =============================================================================== + [..] This subsection provides a set of functions allowing to initialize and + de-initialize the SPIx peripheral: + + (+) User must implement HAL_SPI_MspInit() function in which he configures + all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ). + + (+) Call the function HAL_SPI_Init() to configure the selected device with + the selected configuration: + (++) Mode + (++) Direction + (++) Data Size + (++) Clock Polarity and Phase + (++) NSS Management + (++) BaudRate Prescaler + (++) FirstBit + (++) TIMode + (++) CRC Calculation + (++) CRC Polynomial if CRC enabled + + (+) Call the function HAL_SPI_DeInit() to restore the default configuration + of the selected SPIx peripheral. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the SPI according to the specified parameters + * in the SPI_InitTypeDef and create the associated handle. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi) +{ + /* Check the SPI handle allocation */ + if(hspi == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_MODE(hspi->Init.Mode)); + assert_param(IS_SPI_DIRECTION_MODE(hspi->Init.Direction)); + assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize)); + assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity)); + assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase)); + assert_param(IS_SPI_NSS(hspi->Init.NSS)); + assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler)); + assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit)); + assert_param(IS_SPI_TIMODE(hspi->Init.TIMode)); + assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation)); + assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial)); + + if(hspi->State == HAL_SPI_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hspi->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC... */ + HAL_SPI_MspInit(hspi); + } + + hspi->State = HAL_SPI_STATE_BUSY; + + /* Disable the selected SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/ + /* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management, + Communication speed, First bit and CRC calculation state */ + hspi->Instance->CR1 = (hspi->Init.Mode | hspi->Init.Direction | hspi->Init.DataSize | + hspi->Init.CLKPolarity | hspi->Init.CLKPhase | (hspi->Init.NSS & SPI_CR1_SSM) | + hspi->Init.BaudRatePrescaler | hspi->Init.FirstBit | hspi->Init.CRCCalculation); + + /* Configure : NSS management */ + hspi->Instance->CR2 = (((hspi->Init.NSS >> 16) & SPI_CR2_SSOE) | hspi->Init.TIMode); + + /*---------------------------- SPIx CRCPOLY Configuration ------------------*/ + /* Configure : CRC Polynomial */ + hspi->Instance->CRCPR = hspi->Init.CRCPolynomial; + + /* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */ + hspi->Instance->I2SCFGR &= (uint32_t)(~SPI_I2SCFGR_I2SMOD); + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State = HAL_SPI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the SPI peripheral + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi) +{ + /* Check the SPI handle allocation */ + if(hspi == NULL) + { + return HAL_ERROR; + } + + /* Disable the SPI Peripheral Clock */ + __HAL_SPI_DISABLE(hspi); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC... */ + HAL_SPI_MspDeInit(hspi); + + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + hspi->State = HAL_SPI_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief SPI MSP Init + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ + __weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi) + { + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_MspInit could be implemented in the user file + */ +} + +/** + * @brief SPI MSP DeInit + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ + __weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group2 IO operation functions + * @brief Data transfers functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + =============================================================================== + This subsection provides a set of functions allowing to manage the SPI + data transfers. + + [..] The SPI supports master and slave mode : + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: The communication is performed using Interrupts + or DMA, These APIs return the HAL status. + The end of the data processing will be indicated through the + dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected + + (#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA) + exist for 1Line (simplex) and 2Lines (full duplex) modes. + +@endverbatim + * @{ + */ + +/** + * @brief Transmit an amount of data in blocking mode + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + + if(hspi->State == HAL_SPI_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Configure communication */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->pTxBuffPtr = pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->TxISR = 0; + hspi->RxISR = 0; + hspi->RxXferSize = 0; + hspi->RxXferCount = 0; + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + /* Configure communication direction : 1Line */ + SPI_1LINE_TX(hspi); + } + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Transmit data in 8 Bit mode */ + if(hspi->Init.DataSize == SPI_DATASIZE_8BIT) + { + if((hspi->Init.Mode == SPI_MODE_SLAVE)|| (hspi->TxXferCount == 0x01)) + { + hspi->Instance->DR = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + } + while(hspi->TxXferCount > 0) + { + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + hspi->Instance->DR = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + } + /* Enable CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + } + /* Transmit data in 16 Bit mode */ + else + { + if((hspi->Init.Mode == SPI_MODE_SLAVE) || (hspi->TxXferCount == 0x01)) + { + hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr); + hspi->pTxBuffPtr+=2; + hspi->TxXferCount--; + } + while(hspi->TxXferCount > 0) + { + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr); + hspi->pTxBuffPtr+=2; + hspi->TxXferCount--; + } + /* Enable CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + } + + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + + /* Wait until Busy flag is reset before disabling SPI */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + + /* Clear OVERRUN flag in 2 Lines communication mode because received is not read */ + if(hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + __IO uint16_t tmpreg; + uint32_t tmp = 0; + + if(hspi->State == HAL_SPI_STATE_READY) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Configure communication */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->pRxBuffPtr = pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = 0; + hspi->TxISR = 0; + hspi->TxXferSize = 0; + hspi->TxXferCount = 0; + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + if((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES)) + { + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout); + } + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Receive data in 8 Bit mode */ + if(hspi->Init.DataSize == SPI_DATASIZE_8BIT) + { + while(hspi->RxXferCount > 1) + { + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*hspi->pRxBuffPtr++) = hspi->Instance->DR; + hspi->RxXferCount--; + } + /* Enable CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + } + /* Receive data in 16 Bit mode */ + else + { + while(hspi->RxXferCount > 1) + { + /* Wait until RXNE flag is set to read data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr+=2; + hspi->RxXferCount--; + } + /* Enable CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + } + + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Receive last data in 8 Bit mode */ + if(hspi->Init.DataSize == SPI_DATASIZE_8BIT) + { + (*hspi->pRxBuffPtr++) = hspi->Instance->DR; + } + /* Receive last data in 16 Bit mode */ + else + { + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr+=2; + } + hspi->RxXferCount--; + + /* Wait until RXNE flag is set: CRC Received */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + return HAL_TIMEOUT; + } + + /* Read CRC to Flush RXNE flag */ + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); + } + + if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + hspi->State = HAL_SPI_STATE_READY; + + tmp = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR); + /* Check if CRC error occurred */ + if((hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) && (tmp != RESET)) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + + /* Reset CRC Calculation */ + SPI_RESET_CRC(hspi); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_ERROR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit and Receive an amount of data in blocking mode + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer to be + * @param Size: amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) +{ + __IO uint16_t tmpreg; + uint32_t tmpstate = 0, tmp = 0; + + tmpstate = hspi->State; + if((tmpstate == HAL_SPI_STATE_READY) || (tmpstate == HAL_SPI_STATE_BUSY_RX)) + { + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if(hspi->State == HAL_SPI_STATE_READY) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Configure communication */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->pRxBuffPtr = pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + hspi->pTxBuffPtr = pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = 0; + hspi->TxISR = 0; + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Transmit and Receive data in 16 Bit mode */ + if(hspi->Init.DataSize == SPI_DATASIZE_16BIT) + { + if((hspi->Init.Mode == SPI_MODE_SLAVE) || ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->TxXferCount == 0x01))) + { + hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr); + hspi->pTxBuffPtr+=2; + hspi->TxXferCount--; + } + if(hspi->TxXferCount == 0) + { + /* Enable CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr+=2; + hspi->RxXferCount--; + } + else + { + while(hspi->TxXferCount > 0) + { + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr); + hspi->pTxBuffPtr+=2; + hspi->TxXferCount--; + + /* Enable CRC Transmission */ + if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr+=2; + hspi->RxXferCount--; + } + /* Receive the last byte */ + if(hspi->Init.Mode == SPI_MODE_SLAVE) + { + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr+=2; + hspi->RxXferCount--; + } + } + } + /* Transmit and Receive data in 8 Bit mode */ + else + { + if((hspi->Init.Mode == SPI_MODE_SLAVE) || ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->TxXferCount == 0x01))) + { + hspi->Instance->DR = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + } + if(hspi->TxXferCount == 0) + { + /* Enable CRC Transmission */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->RxXferCount--; + } + else + { + while(hspi->TxXferCount > 0) + { + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + hspi->Instance->DR = (*hspi->pTxBuffPtr++); + hspi->TxXferCount--; + + /* Enable CRC Transmission */ + if((hspi->TxXferCount == 0) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*hspi->pRxBuffPtr++) = hspi->Instance->DR; + hspi->RxXferCount--; + } + if(hspi->Init.Mode == SPI_MODE_SLAVE) + { + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + (*hspi->pRxBuffPtr++) = hspi->Instance->DR; + hspi->RxXferCount--; + } + } + } + + /* Read CRC from DR to close CRC calculation process */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + return HAL_TIMEOUT; + } + /* Read CRC */ + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); + } + + /* Wait until Busy flag is reset before disabling SPI */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, Timeout) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + return HAL_TIMEOUT; + } + + hspi->State = HAL_SPI_STATE_READY; + + tmp = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR); + /* Check if CRC error occurred */ + if((hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) && (tmp != RESET)) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_ERROR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit an amount of data in no-blocking mode with Interrupt + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + if(hspi->State == HAL_SPI_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Configure communication */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->TxISR = &SPI_TxISR; + hspi->pTxBuffPtr = pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = 0; + hspi->RxXferSize = 0; + hspi->RxXferCount = 0; + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + if (hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE)); + }else + { + /* Enable TXE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR)); + } + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in no-blocking mode with Interrupt + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + if(hspi->State == HAL_SPI_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Configure communication */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->RxISR = &SPI_RxISR; + hspi->pRxBuffPtr = pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size ; + + /*Init field not used in handle to zero */ + hspi->TxISR = 0; + hspi->TxXferSize = 0; + hspi->TxXferCount = 0; + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + else if((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER)) + { + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size); + } + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + /* Enable TXE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR)); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Note : The SPI must be enabled after unlocking current process + to avoid the risk of SPI interrupt handle execution before current + process unlock */ + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit and Receive an amount of data in no-blocking mode with Interrupt + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer to be + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + uint32_t tmpstate = 0; + + tmpstate = hspi->State; + if((tmpstate == HAL_SPI_STATE_READY) || \ + ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmpstate == HAL_SPI_STATE_BUSY_RX))) + { + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process locked */ + __HAL_LOCK(hspi); + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if(hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Configure communication */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->TxISR = &SPI_TxISR; + hspi->pTxBuffPtr = pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + hspi->RxISR = &SPI_2LinesRxISR; + hspi->pRxBuffPtr = pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + /* Enable TXE, RXNE and ERR interrupt */ + __HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit an amount of data in no-blocking mode with DMA + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + if(hspi->State == HAL_SPI_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction)); + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Configure communication */ + hspi->State = HAL_SPI_STATE_BUSY_TX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->pTxBuffPtr = pData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->TxISR = 0; + hspi->RxISR = 0; + hspi->RxXferSize = 0; + hspi->RxXferCount = 0; + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_TX(hspi); + } + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + /* Set the SPI TxDMA Half transfer complete callback */ + hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt; + + /* Set the SPI TxDMA transfer complete callback */ + hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt; + + /* Set the DMA error callback */ + hspi->hdmatx->XferErrorCallback = SPI_DMAError; + + /* Enable the Tx DMA Stream */ + HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Enable Tx DMA Request */ + hspi->Instance->CR2 |= SPI_CR2_TXDMAEN; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in no-blocking mode with DMA + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pData: pointer to data buffer + * @note When the CRC feature is enabled the pData Length must be Size + 1. + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size) +{ + if(hspi->State == HAL_SPI_STATE_READY) + { + if((pData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Configure communication */ + hspi->State = HAL_SPI_STATE_BUSY_RX; + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->pRxBuffPtr = pData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = 0; + hspi->TxISR = 0; + hspi->TxXferSize = 0; + hspi->TxXferCount = 0; + + /* Configure communication direction : 1Line */ + if(hspi->Init.Direction == SPI_DIRECTION_1LINE) + { + SPI_1LINE_RX(hspi); + } + else if((hspi->Init.Direction == SPI_DIRECTION_2LINES)&&(hspi->Init.Mode == SPI_MODE_MASTER)) + { + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */ + return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size); + } + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + /* Set the SPI RxDMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + + /* Set the SPI Rx DMA transfer complete callback */ + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Enable the Rx DMA Stream */ + HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Enable Rx DMA Request */ + hspi->Instance->CR2 |= SPI_CR2_RXDMAEN; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Transmit and Receive an amount of data in no-blocking mode with DMA + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param pTxData: pointer to transmission data buffer + * @param pRxData: pointer to reception data buffer + * @note When the CRC feature is enabled the pRxData Length must be Size + 1 + * @param Size: amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + uint32_t tmpstate = 0; + tmpstate = hspi->State; + if((tmpstate == HAL_SPI_STATE_READY) || ((hspi->Init.Mode == SPI_MODE_MASTER) && \ + (hspi->Init.Direction == SPI_DIRECTION_2LINES) && (tmpstate == HAL_SPI_STATE_BUSY_RX))) + { + if((pTxData == NULL ) || (pRxData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction)); + + /* Process locked */ + __HAL_LOCK(hspi); + + /* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */ + if(hspi->State != HAL_SPI_STATE_BUSY_RX) + { + hspi->State = HAL_SPI_STATE_BUSY_TX_RX; + } + + /* Configure communication */ + hspi->ErrorCode = HAL_SPI_ERROR_NONE; + + hspi->pTxBuffPtr = (uint8_t*)pTxData; + hspi->TxXferSize = Size; + hspi->TxXferCount = Size; + + hspi->pRxBuffPtr = (uint8_t*)pRxData; + hspi->RxXferSize = Size; + hspi->RxXferCount = Size; + + /*Init field not used in handle to zero */ + hspi->RxISR = 0; + hspi->TxISR = 0; + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + /* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */ + if(hspi->State == HAL_SPI_STATE_BUSY_RX) + { + /* Set the SPI Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt; + + hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt; + } + else + { + /* Set the SPI Tx/Rx DMA Half transfer complete callback */ + hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt; + + hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt; + } + + /* Set the DMA error callback */ + hspi->hdmarx->XferErrorCallback = SPI_DMAError; + + /* Enable the Rx DMA Stream */ + HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount); + + /* Enable Rx DMA Request */ + hspi->Instance->CR2 |= SPI_CR2_RXDMAEN; + + /* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing + is performed in DMA reception complete callback */ + hspi->hdmatx->XferCpltCallback = NULL; + + if(hspi->State == HAL_SPI_STATE_BUSY_TX_RX) + { + /* Set the DMA error callback */ + hspi->hdmatx->XferErrorCallback = SPI_DMAError; + } + else + { + hspi->hdmatx->XferErrorCallback = NULL; + } + + /* Enable the Tx DMA Stream */ + HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR, hspi->TxXferCount); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + /* Check if the SPI is already enabled */ + if((hspi->Instance->CR1 &SPI_CR1_SPE) != SPI_CR1_SPE) + { + /* Enable SPI peripheral */ + __HAL_SPI_ENABLE(hspi); + } + + /* Enable Tx DMA Request */ + hspi->Instance->CR2 |= SPI_CR2_TXDMAEN; + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the DMA Transfer. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi) +{ + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Disable the SPI DMA Tx & Rx requests */ + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi) +{ + /* Process Locked */ + __HAL_LOCK(hspi); + + /* Enable the SPI DMA Tx & Rx requests */ + hspi->Instance->CR2 |= SPI_CR2_TXDMAEN; + hspi->Instance->CR2 |= SPI_CR2_RXDMAEN; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for the specified SPI module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback(): + when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated + and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or HAL_SPI_TxRxCpltCallback() + */ + + /* Abort the SPI DMA tx Stream */ + if(hspi->hdmatx != NULL) + { + HAL_DMA_Abort(hspi->hdmatx); + } + /* Abort the SPI DMA rx Stream */ + if(hspi->hdmarx != NULL) + { + HAL_DMA_Abort(hspi->hdmarx); + } + + /* Disable the SPI DMA Tx & Rx requests */ + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + + hspi->State = HAL_SPI_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles SPI interrupt request. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL status + */ +void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi) +{ + uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0; + + tmp1 = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE); + tmp2 = __HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_RXNE); + tmp3 = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR); + /* SPI in mode Receiver and Overrun not occurred ---------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET) && (tmp3 == RESET)) + { + hspi->RxISR(hspi); + return; + } + + tmp1 = __HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE); + tmp2 = __HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_TXE); + /* SPI in mode Transmitter ---------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + hspi->TxISR(hspi); + return; + } + + if(__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_ERR) != RESET) + { + /* SPI CRC error interrupt occurred ---------------------------------------*/ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } + /* SPI Mode Fault error interrupt occurred --------------------------------*/ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_MODF) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_MODF; + __HAL_SPI_CLEAR_MODFFLAG(hspi); + } + + /* SPI Overrun error interrupt occurred -----------------------------------*/ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_OVR) != RESET) + { + if(hspi->State != HAL_SPI_STATE_BUSY_TX) + { + hspi->ErrorCode |= HAL_SPI_ERROR_OVR; + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + } + + /* SPI Frame error interrupt occurred -------------------------------------*/ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_FRE) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FRE; + __HAL_SPI_CLEAR_FREFLAG(hspi); + } + + /* Call the Error call Back in case of Errors */ + if(hspi->ErrorCode!=HAL_SPI_ERROR_NONE) + { + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_ErrorCallback(hspi); + } + } +} + +/** + * @brief Tx Transfer completed callbacks + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_RxCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Transfer completed callbacks + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_TxRxCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_TxHalfCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callbacks + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_RxHalfCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief Tx and Rx Transfer completed callbacks + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SPI_TxRxHalfCpltCallback() could be implemented in the user file + */ +} + +/** + * @brief SPI error callbacks + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ + __weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi) +{ + /* NOTE : - This function Should not be modified, when the callback is needed, + the HAL_SPI_ErrorCallback() could be implemented in the user file. + - The ErrorCode parameter in the hspi handle is updated by the SPI processes + and user can use HAL_SPI_GetError() API to check the latest error occurred. + */ +} + +/** + * @} + */ + +/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief SPI control functions + * +@verbatim + =============================================================================== + ##### Peripheral State and Errors functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SPI. + (+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral + (+) HAL_SPI_GetError() check in run-time Errors occurring during communication +@endverbatim + * @{ + */ + +/** + * @brief Return the SPI state + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval HAL state + */ +HAL_SPI_StateTypeDef HAL_SPI_GetState(SPI_HandleTypeDef *hspi) +{ + return hspi->State; +} + +/** + * @brief Return the SPI error code + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval SPI Error Code + */ +uint32_t HAL_SPI_GetError(SPI_HandleTypeDef *hspi) +{ + return hspi->ErrorCode; +} + +/** + * @} + */ + + /** + * @brief Interrupt Handler to close Tx transfer + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval void + */ +static void SPI_TxCloseIRQHandler(SPI_HandleTypeDef *hspi) +{ + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + /* Disable TXE interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE )); + + /* Disable ERR interrupt if Receive process is finished */ + if(__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_RXNE) == RESET) + { + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_ERR)); + + /* Wait until Busy flag is reset before disabling SPI */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + /* Clear OVERRUN flag in 2 Lines communication mode because received is not read */ + if(hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + /* Check if Errors has been detected during transfer */ + if(hspi->ErrorCode == HAL_SPI_ERROR_NONE) + { + /* Check if we are in Tx or in Rx/Tx Mode */ + if(hspi->State == HAL_SPI_STATE_BUSY_TX_RX) + { + /* Set state to READY before run the Callback Complete */ + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_TxRxCpltCallback(hspi); + } + else + { + /* Set state to READY before run the Callback Complete */ + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_TxCpltCallback(hspi); + } + } + else + { + /* Set state to READY before run the Callback Complete */ + hspi->State = HAL_SPI_STATE_READY; + /* Call Error call back in case of Error */ + HAL_SPI_ErrorCallback(hspi); + } + } +} + +/** + * @brief Interrupt Handler to transmit amount of data in no-blocking mode + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval void + */ +static void SPI_TxISR(SPI_HandleTypeDef *hspi) +{ + /* Transmit data in 8 Bit mode */ + if(hspi->Init.DataSize == SPI_DATASIZE_8BIT) + { + hspi->Instance->DR = (*hspi->pTxBuffPtr++); + } + /* Transmit data in 16 Bit mode */ + else + { + hspi->Instance->DR = *((uint16_t*)hspi->pTxBuffPtr); + hspi->pTxBuffPtr+=2; + } + hspi->TxXferCount--; + + if(hspi->TxXferCount == 0) + { + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* calculate and transfer CRC on Tx line */ + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + SPI_TxCloseIRQHandler(hspi); + } +} + +/** + * @brief Interrupt Handler to close Rx transfer + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval void + */ +static void SPI_RxCloseIRQHandler(SPI_HandleTypeDef *hspi) +{ + __IO uint16_t tmpreg; + + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait until RXNE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + /* Read CRC to reset RXNE flag */ + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); + + /* Wait until RXNE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + + /* Reset CRC Calculation */ + SPI_RESET_CRC(hspi); + } + } + + /* Disable RXNE and ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE)); + + /* if Transmit process is finished */ + if(__HAL_SPI_GET_IT_SOURCE(hspi, SPI_IT_TXE) == RESET) + { + /* Disable ERR interrupt */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_ERR)); + + if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Check if Errors has been detected during transfer */ + if(hspi->ErrorCode == HAL_SPI_ERROR_NONE) + { + /* Check if we are in Rx or in Rx/Tx Mode */ + if(hspi->State == HAL_SPI_STATE_BUSY_TX_RX) + { + /* Set state to READY before run the Callback Complete */ + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_TxRxCpltCallback(hspi); + } + else + { + /* Set state to READY before run the Callback Complete */ + hspi->State = HAL_SPI_STATE_READY; + HAL_SPI_RxCpltCallback(hspi); + } + } + else + { + /* Set state to READY before run the Callback Complete */ + hspi->State = HAL_SPI_STATE_READY; + /* Call Error call back in case of Error */ + HAL_SPI_ErrorCallback(hspi); + } + } +} + +/** + * @brief Interrupt Handler to receive amount of data in 2Lines mode + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval void + */ +static void SPI_2LinesRxISR(SPI_HandleTypeDef *hspi) +{ + /* Receive data in 8 Bit mode */ + if(hspi->Init.DataSize == SPI_DATASIZE_8BIT) + { + (*hspi->pRxBuffPtr++) = hspi->Instance->DR; + } + /* Receive data in 16 Bit mode */ + else + { + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr+=2; + } + hspi->RxXferCount--; + + if(hspi->RxXferCount==0) + { + SPI_RxCloseIRQHandler(hspi); + } +} + +/** + * @brief Interrupt Handler to receive amount of data in no-blocking mode + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval void + */ +static void SPI_RxISR(SPI_HandleTypeDef *hspi) +{ + /* Receive data in 8 Bit mode */ + if(hspi->Init.DataSize == SPI_DATASIZE_8BIT) + { + (*hspi->pRxBuffPtr++) = hspi->Instance->DR; + } + /* Receive data in 16 Bit mode */ + else + { + *((uint16_t*)hspi->pRxBuffPtr) = hspi->Instance->DR; + hspi->pRxBuffPtr+=2; + } + hspi->RxXferCount--; + + /* Enable CRC Transmission */ + if((hspi->RxXferCount == 1) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)) + { + /* Set CRC Next to calculate CRC on Rx side */ + hspi->Instance->CR1 |= SPI_CR1_CRCNEXT; + } + + if(hspi->RxXferCount == 0) + { + SPI_RxCloseIRQHandler(hspi); + } +} + +/** + * @brief DMA SPI transmit process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + /* DMA Normal Mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + /* Disable Tx DMA Request */ + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + + /* Wait until Busy flag is reset before disabling SPI */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + hspi->TxXferCount = 0; + + hspi->State = HAL_SPI_STATE_READY; + } + + /* Clear OVERRUN flag in 2 Lines communication mode because received is not read */ + if(hspi->Init.Direction == SPI_DIRECTION_2LINES) + { + __HAL_SPI_CLEAR_OVRFLAG(hspi); + } + + /* Check if Errors has been detected during transfer */ + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + HAL_SPI_ErrorCallback(hspi); + } + else + { + HAL_SPI_TxCpltCallback(hspi); + } +} + +/** + * @brief DMA SPI receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + __IO uint16_t tmpreg; + + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + if((hspi->Init.Direction == SPI_DIRECTION_2LINES)&&(hspi->Init.Mode == SPI_MODE_MASTER)) + { + SPI_DMAEndTransmitReceive(hspi); + } + /* SPI_DIRECTION_1LINE or SPI_DIRECTION_2LINES_RXONLY */ + else + { + if((hspi->Init.Mode == SPI_MODE_MASTER)&&((hspi->Init.Direction == SPI_DIRECTION_1LINE)||(hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))) + { + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + } + + /* Disable Rx DMA Request */ + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + + hspi->RxXferCount = 0; + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Wait until RXNE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + /* Read CRC */ + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); + + /* Wait until RXNE flag is set */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } + } + } + + hspi->State = HAL_SPI_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + HAL_SPI_ErrorCallback(hspi); + } + else + { + HAL_SPI_RxCpltCallback(hspi); + } + } + else + { + HAL_SPI_RxCpltCallback(hspi); + } +} + +/** + * @brief End DMA SPI transmit receive process + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @retval None + */ +static void SPI_DMAEndTransmitReceive(SPI_HandleTypeDef *hspi) +{ + __IO uint16_t tmpreg; + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + /* Check if CRC is done on going (RXNE flag set) */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_TIMEOUT_VALUE) == HAL_OK) + { + /* Wait until RXNE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + } + /* Read CRC */ + tmpreg = hspi->Instance->DR; + UNUSED(tmpreg); + + /* Check if CRC error occurred */ + if(__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET) + { + hspi->ErrorCode |= HAL_SPI_ERROR_CRC; + __HAL_SPI_CLEAR_CRCERRFLAG(hspi); + } + } + + /* Wait until TXE flag is set to send data */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_TXE, RESET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + /* Disable Tx DMA Request */ + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_TXDMAEN); + + /* Wait until Busy flag is reset before disabling SPI */ + if(SPI_WaitOnFlagUntilTimeout(hspi, SPI_FLAG_BSY, SET, SPI_TIMEOUT_VALUE) != HAL_OK) + { + hspi->ErrorCode |= HAL_SPI_ERROR_FLAG; + } + + /* Disable Rx DMA Request */ + hspi->Instance->CR2 &= (uint32_t)(~SPI_CR2_RXDMAEN); + + hspi->TxXferCount = 0; + hspi->RxXferCount = 0; +} + +/** + * @brief DMA SPI transmit receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { /**/ + SPI_DMAEndTransmitReceive(hspi); + + hspi->State = HAL_SPI_STATE_READY; + + /* Check if Errors has been detected during transfer */ + if(hspi->ErrorCode != HAL_SPI_ERROR_NONE) + { + HAL_SPI_ErrorCallback(hspi); + } + else + { + HAL_SPI_TxRxCpltCallback(hspi); + } + } + else + { + HAL_SPI_TxRxCpltCallback(hspi); + } +} + +/** + * @brief DMA SPI half transmit process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_SPI_TxHalfCpltCallback(hspi); +} + +/** + * @brief DMA SPI half receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_SPI_RxHalfCpltCallback(hspi); +} + +/** + * @brief DMA SPI Half transmit receive process complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = ( SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + HAL_SPI_TxRxHalfCpltCallback(hspi); +} + +/** + * @brief DMA SPI communication error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void SPI_DMAError(DMA_HandleTypeDef *hdma) +{ + SPI_HandleTypeDef* hspi = (SPI_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + hspi->TxXferCount = 0; + hspi->RxXferCount = 0; + hspi->State= HAL_SPI_STATE_READY; + hspi->ErrorCode |= HAL_SPI_ERROR_DMA; + HAL_SPI_ErrorCallback(hspi); +} + +/** + * @brief This function handles SPI Communication Timeout. + * @param hspi: pointer to a SPI_HandleTypeDef structure that contains + * the configuration information for SPI module. + * @param Flag: SPI flag to check + * @param Status: Flag status to check: RESET or set + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef SPI_WaitOnFlagUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_SPI_GET_FLAG(hspi, Flag) == RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable the SPI and reset the CRC: the CRC value should be cleared + on both master and slave sides in order to resynchronize the master + and slave for their respective CRC calculation */ + + /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + hspi->State= HAL_SPI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_SPI_GET_FLAG(hspi, Flag) != RESET) + { + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable the SPI and reset the CRC: the CRC value should be cleared + on both master and slave sides in order to resynchronize the master + and slave for their respective CRC calculation */ + + /* Disable TXE, RXNE and ERR interrupts for the interrupt process */ + __HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR)); + + /* Disable SPI peripheral */ + __HAL_SPI_DISABLE(hspi); + + /* Reset CRC Calculation */ + if(hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE) + { + SPI_RESET_CRC(hspi); + } + + hspi->State= HAL_SPI_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hspi); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + + +/** + * @} + */ + +#endif /* HAL_SPI_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sram.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sram.c new file mode 100644 index 0000000..6cb0a7f --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_sram.c @@ -0,0 +1,682 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_sram.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SRAM HAL module driver. + * This file provides a generic firmware to drive SRAM memories + * mounted as external device. + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a generic layered driver which contains a set of APIs used to + control SRAM memories. It uses the FMC layer functions to interface + with SRAM devices. + The following sequence should be followed to configure the FMC/FSMC to interface + with SRAM/PSRAM memories: + + (#) Declare a SRAM_HandleTypeDef handle structure, for example: + SRAM_HandleTypeDef hsram; and: + + (++) Fill the SRAM_HandleTypeDef handle "Init" field with the allowed + values of the structure member. + + (++) Fill the SRAM_HandleTypeDef handle "Instance" field with a predefined + base register instance for NOR or SRAM device + + (++) Fill the SRAM_HandleTypeDef handle "Extended" field with a predefined + base register instance for NOR or SRAM extended mode + + (#) Declare two FMC_NORSRAM_TimingTypeDef structures, for both normal and extended + mode timings; for example: + FMC_NORSRAM_TimingTypeDef Timing and FMC_NORSRAM_TimingTypeDef ExTiming; + and fill its fields with the allowed values of the structure member. + + (#) Initialize the SRAM Controller by calling the function HAL_SRAM_Init(). This function + performs the following sequence: + + (##) MSP hardware layer configuration using the function HAL_SRAM_MspInit() + (##) Control register configuration using the FMC NORSRAM interface function + FMC_NORSRAM_Init() + (##) Timing register configuration using the FMC NORSRAM interface function + FMC_NORSRAM_Timing_Init() + (##) Extended mode Timing register configuration using the FMC NORSRAM interface function + FMC_NORSRAM_Extended_Timing_Init() + (##) Enable the SRAM device using the macro __FMC_NORSRAM_ENABLE() + + (#) At this stage you can perform read/write accesses from/to the memory connected + to the NOR/SRAM Bank. You can perform either polling or DMA transfer using the + following APIs: + (++) HAL_SRAM_Read()/HAL_SRAM_Write() for polling read/write access + (++) HAL_SRAM_Read_DMA()/HAL_SRAM_Write_DMA() for DMA read/write transfer + + (#) You can also control the SRAM device by calling the control APIs HAL_SRAM_WriteOperation_Enable()/ + HAL_SRAM_WriteOperation_Disable() to respectively enable/disable the SRAM write operation + + (#) You can continuously monitor the SRAM device HAL state by calling the function + HAL_SRAM_GetState() + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup SRAM SRAM + * @brief SRAM driver modules + * @{ + */ +#ifdef HAL_SRAM_MODULE_ENABLED + +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\ + defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\ + defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup SRAM_Exported_Functions SRAM Exported Functions + * @{ + */ +/** @defgroup SRAM_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### SRAM Initialization and de_initialization functions ##### + ============================================================================== + [..] This section provides functions allowing to initialize/de-initialize + the SRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Performs the SRAM device initialization sequence + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param Timing: Pointer to SRAM control timing structure + * @param ExtTiming: Pointer to SRAM extended mode timing structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Init(SRAM_HandleTypeDef *hsram, FMC_NORSRAM_TimingTypeDef *Timing, FMC_NORSRAM_TimingTypeDef *ExtTiming) +{ + /* Check the SRAM handle parameter */ + if(hsram == NULL) + { + return HAL_ERROR; + } + + if(hsram->State == HAL_SRAM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hsram->Lock = HAL_UNLOCKED; + /* Initialize the low level hardware (MSP) */ + HAL_SRAM_MspInit(hsram); + } + + /* Initialize SRAM control Interface */ + FMC_NORSRAM_Init(hsram->Instance, &(hsram->Init)); + + /* Initialize SRAM timing Interface */ + FMC_NORSRAM_Timing_Init(hsram->Instance, Timing, hsram->Init.NSBank); + + /* Initialize SRAM extended mode timing Interface */ + FMC_NORSRAM_Extended_Timing_Init(hsram->Extended, ExtTiming, hsram->Init.NSBank, hsram->Init.ExtendedMode); + + /* Enable the NORSRAM device */ + __FMC_NORSRAM_ENABLE(hsram->Instance, hsram->Init.NSBank); + + return HAL_OK; +} + +/** + * @brief Performs the SRAM device De-initialization sequence. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_DeInit(SRAM_HandleTypeDef *hsram) +{ + /* De-Initialize the low level hardware (MSP) */ + HAL_SRAM_MspDeInit(hsram); + + /* Configure the SRAM registers with their reset values */ + FMC_NORSRAM_DeInit(hsram->Instance, hsram->Extended, hsram->Init.NSBank); + + hsram->State = HAL_SRAM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief SRAM MSP Init. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_MspInit(SRAM_HandleTypeDef *hsram) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_MspInit could be implemented in the user file + */ +} + +/** + * @brief SRAM MSP DeInit. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_MspDeInit(SRAM_HandleTypeDef *hsram) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete callback. + * @param hdma: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_DMA_XferCpltCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_DMA_XferCpltCallback could be implemented in the user file + */ +} + +/** + * @brief DMA transfer complete error callback. + * @param hdma: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval None + */ +__weak void HAL_SRAM_DMA_XferErrorCallback(DMA_HandleTypeDef *hdma) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_SRAM_DMA_XferErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup SRAM_Exported_Functions_Group2 Input and Output functions + * @brief Input Output and memory control functions + * + @verbatim + ============================================================================== + ##### SRAM Input and Output functions ##### + ============================================================================== + [..] + This section provides functions allowing to use and control the SRAM memory + +@endverbatim + * @{ + */ + +/** + * @brief Reads 8-bit buffer from SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint8_t * pSramAddress = (uint8_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Read data from memory */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint8_t *)pSramAddress; + pDstBuffer++; + pSramAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes 8-bit buffer to SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_8b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint8_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint8_t * pSramAddress = (uint8_t *)pAddress; + + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint8_t *)pSramAddress = *pSrcBuffer; + pSrcBuffer++; + pSramAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Reads 16-bit buffer from SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pDstBuffer, uint32_t BufferSize) +{ + __IO uint16_t * pSramAddress = (uint16_t *)pAddress; + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Read data from memory */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint16_t *)pSramAddress; + pDstBuffer++; + pSramAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes 16-bit buffer to SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_16b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint16_t *pSrcBuffer, uint32_t BufferSize) +{ + __IO uint16_t * pSramAddress = (uint16_t *)pAddress; + + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint16_t *)pSramAddress = *pSrcBuffer; + pSrcBuffer++; + pSramAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Reads 32-bit buffer from SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Read data from memory */ + for(; BufferSize != 0; BufferSize--) + { + *pDstBuffer = *(__IO uint32_t *)pAddress; + pDstBuffer++; + pAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes 32-bit buffer to SRAM memory. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_32b(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Write data to memory */ + for(; BufferSize != 0; BufferSize--) + { + *(__IO uint32_t *)pAddress = *pSrcBuffer; + pSrcBuffer++; + pAddress++; + } + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Reads a Words data from the SRAM memory using DMA transfer. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to read start address + * @param pDstBuffer: Pointer to destination buffer + * @param BufferSize: Size of the buffer to read from memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Read_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pDstBuffer, uint32_t BufferSize) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Configure DMA user callbacks */ + hsram->hdma->XferCpltCallback = HAL_SRAM_DMA_XferCpltCallback; + hsram->hdma->XferErrorCallback = HAL_SRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsram->hdma, (uint32_t)pAddress, (uint32_t)pDstBuffer, (uint32_t)BufferSize); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Writes a Words data buffer to SRAM memory using DMA transfer. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @param pAddress: Pointer to write start address + * @param pSrcBuffer: Pointer to source buffer to write + * @param BufferSize: Size of the buffer to write to memory + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_Write_DMA(SRAM_HandleTypeDef *hsram, uint32_t *pAddress, uint32_t *pSrcBuffer, uint32_t BufferSize) +{ + /* Check the SRAM controller state */ + if(hsram->State == HAL_SRAM_STATE_PROTECTED) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Configure DMA user callbacks */ + hsram->hdma->XferCpltCallback = HAL_SRAM_DMA_XferCpltCallback; + hsram->hdma->XferErrorCallback = HAL_SRAM_DMA_XferErrorCallback; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(hsram->hdma, (uint32_t)pSrcBuffer, (uint32_t)pAddress, (uint32_t)BufferSize); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup SRAM_Exported_Functions_Group3 Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### SRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the SRAM interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically SRAM write operation. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_WriteOperation_Enable(SRAM_HandleTypeDef *hsram) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Enable write operation */ + FMC_NORSRAM_WriteOperation_Enable(hsram->Instance, hsram->Init.NSBank); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_READY; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @brief Disables dynamically SRAM write operation. + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_SRAM_WriteOperation_Disable(SRAM_HandleTypeDef *hsram) +{ + /* Process Locked */ + __HAL_LOCK(hsram); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_BUSY; + + /* Disable write operation */ + FMC_NORSRAM_WriteOperation_Disable(hsram->Instance, hsram->Init.NSBank); + + /* Update the SRAM controller state */ + hsram->State = HAL_SRAM_STATE_PROTECTED; + + /* Process unlocked */ + __HAL_UNLOCK(hsram); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup SRAM_Exported_Functions_Group4 State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### SRAM State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the SRAM controller + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the SRAM controller state + * @param hsram: pointer to a SRAM_HandleTypeDef structure that contains + * the configuration information for SRAM module. + * @retval HAL state + */ +HAL_SRAM_StateTypeDef HAL_SRAM_GetState(SRAM_HandleTypeDef *hsram) +{ + return hsram->State; +} +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx || STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_SRAM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_tim.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_tim.c new file mode 100644 index 0000000..c1ade71 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_tim.c @@ -0,0 +1,5335 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_tim.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer (TIM) peripheral: + * + Time Base Initialization + * + Time Base Start + * + Time Base Start Interruption + * + Time Base Start DMA + * + Time Output Compare/PWM Initialization + * + Time Output Compare/PWM Channel Configuration + * + Time Output Compare/PWM Start + * + Time Output Compare/PWM Start Interruption + * + Time Output Compare/PWM Start DMA + * + Time Input Capture Initialization + * + Time Input Capture Channel Configuration + * + Time Input Capture Start + * + Time Input Capture Start Interruption + * + Time Input Capture Start DMA + * + Time One Pulse Initialization + * + Time One Pulse Channel Configuration + * + Time One Pulse Start + * + Time Encoder Interface Initialization + * + Time Encoder Interface Start + * + Time Encoder Interface Start Interruption + * + Time Encoder Interface Start DMA + * + Commutation Event configuration with Interruption and DMA + * + Time OCRef clear configuration + * + Time External Clock configuration + @verbatim + ============================================================================== + ##### TIMER Generic features ##### + ============================================================================== + [..] The Timer features include: + (#) 16-bit up, down, up/down auto-reload counter. + (#) 16-bit programmable prescaler allowing dividing (also on the fly) the + counter clock frequency either by any factor between 1 and 65536. + (#) Up to 4 independent channels for: + (++) Input Capture + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending from feature used : + (++) Time Base : HAL_TIM_Base_MspInit() + (++) Input Capture : HAL_TIM_IC_MspInit() + (++) Output Compare : HAL_TIM_OC_MspInit() + (++) PWM generation : HAL_TIM_PWM_MspInit() + (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit() + (++) Encoder mode output : HAL_TIM_Encoder_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + initialization function of this driver: + (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base + (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an + Output Compare signal. + (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a + PWM signal. + (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an + external signal. + (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer + in One Pulse Mode. + (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface. + + (#) Activate the TIM peripheral using one of the start functions depending from the feature used: + (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT() + (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT() + (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT() + (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT() + (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT() + (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT(). + + (#) The DMA Burst is managed with the two following functions: + HAL_TIM_DMABurst_WriteStart() + HAL_TIM_DMABurst_ReadStart() + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup TIM TIM + * @brief TIM HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup TIM_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config); + +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter); +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter); + +static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler, + uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter); + +static void TIM_ITRx_SetConfig(TIM_TypeDef* TIMx, uint16_t TIM_ITRx); +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma); +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma); +static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef * sSlaveConfig); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup TIM_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @defgroup TIM_Exported_Functions_Group1 Time Base functions + * @brief Time Base functions + * +@verbatim + ============================================================================== + ##### Time Base functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM base. + (+) De-initialize the TIM base. + (+) Start the Time Base. + (+) Stop the Time Base. + (+) Start the Time Base and enable interrupt. + (+) Stop the Time Base and disable interrupt. + (+) Start the Time Base and enable DMA transfer. + (+) Stop the Time Base and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Time base Unit according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Set the Time Base configuration */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Base peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Base_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Base MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Base_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Base MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Base_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Base generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Change the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + /* Enable the TIM Update interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Disable the TIM Update interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Base generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR, Length); + + /* Enable the TIM Update DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Base generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_INSTANCE(htim->Instance)); + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group2 Time Output Compare functions + * @brief Time Output Compare functions + * +@verbatim + ============================================================================== + ##### Time Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Output Compare. + (+) De-initialize the TIM Output Compare. + (+) Start the Time Output Compare. + (+) Stop the Time Output Compare. + (+) Start the Time Output Compare and enable interrupt. + (+) Stop the Time Output Compare and disable interrupt. + (+) Start the Time Output Compare and enable DMA transfer. + (+) Stop the Time Output Compare and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Output Compare according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef* htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the base time for the Output Compare */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OC_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Output Compare MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Output Compare MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Output Compare signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Output compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group3 Time PWM functions + * @brief Time PWM functions + * +@verbatim + ============================================================================== + ##### Time PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM OPWM. + (+) De-initialize the TIM PWM. + (+) Start the Time PWM. + (+) Stop the Time PWM. + (+) Start the Time PWM and enable interrupt. + (+) Stop the Time PWM and disable interrupt. + (+) Start the Time PWM and enable DMA transfer. + (+) Stop the Time PWM and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM PWM Time Base according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the base time for the PWM */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_PWM_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM PWM MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_PWM_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the PWM signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Output Capture/Compare 3 request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group4 Time Input Capture functions + * @brief Time Input Capture functions + * +@verbatim + ============================================================================== + ##### Time Input Capture functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Input Capture. + (+) De-initialize the TIM Input Capture. + (+) Start the Time Input Capture. + (+) Stop the Time Input Capture. + (+) Start the Time Input Capture and enable interrupt. + (+) Stop the Time Input Capture and disable interrupt. + (+) Start the Time Input Capture and enable DMA transfer. + (+) Stop the Time Input Capture and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Input Capture Time base according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the base time for the input capture */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_IC_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM INput Capture MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_IC_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Input Capture MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_IC_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Input Capture measurement. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_IT (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Input Capture measurement on in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The destination Buffer address. + * @param Length: The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Input Capture measurement on in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel)); + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Input Capture channel */ + TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group5 Time One Pulse functions + * @brief Time One Pulse functions + * +@verbatim + ============================================================================== + ##### Time One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM One Pulse. + (+) De-initialize the TIM One Pulse. + (+) Start the Time One Pulse. + (+) Stop the Time One Pulse. + (+) Start the Time One Pulse and enable interrupt. + (+) Stop the Time One Pulse and disable interrupt. + (+) Start the Time One Pulse and enable DMA transfer. + (+) Stop the Time One Pulse and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM One Pulse Time Base according to the specified + * parameters in the TIM_HandleTypeDef and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OnePulseMode: Select the One pulse mode. + * This parameter can be one of the following values: + * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated. + * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode) +{ + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_OPM_MODE(OnePulseMode)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_OnePulse_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Configure the Time base in the One Pulse Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Reset the OPM Bit */ + htim->Instance->CR1 &= ~TIM_CR1_OPM; + + /* Configure the OPM Mode */ + htim->Instance->CR1 |= OnePulseMode; + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM One Pulse + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_OnePulse_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM One Pulse MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM One Pulse signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be disable. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Enable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together + + No need to enable the counter, it's enabled automatically by hardware + (the counter starts in response to a stimulus and generate a pulse */ + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Enable the main output */ + __HAL_TIM_MOE_ENABLE(htim); + } + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel : TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the Capture compare and the Input Capture channels + (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) + if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and + if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output + in all combinations, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + if(IS_TIM_ADVANCED_INSTANCE(htim->Instance) != RESET) + { + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group6 Time Encoder functions + * @brief Time Encoder functions + * +@verbatim + ============================================================================== + ##### Time Encoder functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the TIM Encoder. + (+) De-initialize the TIM Encoder. + (+) Start the Time Encoder. + (+) Stop the Time Encoder. + (+) Start the Time Encoder and enable interrupt. + (+) Stop the Time Encoder and disable interrupt. + (+) Start the Time Encoder and enable DMA transfer. + (+) Stop the Time Encoder and disable DMA transfer. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Encoder Interface and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Encoder Interface configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef* sConfig) +{ + uint32_t tmpsmcr = 0; + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection)); + assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC2Polarity)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter)); + + if(htim->State == HAL_TIM_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + htim->Lock = HAL_UNLOCKED; + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIM_Encoder_MspInit(htim); + } + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Reset the SMS bits */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Get the TIMx CCMR1 register value */ + tmpccmr1 = htim->Instance->CCMR1; + + /* Get the TIMx CCER register value */ + tmpccer = htim->Instance->CCER; + + /* Set the encoder Mode */ + tmpsmcr |= sConfig->EncoderMode; + + /* Select the Capture Compare 1 and the Capture Compare 2 as input */ + tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S); + tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8)); + + /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */ + tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC); + tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F); + tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8); + tmpccmr1 |= (sConfig->IC1Filter << 4) | (sConfig->IC2Filter << 12); + + /* Set the TI1 and the TI2 Polarities */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P); + tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP); + tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4); + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Write to TIMx CCMR1 */ + htim->Instance->CCMR1 = tmpccmr1; + + /* Write to TIMx CCER */ + htim->Instance->CCER = tmpccer; + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Encoder interface + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIM_Encoder_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Encoder Interface MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Encoder Interface MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_Encoder_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Encoder Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Enable the encoder interface channels */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + break; + } + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + break; + } + } + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + break; + } + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + break; + } + } + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Enable the encoder interface channels */ + /* Enable the capture compare Interrupts 1 and/or 2 */ + switch (Channel) + { + case TIM_CHANNEL_1: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + break; + } + case TIM_CHANNEL_2: + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + default : + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + break; + } + } + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if(Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + else if(Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts 1 and 2 */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Encoder Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @param pData1: The destination Buffer address for IC1. + * @param pData2: The destination Buffer address for IC2. + * @param Length: The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1, uint32_t *pData2, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((((pData1 == 0) || (pData2 == 0) )) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t )pData1, Length); + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError; + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length); + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + } + break; + + case TIM_CHANNEL_ALL: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1, Length); + + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2, Length); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Enable the Capture compare channel */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE); + + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + /* Enable the TIM Input Capture DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + default: + break; + } + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Encoder Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 and 2 + (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */ + if(Channel == TIM_CHANNEL_1) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + else if(Channel == TIM_CHANNEL_2) + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + else + { + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE); + + /* Disable the capture compare DMA Request 1 and 2 */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management + * @brief IRQ handler management + * +@verbatim + ============================================================================== + ##### IRQ handler management ##### + ============================================================================== + [..] + This section provides Timer IRQ handler function. + +@endverbatim + * @{ + */ +/** + * @brief This function handles TIM interrupts requests. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim) +{ + /* Capture compare 1 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) !=RESET) + { + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + + /* Input capture event */ + if((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + } + /* Capture compare 2 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + /* Input capture event */ + if((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 3 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + /* Input capture event */ + if((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* Capture compare 4 event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4); + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + /* Input capture event */ + if((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00) + { + HAL_TIM_IC_CaptureCallback(htim); + } + /* Output compare event */ + else + { + HAL_TIM_OC_DelayElapsedCallback(htim); + HAL_TIM_PWM_PulseFinishedCallback(htim); + } + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; + } + } + /* TIM Update event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE); + HAL_TIM_PeriodElapsedCallback(htim); + } + } + /* TIM Break input event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK); + HAL_TIMEx_BreakCallback(htim); + } + } + /* TIM Trigger detection event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER); + HAL_TIM_TriggerCallback(htim); + } + } + /* TIM commutation event */ + if(__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET) + { + if(__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) !=RESET) + { + __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM); + HAL_TIMEx_CommutationCallback(htim); + } + } +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group8 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. + (+) Configure External Clock source. + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master and the Slave synchronization. + (+) Configure the DMA Burst Mode. + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the TIM Output Compare Channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Output Compare configuration structure + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_OC_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_TIM_OCN_POLARITY(sConfig->OCNPolarity)); + assert_param(IS_TIM_OCNIDLE_STATE(sConfig->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(sConfig->OCIdleState)); + + /* Check input state */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 1 in Output Compare */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 2 in Output Compare */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_3: + { + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 3 in Output Compare */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + } + break; + + case TIM_CHANNEL_4: + { + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + /* Configure the TIM Channel 4 in Output Compare */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + } + break; + + default: + break; + } + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Input Capture Channels according to the specified + * parameters in the TIM_IC_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Input Capture configuration structure + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef* sConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity)); + assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if (Channel == TIM_CHANNEL_1) + { + /* TI1 Configuration */ + TIM_TI1_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->ICPrescaler; + } + else if (Channel == TIM_CHANNEL_2) + { + /* TI2 Configuration */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Set the IC2PSC value */ + htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8); + } + else if (Channel == TIM_CHANNEL_3) + { + /* TI3 Configuration */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + TIM_TI3_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC3PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC; + + /* Set the IC3PSC value */ + htim->Instance->CCMR2 |= sConfig->ICPrescaler; + } + else + { + /* TI4 Configuration */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + TIM_TI4_SetConfig(htim->Instance, + sConfig->ICPolarity, + sConfig->ICSelection, + sConfig->ICFilter); + + /* Reset the IC4PSC Bits */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC; + + /* Set the IC4PSC value */ + htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8); + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM PWM channels according to the specified + * parameters in the TIM_OC_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM PWM configuration structure + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel) +{ + __HAL_LOCK(htim); + + /* Check the parameters */ + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_PWM_MODE(sConfig->OCMode)); + assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity)); + assert_param(IS_TIM_OCN_POLARITY(sConfig->OCNPolarity)); + assert_param(IS_TIM_OCNIDLE_STATE(sConfig->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(sConfig->OCIdleState)); + assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode)); + + htim->State = HAL_TIM_STATE_BUSY; + + switch (Channel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + /* Configure the Channel 1 in PWM mode */ + TIM_OC1_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode; + } + break; + + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + /* Configure the Channel 2 in PWM mode */ + TIM_OC2_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE; + htim->Instance->CCMR1 |= sConfig->OCFastMode << 8; + } + break; + + case TIM_CHANNEL_3: + { + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + /* Configure the Channel 3 in PWM mode */ + TIM_OC3_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode; + } + break; + + case TIM_CHANNEL_4: + { + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + /* Configure the Channel 4 in PWM mode */ + TIM_OC4_SetConfig(htim->Instance, sConfig); + + /* Set the Preload enable bit for channel4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE; + + /* Configure the Output Fast mode */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE; + htim->Instance->CCMR2 |= sConfig->OCFastMode << 8; + } + break; + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM One Pulse Channels according to the specified + * parameters in the TIM_OnePulse_InitTypeDef. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM One Pulse configuration structure + * @param OutputChannel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @param InputChannel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef* sConfig, uint32_t OutputChannel, uint32_t InputChannel) +{ + TIM_OC_InitTypeDef temp1; + + /* Check the parameters */ + assert_param(IS_TIM_OPM_CHANNELS(OutputChannel)); + assert_param(IS_TIM_OPM_CHANNELS(InputChannel)); + + if(OutputChannel != InputChannel) + { + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Extract the Output compare configuration from sConfig structure */ + temp1.OCMode = sConfig->OCMode; + temp1.Pulse = sConfig->Pulse; + temp1.OCPolarity = sConfig->OCPolarity; + temp1.OCNPolarity = sConfig->OCNPolarity; + temp1.OCIdleState = sConfig->OCIdleState; + temp1.OCNIdleState = sConfig->OCNIdleState; + + switch (OutputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_OC1_SetConfig(htim->Instance, &temp1); + } + break; + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_OC2_SetConfig(htim->Instance, &temp1); + } + break; + default: + break; + } + switch (InputChannel) + { + case TIM_CHANNEL_1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1FP1; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + } + break; + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity, + sConfig->ICSelection, sConfig->ICFilter); + + /* Reset the IC2PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC; + + /* Select the Trigger source */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI2FP2; + + /* Select the Slave Mode */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER; + } + break; + + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; + } + else + { + return HAL_ERROR; + } +} + +/** + * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstBaseAddress: TIM Base address from when the DMA will starts the Data write. + * This parameters can be on of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_DCR + * @param BurstRequestSrc: TIM DMA Request sources. + * This parameters can be on of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer: The Buffer address. + * @param BurstLength: DMA Burst length. This parameter can be one value + * between TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, + uint32_t* BurstBuffer, uint32_t BurstLength) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((BurstBuffer == 0 ) && (BurstLength > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_COM: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_TRIGGER: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer, (uint32_t)&htim->Instance->DMAR, ((BurstLength) >> 8) + 1); + } + break; + default: + break; + } + /* configure the DMA Burst Mode */ + htim->Instance->DCR = BurstBaseAddress | BurstLength; + + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM DMA Burst mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstRequestSrc: TIM DMA Request sources to disable + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); + } + break; + case TIM_DMA_CC1: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]); + } + break; + case TIM_DMA_CC2: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]); + } + break; + case TIM_DMA_CC3: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]); + } + break; + case TIM_DMA_CC4: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]); + } + break; + case TIM_DMA_COM: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]); + } + break; + case TIM_DMA_TRIGGER: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]); + } + break; + default: + break; + } + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstBaseAddress: TIM Base address from when the DMA will starts the Data read. + * This parameters can be on of the following values: + * @arg TIM_DMABASE_CR1 + * @arg TIM_DMABASE_CR2 + * @arg TIM_DMABASE_SMCR + * @arg TIM_DMABASE_DIER + * @arg TIM_DMABASE_SR + * @arg TIM_DMABASE_EGR + * @arg TIM_DMABASE_CCMR1 + * @arg TIM_DMABASE_CCMR2 + * @arg TIM_DMABASE_CCER + * @arg TIM_DMABASE_CNT + * @arg TIM_DMABASE_PSC + * @arg TIM_DMABASE_ARR + * @arg TIM_DMABASE_RCR + * @arg TIM_DMABASE_CCR1 + * @arg TIM_DMABASE_CCR2 + * @arg TIM_DMABASE_CCR3 + * @arg TIM_DMABASE_CCR4 + * @arg TIM_DMABASE_BDTR + * @arg TIM_DMABASE_DCR + * @param BurstRequestSrc: TIM DMA Request sources. + * This parameters can be on of the following values: + * @arg TIM_DMA_UPDATE: TIM update Interrupt source + * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source + * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source + * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source + * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source + * @arg TIM_DMA_COM: TIM Commutation DMA source + * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source + * @param BurstBuffer: The Buffer address. + * @param BurstLength: DMA Burst length. This parameter can be one value + * between TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress, uint32_t BurstRequestSrc, + uint32_t *BurstBuffer, uint32_t BurstLength) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance)); + assert_param(IS_TIM_DMA_BASE(BurstBaseAddress)); + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + assert_param(IS_TIM_DMA_LENGTH(BurstLength)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if((BurstBuffer == 0 ) && (BurstLength > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_CC4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_COM: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + case TIM_DMA_TRIGGER: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer, ((BurstLength) >> 8) + 1); + } + break; + default: + break; + } + + /* configure the DMA Burst Mode */ + htim->Instance->DCR = BurstBaseAddress | BurstLength; + + /* Enable the TIM DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc); + + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stop the DMA burst reading + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param BurstRequestSrc: TIM DMA Request sources to disable. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc) +{ + /* Check the parameters */ + assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc)); + + /* Abort the DMA transfer (at least disable the DMA channel) */ + switch(BurstRequestSrc) + { + case TIM_DMA_UPDATE: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_UPDATE]); + } + break; + case TIM_DMA_CC1: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC1]); + } + break; + case TIM_DMA_CC2: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC2]); + } + break; + case TIM_DMA_CC3: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC3]); + } + break; + case TIM_DMA_CC4: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_CC4]); + } + break; + case TIM_DMA_COM: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_COMMUTATION]); + } + break; + case TIM_DMA_TRIGGER: + { + HAL_DMA_Abort(htim->hdma[TIM_DMA_ID_TRIGGER]); + } + break; + default: + break; + } + + /* Disable the TIM Update DMA request */ + __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Generate a software event + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param EventSource: specifies the event source. + * This parameter can be one of the following values: + * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source + * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source + * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source + * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source + * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source + * @arg TIM_EVENTSOURCE_COM: Timer COM event source + * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source + * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source + * @note TIM6 and TIM7 can only generate an update event. + * @note TIM_EVENTSOURCE_COM and TIM_EVENTSOURCE_BREAK are used only with TIM1 and TIM8. + * @retval HAL status + */ + +HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + assert_param(IS_TIM_EVENT_SOURCE(EventSource)); + + /* Process Locked */ + __HAL_LOCK(htim); + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the event sources */ + htim->Instance->EGR = EventSource; + + /* Change the TIM state */ + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Configures the OCRef clear feature + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sClearInputConfig: pointer to a TIM_ClearInputConfigTypeDef structure that + * contains the OCREF clear feature and parameters for the TIM peripheral. + * @param Channel: specifies the TIM Channel. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim, TIM_ClearInputConfigTypeDef * sClearInputConfig, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_CHANNELS(Channel)); + assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource)); + assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity)); + assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler)); + assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + if(sClearInputConfig->ClearInputSource == TIM_CLEARINPUTSOURCE_ETR) + { + TIM_ETR_SetConfig(htim->Instance, + sClearInputConfig->ClearInputPrescaler, + sClearInputConfig->ClearInputPolarity, + sClearInputConfig->ClearInputFilter); + } + + switch (Channel) + { + case TIM_CHANNEL_1: + { + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC1CE; + } + else + { + /* Disable the Ocref clear feature for Channel 1 */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1CE; + } + } + break; + case TIM_CHANNEL_2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 2 */ + htim->Instance->CCMR1 |= TIM_CCMR1_OC2CE; + } + else + { + /* Disable the Ocref clear feature for Channel 2 */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2CE; + } + } + break; + case TIM_CHANNEL_3: + { + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 3 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC3CE; + } + else + { + /* Disable the Ocref clear feature for Channel 3 */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3CE; + } + } + break; + case TIM_CHANNEL_4: + { + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + if(sClearInputConfig->ClearInputState != RESET) + { + /* Enable the Ocref clear feature for Channel 4 */ + htim->Instance->CCMR2 |= TIM_CCMR2_OC4CE; + } + else + { + /* Disable the Ocref clear feature for Channel 4 */ + htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4CE; + } + } + break; + default: + break; + } + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the clock source to be used + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sClockSourceConfig: pointer to a TIM_ClockConfigTypeDef structure that + * contains the clock source information for the TIM peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig) +{ + uint32_t tmpsmcr = 0; + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource)); + assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity)); + assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler)); + assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter)); + + /* Reset the SMS, TS, ECE, ETPS and ETRF bits */ + tmpsmcr = htim->Instance->SMCR; + tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + htim->Instance->SMCR = tmpsmcr; + + switch (sClockSourceConfig->ClockSource) + { + case TIM_CLOCKSOURCE_INTERNAL: + { + assert_param(IS_TIM_INSTANCE(htim->Instance)); + /* Disable slave mode to clock the prescaler directly with the internal clock */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + } + break; + + case TIM_CLOCKSOURCE_ETRMODE1: + { + assert_param(IS_TIM_ETR_INSTANCE(htim->Instance)); + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + /* Reset the SMS and TS Bits */ + tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS); + /* Select the External clock mode1 and the ETRF trigger */ + tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1); + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + } + break; + + case TIM_CLOCKSOURCE_ETRMODE2: + { + assert_param(IS_TIM_ETR_INSTANCE(htim->Instance)); + /* Configure the ETR Clock source */ + TIM_ETR_SetConfig(htim->Instance, + sClockSourceConfig->ClockPrescaler, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + /* Enable the External clock mode2 */ + htim->Instance->SMCR |= TIM_SMCR_ECE; + } + break; + + case TIM_CLOCKSOURCE_TI1: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1); + } + break; + case TIM_CLOCKSOURCE_TI2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + TIM_TI2_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2); + } + break; + case TIM_CLOCKSOURCE_TI1ED: + { + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + TIM_TI1_ConfigInputStage(htim->Instance, + sClockSourceConfig->ClockPolarity, + sClockSourceConfig->ClockFilter); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED); + } + break; + case TIM_CLOCKSOURCE_ITR0: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR0); + } + break; + case TIM_CLOCKSOURCE_ITR1: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR1); + } + break; + case TIM_CLOCKSOURCE_ITR2: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR2); + } + break; + case TIM_CLOCKSOURCE_ITR3: + { + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_ITR3); + } + break; + + default: + break; + } + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Selects the signal connected to the TI1 input: direct from CH1_input + * or a XOR combination between CH1_input, CH2_input & CH3_input + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param TI1_Selection: Indicate whether or not channel 1 is connected to the + * output of a XOR gate. + * This parameter can be one of the following values: + * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input + * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3 + * pins are connected to the TI1 input (XOR combination) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection) +{ + uint32_t tmpcr2 = 0; + + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TI1SELECTION(TI1_Selection)); + + /* Get the TIMx CR2 register value */ + tmpcr2 = htim->Instance->CR2; + + /* Reset the TI1 selection */ + tmpcr2 &= ~TIM_CR2_TI1S; + + /* Set the TI1 selection */ + tmpcr2 |= TI1_Selection; + + /* Write to TIMxCR2 */ + htim->Instance->CR2 = tmpcr2; + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the ) and the Slave + * mode (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization(TIM_HandleTypeDef *htim, TIM_SlaveConfigTypeDef * sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + TIM_SlaveTimer_SetConfig(htim, sSlaveConfig); + + /* Disable Trigger Interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in Slave mode in interrupt mode + * @param htim: TIM handle. + * @param sSlaveConfig: pointer to a TIM_SlaveConfigTypeDef structure that + * contains the selected trigger (internal trigger input, filtered + * timer input or external trigger input) and the ) and the Slave + * mode (Disable, Reset, Gated, Trigger, External clock mode 1). + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchronization_IT(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef * sSlaveConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance)); + assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode)); + assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + TIM_SlaveTimer_SetConfig(htim, sSlaveConfig); + + /* Enable Trigger Interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER); + + /* Disable Trigger DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER); + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Read the captured value from Capture Compare unit + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channels to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval Captured value + */ +uint32_t HAL_TIM_ReadCapturedValue(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + uint32_t tmpreg = 0; + + __HAL_LOCK(htim); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + + /* Return the capture 1 value */ + tmpreg = htim->Instance->CCR1; + + break; + } + case TIM_CHANNEL_2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + + /* Return the capture 2 value */ + tmpreg = htim->Instance->CCR2; + + break; + } + + case TIM_CHANNEL_3: + { + /* Check the parameters */ + assert_param(IS_TIM_CC3_INSTANCE(htim->Instance)); + + /* Return the capture 3 value */ + tmpreg = htim->Instance->CCR3; + + break; + } + + case TIM_CHANNEL_4: + { + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + + /* Return the capture 4 value */ + tmpreg = htim->Instance->CCR4; + + break; + } + + default: + break; + } + + __HAL_UNLOCK(htim); + return tmpreg; +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions + * @brief TIM Callbacks functions + * +@verbatim + ============================================================================== + ##### TIM Callbacks functions ##### + ============================================================================== + [..] + This section provides TIM callback functions: + (+) Timer Period elapsed callback + (+) Timer Output Compare callback + (+) Timer Input capture callback + (+) Timer Trigger callback + (+) Timer Error callback + +@endverbatim + * @{ + */ + +/** + * @brief Period elapsed callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_PeriodElapsedCallback could be implemented in the user file + */ + +} +/** + * @brief Output Compare callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file + */ +} +/** + * @brief Input Capture callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_IC_CaptureCallback could be implemented in the user file + */ +} + +/** + * @brief PWM Pulse finished callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the __HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Trigger detection callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_TriggerCallback could be implemented in the user file + */ +} + +/** + * @brief Timer error callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIM_ErrorCallback could be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup TIM_Exported_Functions_Group10 Peripheral State functions + * @brief Peripheral State functions + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Base state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM OC state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM PWM state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Input Capture state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM One Pulse Mode state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @brief Return the TIM Encoder Mode state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} +/** + * @} + */ + +/** + * @brief Time Base configuration + * @param TIMx: TIM peripheral + * @param Structure: pointer on TIM Time Base required parameters + * @retval None + */ +void TIM_Base_SetConfig(TIM_TypeDef *TIMx, TIM_Base_InitTypeDef *Structure) +{ + uint32_t tmpcr1 = 0; + tmpcr1 = TIMx->CR1; + + /* Set TIM Time Base Unit parameters ---------------------------------------*/ + if(IS_TIM_CC3_INSTANCE(TIMx) != RESET) + { + /* Select the Counter Mode */ + tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS); + tmpcr1 |= Structure->CounterMode; + } + + if(IS_TIM_CC1_INSTANCE(TIMx) != RESET) + { + /* Set the clock division */ + tmpcr1 &= ~TIM_CR1_CKD; + tmpcr1 |= (uint32_t)Structure->ClockDivision; + } + + TIMx->CR1 = tmpcr1; + + /* Set the Auto-reload value */ + TIMx->ARR = (uint32_t)Structure->Period ; + + /* Set the Prescaler value */ + TIMx->PSC = (uint32_t)Structure->Prescaler; + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + /* Set the Repetition Counter value */ + TIMx->RCR = Structure->RepetitionCounter; + } + + /* Generate an update event to reload the Prescaler + and the repetition counter(only for TIM1 and TIM8) value immediately */ + TIMx->EGR = TIM_EGR_UG; +} + +/** + * @brief Configure the TI1 as Input. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1. + * @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2. + * @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1 + * (on channel2 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + * @retval None + */ +void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Select the Input */ + if(IS_TIM_CC2_INSTANCE(TIMx) != RESET) + { + tmpccmr1 &= ~TIM_CCMR1_CC1S; + tmpccmr1 |= TIM_ICSelection; + } + else + { + tmpccmr1 &= ~TIM_CCMR1_CC1S; + tmpccmr1 |= TIM_CCMR1_CC1S_0; + } + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((TIM_ICFilter << 4) & TIM_CCMR1_IC1F); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 2 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR1_OC2M; + tmpccmrx &= ~TIM_CCMR1_CC2S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC2P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 4); + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC2NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 4); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC2NE; + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS2; + tmpcr2 &= ~TIM_CR2_OIS2N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 2); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 2); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR2 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief TIM DMA Delay Pulse complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + if(hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if(hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if(hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if(hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + + HAL_TIM_PWM_PulseFinishedCallback(htim); + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief TIM DMA error callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void TIM_DMAError(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIM_ErrorCallback(htim); +} + +/** + * @brief TIM DMA Capture complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + if(hdma == htim->hdma[TIM_DMA_ID_CC1]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1; + } + else if(hdma == htim->hdma[TIM_DMA_ID_CC2]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2; + } + else if(hdma == htim->hdma[TIM_DMA_ID_CC3]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3; + } + else if(hdma == htim->hdma[TIM_DMA_ID_CC4]) + { + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4; + } + + HAL_TIM_IC_CaptureCallback(htim); + + htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED; +} + +/** + * @brief Enables or disables the TIM Capture Compare Channel x. + * @param TIMx to select the TIM peripheral + * @param Channel: specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_Channel_1: TIM Channel 1 + * @arg TIM_Channel_2: TIM Channel 2 + * @arg TIM_Channel_3: TIM Channel 3 + * @arg TIM_Channel_4: TIM Channel 4 + * @param ChannelState: specifies the TIM Channel CCxE bit new state. + * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_Disable. + * @retval None + */ +void TIM_CCxChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelState) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(TIMx)); + assert_param(IS_TIM_CHANNELS(Channel)); + + tmp = TIM_CCER_CC1E << Channel; + + /* Reset the CCxE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxE Bit */ + TIMx->CCER |= (uint32_t)(ChannelState << Channel); +} + +/** + * @brief TIM DMA Period Elapse complete callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIM_PeriodElapsedCallback(htim); +} + +/** + * @brief TIM DMA Trigger callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIM_TriggerCallback(htim); +} + +/** + * @brief Time Output Compare 1 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 1: Reset the CC1E Bit */ + TIMx->CCER &= ~TIM_CCER_CC1E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR1 register value */ + tmpccmrx = TIMx->CCMR1; + + /* Reset the Output Compare Mode Bits */ + tmpccmrx &= ~TIM_CCMR1_OC1M; + tmpccmrx &= ~TIM_CCMR1_CC1S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC1P; + /* Set the Output Compare Polarity */ + tmpccer |= OC_Config->OCPolarity; + + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC1NP; + /* Set the Output N Polarity */ + tmpccer |= OC_Config->OCNPolarity; + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC1NE; + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS1; + tmpcr2 &= ~TIM_CR2_OIS1N; + /* Set the Output Idle state */ + tmpcr2 |= OC_Config->OCIdleState; + /* Set the Output N Idle state */ + tmpcr2 |= OC_Config->OCNIdleState; + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR1 */ + TIMx->CCMR1 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR1 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 3 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 3: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC3M; + tmpccmrx &= ~TIM_CCMR2_CC3S; + /* Select the Output Compare Mode */ + tmpccmrx |= OC_Config->OCMode; + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC3P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 8); + + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity)); + assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState)); + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + + /* Reset the Output N Polarity level */ + tmpccer &= ~TIM_CCER_CC3NP; + /* Set the Output N Polarity */ + tmpccer |= (OC_Config->OCNPolarity << 8); + /* Reset the Output N State */ + tmpccer &= ~TIM_CCER_CC3NE; + + /* Reset the Output Compare and Output Compare N IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS3; + tmpcr2 &= ~TIM_CR2_OIS3N; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 4); + /* Set the Output N Idle state */ + tmpcr2 |= (OC_Config->OCNIdleState << 4); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR3 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 4 configuration + * @param TIMx to select the TIM peripheral + * @param OC_Config: The output configuration structure + * @retval None + */ +static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, TIM_OC_InitTypeDef *OC_Config) +{ + uint32_t tmpccmrx = 0; + uint32_t tmpccer = 0; + uint32_t tmpcr2 = 0; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + + /* Get the TIMx CCER register value */ + tmpccer = TIMx->CCER; + /* Get the TIMx CR2 register value */ + tmpcr2 = TIMx->CR2; + + /* Get the TIMx CCMR2 register value */ + tmpccmrx = TIMx->CCMR2; + + /* Reset the Output Compare mode and Capture/Compare selection Bits */ + tmpccmrx &= ~TIM_CCMR2_OC4M; + tmpccmrx &= ~TIM_CCMR2_CC4S; + + /* Select the Output Compare Mode */ + tmpccmrx |= (OC_Config->OCMode << 8); + + /* Reset the Output Polarity level */ + tmpccer &= ~TIM_CCER_CC4P; + /* Set the Output Compare Polarity */ + tmpccer |= (OC_Config->OCPolarity << 12); + + /*if((TIMx == TIM1) || (TIMx == TIM8))*/ + if(IS_TIM_ADVANCED_INSTANCE(TIMx) != RESET) + { + assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState)); + /* Reset the Output Compare IDLE State */ + tmpcr2 &= ~TIM_CR2_OIS4; + /* Set the Output Idle state */ + tmpcr2 |= (OC_Config->OCIdleState << 6); + } + /* Write to TIMx CR2 */ + TIMx->CR2 = tmpcr2; + + /* Write to TIMx CCMR2 */ + TIMx->CCMR2 = tmpccmrx; + + /* Set the Capture Compare Register value */ + TIMx->CCR4 = OC_Config->Pulse; + + /* Write to TIMx CCER */ + TIMx->CCER = tmpccer; +} + +/** + * @brief Time Output Compare 4 configuration + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sSlaveConfig: The slave configuration structure + * @retval None + */ +static void TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim, + TIM_SlaveConfigTypeDef * sSlaveConfig) +{ + uint32_t tmpsmcr = 0; + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Get the TIMx SMCR register value */ + tmpsmcr = htim->Instance->SMCR; + + /* Reset the Trigger Selection Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source */ + tmpsmcr |= sSlaveConfig->InputTrigger; + + /* Reset the slave mode Bits */ + tmpsmcr &= ~TIM_SMCR_SMS; + /* Set the slave mode */ + tmpsmcr |= sSlaveConfig->SlaveMode; + + /* Write to TIMx SMCR */ + htim->Instance->SMCR = tmpsmcr; + + /* Configure the trigger prescaler, filter, and polarity */ + switch (sSlaveConfig->InputTrigger) + { + case TIM_TS_ETRF: + { + /* Check the parameters */ + assert_param(IS_TIM_ETR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + /* Configure the ETR Trigger source */ + TIM_ETR_SetConfig(htim->Instance, + sSlaveConfig->TriggerPrescaler, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_TI1F_ED: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = htim->Instance->CCER; + htim->Instance->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = htim->Instance->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4); + + /* Write to TIMx CCMR1 and CCER registers */ + htim->Instance->CCMR1 = tmpccmr1; + htim->Instance->CCER = tmpccer; + + } + break; + + case TIM_TS_TI1FP1: + { + /* Check the parameters */ + assert_param(IS_TIM_CC1_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI1 Filter and Polarity */ + TIM_TI1_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_TI2FP2: + { + /* Check the parameters */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity)); + assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter)); + + /* Configure TI2 Filter and Polarity */ + TIM_TI2_ConfigInputStage(htim->Instance, + sSlaveConfig->TriggerPolarity, + sSlaveConfig->TriggerFilter); + } + break; + + case TIM_TS_ITR0: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR1: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR2: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + case TIM_TS_ITR3: + { + /* Check the parameter */ + assert_param(IS_TIM_CC2_INSTANCE(htim->Instance)); + } + break; + + default: + break; + } +} + + +/** + * @brief Configure the Polarity and Filter for TI1. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 1: Reset the CC1E Bit */ + tmpccer = TIMx->CCER; + TIMx->CCER &= ~TIM_CCER_CC1E; + tmpccmr1 = TIMx->CCMR1; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC1F; + tmpccmr1 |= (TIM_ICFilter << 4); + + /* Select the Polarity and set the CC1E Bit */ + tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); + tmpccer |= TIM_ICPolarity; + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI2 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2. + * @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1. + * @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2 + * (on channel1 path) is used as the input signal. Therefore CCMR1 must be + * protected against un-initialized filter and polarity values. + * @retval None + */ +static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr1 &= ~TIM_CCMR1_CC2S; + tmpccmr1 |= (TIM_ICSelection << 8); + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= ((TIM_ICFilter << 12) & TIM_CCMR1_IC2F); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= ((TIM_ICPolarity << 4) & (TIM_CCER_CC2P | TIM_CCER_CC2NP)); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the Polarity and Filter for TI2. + * @param TIMx to select the TIM peripheral. + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @retval None + */ +static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr1 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 2: Reset the CC2E Bit */ + TIMx->CCER &= ~TIM_CCER_CC2E; + tmpccmr1 = TIMx->CCMR1; + tmpccer = TIMx->CCER; + + /* Set the filter */ + tmpccmr1 &= ~TIM_CCMR1_IC2F; + tmpccmr1 |= (TIM_ICFilter << 12); + + /* Select the Polarity and set the CC2E Bit */ + tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); + tmpccer |= (TIM_ICPolarity << 4); + + /* Write to TIMx CCMR1 and CCER registers */ + TIMx->CCMR1 = tmpccmr1 ; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI3 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3. + * @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4. + * @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3 + * (on channel4 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + * @retval None + */ +static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 3: Reset the CC3E Bit */ + TIMx->CCER &= ~TIM_CCER_CC3E; + tmpccmr2 = TIMx->CCMR2; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC3S; + tmpccmr2 |= TIM_ICSelection; + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC3F; + tmpccmr2 |= ((TIM_ICFilter << 4) & TIM_CCMR2_IC3F); + + /* Select the Polarity and set the CC3E Bit */ + tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP); + tmpccer |= ((TIM_ICPolarity << 8) & (TIM_CCER_CC3P | TIM_CCER_CC3NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer; +} + +/** + * @brief Configure the TI4 as Input. + * @param TIMx to select the TIM peripheral + * @param TIM_ICPolarity : The Input Polarity. + * This parameter can be one of the following values: + * @arg TIM_ICPolarity_Rising + * @arg TIM_ICPolarity_Falling + * @arg TIM_ICPolarity_BothEdge + * @param TIM_ICSelection: specifies the input to be used. + * This parameter can be one of the following values: + * @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4. + * @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3. + * @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC. + * @param TIM_ICFilter: Specifies the Input Capture Filter. + * This parameter must be a value between 0x00 and 0x0F. + * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4 + * (on channel3 path) is used as the input signal. Therefore CCMR2 must be + * protected against un-initialized filter and polarity values. + * @retval None + */ +static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection, + uint32_t TIM_ICFilter) +{ + uint32_t tmpccmr2 = 0; + uint32_t tmpccer = 0; + + /* Disable the Channel 4: Reset the CC4E Bit */ + TIMx->CCER &= ~TIM_CCER_CC4E; + tmpccmr2 = TIMx->CCMR2; + tmpccer = TIMx->CCER; + + /* Select the Input */ + tmpccmr2 &= ~TIM_CCMR2_CC4S; + tmpccmr2 |= (TIM_ICSelection << 8); + + /* Set the filter */ + tmpccmr2 &= ~TIM_CCMR2_IC4F; + tmpccmr2 |= ((TIM_ICFilter << 12) & TIM_CCMR2_IC4F); + + /* Select the Polarity and set the CC4E Bit */ + tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP); + tmpccer |= ((TIM_ICPolarity << 12) & (TIM_CCER_CC4P | TIM_CCER_CC4NP)); + + /* Write to TIMx CCMR2 and CCER registers */ + TIMx->CCMR2 = tmpccmr2; + TIMx->CCER = tmpccer ; +} + +/** + * @brief Selects the Input Trigger source + * @param TIMx to select the TIM peripheral + * @param TIM_ITRx: The Input Trigger source. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal Trigger 0 + * @arg TIM_TS_ITR1: Internal Trigger 1 + * @arg TIM_TS_ITR2: Internal Trigger 2 + * @arg TIM_TS_ITR3: Internal Trigger 3 + * @arg TIM_TS_TI1F_ED: TI1 Edge Detector + * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 + * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 + * @arg TIM_TS_ETRF: External Trigger input + * @retval None + */ +static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint16_t TIM_ITRx) +{ + uint32_t tmpsmcr = 0; + + /* Get the TIMx SMCR register value */ + tmpsmcr = TIMx->SMCR; + /* Reset the TS Bits */ + tmpsmcr &= ~TIM_SMCR_TS; + /* Set the Input Trigger source and the slave mode*/ + tmpsmcr |= TIM_ITRx | TIM_SLAVEMODE_EXTERNAL1; + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} + +/** + * @brief Configures the TIMx External Trigger (ETR). + * @param TIMx to select the TIM peripheral + * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler. + * This parameter can be one of the following values: + * @arg TIM_ExtTRGPSC_DIV1: ETRP Prescaler OFF. + * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2. + * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4. + * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8. + * @param TIM_ExtTRGPolarity: The external Trigger Polarity. + * This parameter can be one of the following values: + * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active. + * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active. + * @param ExtTRGFilter: External Trigger Filter. + * This parameter must be a value between 0x00 and 0x0F + * @retval None + */ +static void TIM_ETR_SetConfig(TIM_TypeDef* TIMx, uint32_t TIM_ExtTRGPrescaler, + uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter) +{ + uint32_t tmpsmcr = 0; + + tmpsmcr = TIMx->SMCR; + + /* Reset the ETR Bits */ + tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP); + + /* Set the Prescaler, the Filter value and the Polarity */ + tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8))); + + /* Write to TIMx SMCR */ + TIMx->SMCR = tmpsmcr; +} + +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_tim_ex.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_tim_ex.c new file mode 100644 index 0000000..8140283 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_tim_ex.c @@ -0,0 +1,1864 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_tim_ex.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief TIM HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Timer extension peripheral: + * + Time Hall Sensor Interface Initialization + * + Time Hall Sensor Interface Start + * + Time Complementary signal bread and dead time configuration + * + Time Master and Slave synchronization configuration + @verbatim + ============================================================================== + ##### TIMER Extended features ##### + ============================================================================== + [..] + The Timer Extension features include: + (#) Complementary outputs with programmable dead-time for : + (++) Input Capture + (++) Output Compare + (++) PWM generation (Edge and Center-aligned Mode) + (++) One-pulse mode output + (#) Synchronization circuit to control the timer with external signals and to + interconnect several timers together. + (#) Break input to put the timer output signals in reset state or in a known state. + (#) Supports incremental (quadrature) encoder and hall-sensor circuitry for + positioning purposes + + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Initialize the TIM low level resources by implementing the following functions + depending from feature used : + (++) Complementary Output Compare : HAL_TIM_OC_MspInit() + (++) Complementary PWM generation : HAL_TIM_PWM_MspInit() + (++) Complementary One-pulse mode output : HAL_TIM_OnePulse_MspInit() + (++) Hall Sensor output : HAL_TIM_HallSensor_MspInit() + + (#) Initialize the TIM low level resources : + (##) Enable the TIM interface clock using __TIMx_CLK_ENABLE(); + (##) TIM pins configuration + (+++) Enable the clock for the TIM GPIOs using the following function: + __GPIOx_CLK_ENABLE(); + (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init(); + + (#) The external Clock can be configured, if needed (the default clock is the + internal clock from the APBx), using the following function: + HAL_TIM_ConfigClockSource, the clock configuration should be done before + any start function. + + (#) Configure the TIM in the desired functioning mode using one of the + initialization function of this driver: + (++) HAL_TIMEx_HallSensor_Init and HAL_TIMEx_ConfigCommutationEvent: to use the + Timer Hall Sensor Interface and the commutation event with the corresponding + Interrupt and DMA request if needed (Note that One Timer is used to interface + with the Hall sensor Interface and another Timer should be used to use + the commutation event). + + (#) Activate the TIM peripheral using one of the start functions: + (++) Complementary Output Compare : HAL_TIMEx_OCN_Start(), HAL_TIMEx_OCN_Start_DMA(), HAL_TIMEx_OC_Start_IT() + (++) Complementary PWM generation : HAL_TIMEx_PWMN_Start(), HAL_TIMEx_PWMN_Start_DMA(), HAL_TIMEx_PWMN_Start_IT() + (++) Complementary One-pulse mode output : HAL_TIMEx_OnePulseN_Start(), HAL_TIMEx_OnePulseN_Start_IT() + (++) Hall Sensor output : HAL_TIMEx_HallSensor_Start(), HAL_TIMEx_HallSensor_Start_DMA(), HAL_TIMEx_HallSensor_Start_IT(). + + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup TIMEx TIMEx + * @brief TIM HAL module driver + * @{ + */ + +#ifdef HAL_TIM_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/** @addtogroup TIMEx_Private_Functions + * @{ + */ +/* Private function prototypes -----------------------------------------------*/ +static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup TIMEx_Exported_Functions TIM Exported Functions + * @{ + */ + +/** @defgroup TIMEx_Exported_Functions_Group1 Timer Hall Sensor functions + * @brief Timer Hall Sensor functions + * +@verbatim + ============================================================================== + ##### Timer Hall Sensor functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure TIM HAL Sensor. + (+) De-initialize TIM HAL Sensor. + (+) Start the Hall Sensor Interface. + (+) Stop the Hall Sensor Interface. + (+) Start the Hall Sensor Interface and enable interrupts. + (+) Stop the Hall Sensor Interface and disable interrupts. + (+) Start the Hall Sensor Interface and enable DMA transfers. + (+) Stop the Hall Sensor Interface and disable DMA transfers. + +@endverbatim + * @{ + */ +/** + * @brief Initializes the TIM Hall Sensor Interface and create the associated handle. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sConfig: TIM Hall Sensor configuration structure + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Init(TIM_HandleTypeDef *htim, TIM_HallSensor_InitTypeDef* sConfig) +{ + TIM_OC_InitTypeDef OC_Config; + + /* Check the TIM handle allocation */ + if(htim == NULL) + { + return HAL_ERROR; + } + + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode)); + assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision)); + assert_param(IS_TIM_IC_POLARITY(sConfig->IC1Polarity)); + assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler)); + assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter)); + + /* Set the TIM state */ + htim->State= HAL_TIM_STATE_BUSY; + + /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */ + HAL_TIMEx_HallSensor_MspInit(htim); + + /* Configure the Time base in the Encoder Mode */ + TIM_Base_SetConfig(htim->Instance, &htim->Init); + + /* Configure the Channel 1 as Input Channel to interface with the three Outputs of the Hall sensor */ + TIM_TI1_SetConfig(htim->Instance, sConfig->IC1Polarity, TIM_ICSELECTION_TRC, sConfig->IC1Filter); + + /* Reset the IC1PSC Bits */ + htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC; + /* Set the IC1PSC value */ + htim->Instance->CCMR1 |= sConfig->IC1Prescaler; + + /* Enable the Hall sensor interface (XOR function of the three inputs) */ + htim->Instance->CR2 |= TIM_CR2_TI1S; + + /* Select the TIM_TS_TI1F_ED signal as Input trigger for the TIM */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= TIM_TS_TI1F_ED; + + /* Use the TIM_TS_TI1F_ED signal to reset the TIM counter each edge detection */ + htim->Instance->SMCR &= ~TIM_SMCR_SMS; + htim->Instance->SMCR |= TIM_SLAVEMODE_RESET; + + /* Program channel 2 in PWM 2 mode with the desired Commutation_Delay*/ + OC_Config.OCFastMode = TIM_OCFAST_DISABLE; + OC_Config.OCIdleState = TIM_OCIDLESTATE_RESET; + OC_Config.OCMode = TIM_OCMODE_PWM2; + OC_Config.OCNIdleState = TIM_OCNIDLESTATE_RESET; + OC_Config.OCNPolarity = TIM_OCNPOLARITY_HIGH; + OC_Config.OCPolarity = TIM_OCPOLARITY_HIGH; + OC_Config.Pulse = sConfig->Commutation_Delay; + + TIM_OC2_SetConfig(htim->Instance, &OC_Config); + + /* Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 + register to 101 */ + htim->Instance->CR2 &= ~TIM_CR2_MMS; + htim->Instance->CR2 |= TIM_TRGO_OC2REF; + + /* Initialize the TIM state*/ + htim->State= HAL_TIM_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the TIM Hall Sensor interface + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_DeInit(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_INSTANCE(htim->Instance)); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Disable the TIM Peripheral Clock */ + __HAL_TIM_DISABLE(htim); + + /* DeInit the low level hardware: GPIO, CLOCK, NVIC */ + HAL_TIMEx_HallSensor_MspDeInit(htim); + + /* Change TIM state */ + htim->State = HAL_TIM_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Initializes the TIM Hall Sensor MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes TIM Hall Sensor MSP. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_HallSensor_MspDeInit(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_HallSensor_MspDeInit could be implemented in the user file + */ +} + +/** + * @brief Starts the TIM Hall Sensor Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Enable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall sensor Interface. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1, 2 and 3 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Enable the capture compare Interrupts 1 event */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in interrupt mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_IT(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + /* Disable the capture compare Interrupts event */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Hall Sensor Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param pData: The destination Buffer address. + * @param Length: The length of data to be transferred from TIM peripheral to memory. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Start_DMA(TIM_HandleTypeDef *htim, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + /* Enable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE); + + /* Set the DMA Input Capture 1 Callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream for Capture 1*/ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData, Length); + + /* Enable the capture compare 1 Interrupt */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Hall Sensor Interface in DMA mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_HallSensor_Stop_DMA(TIM_HandleTypeDef *htim) +{ + /* Check the parameters */ + assert_param(IS_TIM_XOR_INSTANCE(htim->Instance)); + + /* Disable the Input Capture channels 1 + (in the Hall Sensor Interface the Three possible channels that can be used are TIM_CHANNEL_1, TIM_CHANNEL_2 and TIM_CHANNEL_3) */ + TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE); + + + /* Disable the capture compare Interrupts 1 event */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group2 Timer Complementary Output Compare functions + * @brief Timer Complementary Output Compare functions + * +@verbatim + ============================================================================== + ##### Timer Complementary Output Compare functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary Output Compare/PWM. + (+) Stop the Complementary Output Compare/PWM. + (+) Start the Complementary Output Compare/PWM and enable interrupts. + (+) Stop the Complementary Output Compare/PWM and disable interrupts. + (+) Start the Complementary Output Compare/PWM and enable DMA transfers. + (+) Stop the Complementary Output Compare/PWM and disable DMA transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM Output Compare signal generation on the complementary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation on the complementary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Output Compare interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in interrupt mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + if((READ_REG(htim->Instance->CCER) & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: +{ + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Output Compare DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM Output Compare signal generation in DMA mode + * on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OCN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Output Compare DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Output Compare interrupt */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the Capture compare channel N */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group3 Timer Complementary PWM functions + * @brief Timer Complementary PWM functions + * +@verbatim + ============================================================================== + ##### Timer Complementary PWM functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary PWM. + (+) Stop the Complementary PWM. + (+) Start the Complementary PWM and enable interrupts. + (+) Stop the Complementary PWM and disable interrupts. + (+) Start the Complementary PWM and enable DMA transfers. + (+) Stop the Complementary PWM and disable DMA transfers. + (+) Start the Complementary Input Capture measurement. + (+) Stop the Complementary Input Capture. + (+) Start the Complementary Input Capture and enable interrupts. + (+) Stop the Complementary Input Capture and disable interrupts. + (+) Start the Complementary Input Capture and enable DMA transfers. + (+) Stop the Complementary Input Capture and disable DMA transfers. + (+) Start the Complementary One Pulse generation. + (+) Stop the Complementary One Pulse. + (+) Start the Complementary One Pulse and enable interrupts. + (+) Stop the Complementary One Pulse and disable interrupts. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the PWM signal generation on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation on the complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Enable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Enable the TIM Capture/Compare 4 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Enable the TIM Break interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_BREAK); + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the PWM signal generation in interrupt mode on the + * complementary output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_IT (TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 3 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4); + } + break; + + default: + break; + } + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the TIM Break interrupt (only if no more channel is active) */ + if((READ_REG(htim->Instance->CCER) & (TIM_CCER_CC1NE | TIM_CCER_CC2NE | TIM_CCER_CC3NE)) == RESET) + { + __HAL_TIM_DISABLE_IT(htim, TIM_IT_BREAK); + } + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM PWM signal generation in DMA mode on the + * complementary output + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @param pData: The source Buffer address. + * @param Length: The length of data to be transferred from memory to TIM peripheral + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + if((htim->State == HAL_TIM_STATE_BUSY)) + { + return HAL_BUSY; + } + else if((htim->State == HAL_TIM_STATE_READY)) + { + if(((uint32_t)pData == 0 ) && (Length > 0)) + { + return HAL_ERROR; + } + else + { + htim->State = HAL_TIM_STATE_BUSY; + } + } + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1, Length); + + /* Enable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2, Length); + + /* Enable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,Length); + + /* Enable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Set the DMA Period elapsed callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt; + + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ; + + /* Enable the DMA Stream */ + HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4, Length); + + /* Enable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Enable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Enable the Peripheral */ + __HAL_TIM_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM PWM signal generation in DMA mode on the complementary + * output + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Channel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @arg TIM_CHANNEL_3: TIM Channel 3 selected + * @arg TIM_CHANNEL_4: TIM Channel 4 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_PWMN_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, Channel)); + + switch (Channel) + { + case TIM_CHANNEL_1: + { + /* Disable the TIM Capture/Compare 1 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1); + } + break; + + case TIM_CHANNEL_2: + { + /* Disable the TIM Capture/Compare 2 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2); + } + break; + + case TIM_CHANNEL_3: + { + /* Disable the TIM Capture/Compare 3 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3); + } + break; + + case TIM_CHANNEL_4: + { + /* Disable the TIM Capture/Compare 4 DMA request */ + __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4); + } + break; + + default: + break; + } + + /* Disable the complementary PWM output */ + TIM_CCxNChannelCmd(htim->Instance, Channel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Change the htim state */ + htim->State = HAL_TIM_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group4 Timer Complementary One Pulse functions + * @brief Timer Complementary One Pulse functions + * +@verbatim + ============================================================================== + ##### Timer Complementary One Pulse functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the Complementary One Pulse generation. + (+) Stop the Complementary One Pulse. + (+) Start the Complementary One Pulse and enable interrupts. + (+) Stop the Complementary One Pulse and disable interrupts. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the TIM One Pulse signal generation on the complementary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel) + { + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Enable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Stops the TIM One Pulse signal generation on the complementary + * output. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be enabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Enable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1); + + /* Enable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2); + + /* Enable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_ENABLE); + + /* Enable the Main Output */ + __HAL_TIM_MOE_ENABLE(htim); + + /* Return function status */ + return HAL_OK; + } + +/** + * @brief Stops the TIM One Pulse signal generation in interrupt mode on the + * complementary channel. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param OutputChannel: TIM Channel to be disabled. + * This parameter can be one of the following values: + * @arg TIM_CHANNEL_1: TIM Channel 1 selected + * @arg TIM_CHANNEL_2: TIM Channel 2 selected + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_OnePulseN_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel) +{ + /* Check the parameters */ + assert_param(IS_TIM_CCXN_INSTANCE(htim->Instance, OutputChannel)); + + /* Disable the TIM Capture/Compare 1 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1); + + /* Disable the TIM Capture/Compare 2 interrupt */ + __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2); + + /* Disable the complementary One Pulse output */ + TIM_CCxNChannelCmd(htim->Instance, OutputChannel, TIM_CCxN_DISABLE); + + /* Disable the Main Output */ + __HAL_TIM_MOE_DISABLE(htim); + + /* Disable the Peripheral */ + __HAL_TIM_DISABLE(htim); + + /* Return function status */ + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group5 Peripheral Control functions + * @brief Peripheral Control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode. + (+) Configure External Clock source. + (+) Configure Complementary channels, break features and dead time. + (+) Configure Master and the Slave synchronization. + (+) Configure the commutation event in case of use of the Hall sensor interface. + (+) Configure the DMA Burst Mode. + +@endverbatim + * @{ + */ +/** + * @brief Configure the TIM commutation event sequence. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param InputTrigger: the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource: the Commutation Event source. + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with interrupt. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param InputTrigger: the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource: the Commutation Event source. + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_IT(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Enable the Commutation Interrupt Request */ + __HAL_TIM_ENABLE_IT(htim, TIM_IT_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configure the TIM commutation event sequence with DMA. + * @note This function is mandatory to use the commutation event in order to + * update the configuration at each commutation detection on the TRGI input of the Timer, + * the typical use of this feature is with the use of another Timer(interface Timer) + * configured in Hall sensor interface, this interface Timer will generate the + * commutation at its TRGO output (connected to Timer used in this function) each time + * the TI1 of the Interface Timer detect a commutation at its input TI1. + * @note: The user should configure the DMA in his own software, in This function only the COMDE bit is set + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param InputTrigger: the Internal trigger corresponding to the Timer Interfacing with the Hall sensor. + * This parameter can be one of the following values: + * @arg TIM_TS_ITR0: Internal trigger 0 selected + * @arg TIM_TS_ITR1: Internal trigger 1 selected + * @arg TIM_TS_ITR2: Internal trigger 2 selected + * @arg TIM_TS_ITR3: Internal trigger 3 selected + * @arg TIM_TS_NONE: No trigger is needed + * @param CommutationSource: the Commutation Event source. + * This parameter can be one of the following values: + * @arg TIM_COMMUTATION_TRGI: Commutation source is the TRGI of the Interface Timer + * @arg TIM_COMMUTATION_SOFTWARE: Commutation source is set by software using the COMG bit + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigCommutationEvent_DMA(TIM_HandleTypeDef *htim, uint32_t InputTrigger, uint32_t CommutationSource) +{ + /* Check the parameters */ + assert_param(IS_TIM_ADVANCED_INSTANCE(htim->Instance)); + assert_param(IS_TIM_INTERNAL_TRIGGEREVENT_SELECTION(InputTrigger)); + + __HAL_LOCK(htim); + + if ((InputTrigger == TIM_TS_ITR0) || (InputTrigger == TIM_TS_ITR1) || + (InputTrigger == TIM_TS_ITR2) || (InputTrigger == TIM_TS_ITR3)) + { + /* Select the Input trigger */ + htim->Instance->SMCR &= ~TIM_SMCR_TS; + htim->Instance->SMCR |= InputTrigger; + } + + /* Select the Capture Compare preload feature */ + htim->Instance->CR2 |= TIM_CR2_CCPC; + /* Select the Commutation event source */ + htim->Instance->CR2 &= ~TIM_CR2_CCUS; + htim->Instance->CR2 |= CommutationSource; + + /* Enable the Commutation DMA Request */ + /* Set the DMA Commutation Callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt; + /* Set the DMA error callback */ + htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError; + + /* Enable the Commutation DMA Request */ + __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_COM); + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM in master mode. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sMasterConfig: pointer to a TIM_MasterConfigTypeDef structure that + * contains the selected trigger output (TRGO) and the Master/Slave + * mode. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_MasterConfigSynchronization(TIM_HandleTypeDef *htim, TIM_MasterConfigTypeDef * sMasterConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_MASTER_INSTANCE(htim->Instance)); + assert_param(IS_TIM_TRGO_SOURCE(sMasterConfig->MasterOutputTrigger)); + assert_param(IS_TIM_MSM_STATE(sMasterConfig->MasterSlaveMode)); + + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Reset the MMS Bits */ + htim->Instance->CR2 &= ~TIM_CR2_MMS; + /* Select the TRGO source */ + htim->Instance->CR2 |= sMasterConfig->MasterOutputTrigger; + + /* Reset the MSM Bit */ + htim->Instance->SMCR &= ~TIM_SMCR_MSM; + /* Set or Reset the MSM Bit */ + htim->Instance->SMCR |= sMasterConfig->MasterSlaveMode; + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State + * and the AOE(automatic output enable). + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param sBreakDeadTimeConfig: pointer to a TIM_ConfigBreakDeadConfig_TypeDef structure that + * contains the BDTR Register configuration information for the TIM peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_ConfigBreakDeadTime(TIM_HandleTypeDef *htim, + TIM_BreakDeadTimeConfigTypeDef * sBreakDeadTimeConfig) +{ + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(htim->Instance)); + assert_param(IS_TIM_OSSR_STATE(sBreakDeadTimeConfig->OffStateRunMode)); + assert_param(IS_TIM_OSSI_STATE(sBreakDeadTimeConfig->OffStateIDLEMode)); + assert_param(IS_TIM_LOCK_LEVEL(sBreakDeadTimeConfig->LockLevel)); + assert_param(IS_TIM_BREAK_STATE(sBreakDeadTimeConfig->BreakState)); + assert_param(IS_TIM_BREAK_POLARITY(sBreakDeadTimeConfig->BreakPolarity)); + assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(sBreakDeadTimeConfig->AutomaticOutput)); + assert_param(IS_TIM_DEADTIME(sBreakDeadTimeConfig->DeadTime)); + + /* Process Locked */ + __HAL_LOCK(htim); + + htim->State = HAL_TIM_STATE_BUSY; + + /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, + the OSSI State, the dead time value and the Automatic Output Enable Bit */ + htim->Instance->BDTR = (uint32_t)sBreakDeadTimeConfig->OffStateRunMode | + sBreakDeadTimeConfig->OffStateIDLEMode | + sBreakDeadTimeConfig->LockLevel | + sBreakDeadTimeConfig->DeadTime | + sBreakDeadTimeConfig->BreakState | + sBreakDeadTimeConfig->BreakPolarity | + sBreakDeadTimeConfig->AutomaticOutput; + + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} + +/** + * @brief Configures the TIM2, TIM5 and TIM11 Remapping input capabilities. + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @param Remap: specifies the TIM input remapping source. + * This parameter can be one of the following values: + * @arg TIM_TIM2_TIM8_TRGO: TIM2 ITR1 input is connected to TIM8 Trigger output(default) + * @arg TIM_TIM2_ETH_PTP: TIM2 ITR1 input is connected to ETH PTP trigger output. + * @arg TIM_TIM2_USBFS_SOF: TIM2 ITR1 input is connected to USB FS SOF. + * @arg TIM_TIM2_USBHS_SOF: TIM2 ITR1 input is connected to USB HS SOF. + * @arg TIM_TIM5_GPIO: TIM5 CH4 input is connected to dedicated Timer pin(default) + * @arg TIM_TIM5_LSI: TIM5 CH4 input is connected to LSI clock. + * @arg TIM_TIM5_LSE: TIM5 CH4 input is connected to LSE clock. + * @arg TIM_TIM5_RTC: TIM5 CH4 input is connected to RTC Output event. + * @arg TIM_TIM11_GPIO: TIM11 CH4 input is connected to dedicated Timer pin(default) + * @arg TIM_TIM11_HSE: TIM11 CH4 input is connected to HSE_RTC clock + * (HSE divided by a programmable prescaler) + * @retval HAL status + */ +HAL_StatusTypeDef HAL_TIMEx_RemapConfig(TIM_HandleTypeDef *htim, uint32_t Remap) +{ + __HAL_LOCK(htim); + + /* Check parameters */ + assert_param(IS_TIM_REMAP_INSTANCE(htim->Instance)); + assert_param(IS_TIM_REMAP(Remap)); + + /* Set the Timer remapping configuration */ + htim->Instance->OR = Remap; + + htim->State = HAL_TIM_STATE_READY; + + __HAL_UNLOCK(htim); + + return HAL_OK; +} +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group6 Extension Callbacks functions + * @brief Extension Callbacks functions + * +@verbatim + ============================================================================== + ##### Extension Callbacks functions ##### + ============================================================================== + [..] + This section provides Extension TIM callback functions: + (+) Timer Commutation callback + (+) Timer Break callback + +@endverbatim + * @{ + */ + +/** + * @brief Hall commutation changed callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_CommutationCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_CommutationCallback could be implemented in the user file + */ +} + +/** + * @brief Hall Break detection callback in non blocking mode + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval None + */ +__weak void HAL_TIMEx_BreakCallback(TIM_HandleTypeDef *htim) +{ + /* NOTE : This function Should not be modified, when the callback is needed, + the HAL_TIMEx_BreakCallback could be implemented in the user file + */ +} +/** + * @} + */ + +/** @defgroup TIMEx_Exported_Functions_Group7 Extension Peripheral State functions + * @brief Extension Peripheral State functions + * +@verbatim + ============================================================================== + ##### Extension Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Return the TIM Hall Sensor interface state + * @param htim: pointer to a TIM_HandleTypeDef structure that contains + * the configuration information for TIM module. + * @retval HAL state + */ +HAL_TIM_StateTypeDef HAL_TIMEx_HallSensor_GetState(TIM_HandleTypeDef *htim) +{ + return htim->State; +} + +/** + * @} + */ + +/** + * @brief TIM DMA Commutation callback. + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +void TIMEx_DMACommutationCplt(DMA_HandleTypeDef *hdma) +{ + TIM_HandleTypeDef* htim = ( TIM_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + htim->State= HAL_TIM_STATE_READY; + + HAL_TIMEx_CommutationCallback(htim); +} +/** + * @} + */ + +/** + * @brief Enables or disables the TIM Capture Compare Channel xN. + * @param TIMx to select the TIM peripheral + * @param Channel: specifies the TIM Channel + * This parameter can be one of the following values: + * @arg TIM_Channel_1: TIM Channel 1 + * @arg TIM_Channel_2: TIM Channel 2 + * @arg TIM_Channel_3: TIM Channel 3 + * @param ChannelNState: specifies the TIM Channel CCxNE bit new state. + * This parameter can be: TIM_CCxN_ENABLE or TIM_CCxN_Disable. + * @retval None + */ +static void TIM_CCxNChannelCmd(TIM_TypeDef* TIMx, uint32_t Channel, uint32_t ChannelNState) +{ + uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_TIM_CC4_INSTANCE(TIMx)); + assert_param(IS_TIM_COMPLEMENTARY_CHANNELS(Channel)); + + tmp = TIM_CCER_CC1NE << Channel; + + /* Reset the CCxNE Bit */ + TIMx->CCER &= ~tmp; + + /* Set or reset the CCxNE Bit */ + TIMx->CCER |= (uint32_t)(ChannelNState << Channel); +} + +/** + * @} + */ + +#endif /* HAL_TIM_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_uart.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_uart.c new file mode 100644 index 0000000..5fc90fc --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_uart.c @@ -0,0 +1,1932 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_uart.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief UART HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The UART HAL driver can be used as follows: + + (#) Declare a UART_HandleTypeDef handle structure. + + (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: + (##) Enable the USARTx interface clock. + (##) UART pins configuration: + (+++) Enable the clock for the UART GPIOs. + (+++) Configure these UART pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() + and HAL_UART_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() + and HAL_UART_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required + Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete + interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware + flow control and Mode(Receiver/Transmitter) in the Init structure. + + (#) For the UART asynchronous mode, initialize the UART registers by calling + the HAL_UART_Init() API. + + (#) For the UART Half duplex mode, initialize the UART registers by calling + the HAL_HalfDuplex_Init() API. + + (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API. + + (#) For the Multi-Processor mode, initialize the UART registers by calling + the HAL_MultiProcessor_Init() API. + + [..] + (@) The specific UART interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit + and receive process. + + [..] + (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the + low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized + HAL_UART_MspInit() API. + + [..] + Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_UART_Transmit() + (+) Receive an amount of data in blocking mode using HAL_UART_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() + (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() + (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_RxCpltCallback + (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_UART_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() + (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback + (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() + (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback + (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_RxCpltCallback + (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_UART_ErrorCallback + (+) Pause the DMA Transfer using HAL_UART_DMAPause() + (+) Resume the DMA Transfer using HAL_UART_DMAResume() + (+) Stop the DMA Transfer using HAL_UART_DMAStop() + + *** UART HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in UART HAL driver. + + (+) __HAL_UART_ENABLE: Enable the UART peripheral + (+) __HAL_UART_DISABLE: Disable the UART peripheral + (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not + (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag + (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt + (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt + (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not + + [..] + (@) You can refer to the UART HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup UART UART + * @brief HAL UART module driver + * @{ + */ +#ifdef HAL_UART_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup UART_Private_Constants + * @{ + */ +#define UART_TIMEOUT_VALUE 22000 +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup UART_Private_Functions UART Private Functions + * @{ + */ +static void UART_SetConfig (UART_HandleTypeDef *huart); +static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart); +static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart); +static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart); +static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void UART_DMAError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +/** + * @} + */ + +/* Exported functions ---------------------------------------------------------*/ +/** @defgroup UART_Exported_Functions UART Exported Functions + * @{ + */ + +/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim +=============================================================================== + ##### Initialization and Configuration functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx or the UARTy + in asynchronous mode. + (+) For the asynchronous mode only these parameters can be configured: + (++) Baud Rate + (++) Word Length + (++) Stop Bit + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + Depending on the frame length defined by the M bit (8-bits or 9-bits), + please refer to Reference manual for possible UART frame formats. + (++) Hardware flow control + (++) Receiver/transmitter modes + (++) Over Sampling Method + [..] + The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs + follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor + configuration procedures (details for the procedures are available in reference manual (RM0329)). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the UART mode according to the specified parameters in + * the UART_InitTypeDef and create the associated handle. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) + { + /* The hardware flow control is available only for USART1, USART2, USART3 and USART6 */ + assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); + assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); + } + else + { + assert_param(IS_UART_INSTANCE(huart->Instance)); + } + assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); + assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); + + if(huart->State == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_UART_MspInit(huart); + } + + huart->State = HAL_UART_STATE_BUSY; + + /* Disable the peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + UART_SetConfig(huart); + + /* In asynchronous mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ + huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN); + huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN); + + /* Enable the peripheral */ + __HAL_UART_ENABLE(huart); + + /* Initialize the UART state */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->State= HAL_UART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Initializes the half-duplex mode according to the specified + * parameters in the UART_InitTypeDef and create the associated handle. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); + assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); + + if(huart->State == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_UART_MspInit(huart); + } + + huart->State = HAL_UART_STATE_BUSY; + + /* Disable the peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + UART_SetConfig(huart); + + /* In half-duplex mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN and IREN bits in the USART_CR3 register.*/ + huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN); + huart->Instance->CR3 &= ~(USART_CR3_IREN | USART_CR3_SCEN); + + /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ + huart->Instance->CR3 |= USART_CR3_HDSEL; + + /* Enable the peripheral */ + __HAL_UART_ENABLE(huart); + + /* Initialize the UART state*/ + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->State= HAL_UART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Initializes the LIN mode according to the specified + * parameters in the UART_InitTypeDef and create the associated handle. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param BreakDetectLength: Specifies the LIN break detection length. + * This parameter can be one of the following values: + * @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection + * @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); + assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength)); + assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling)); + + if(huart->State == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_UART_MspInit(huart); + } + + huart->State = HAL_UART_STATE_BUSY; + + /* Disable the peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + UART_SetConfig(huart); + + /* In LIN mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN and IREN bits in the USART_CR3 register.*/ + huart->Instance->CR2 &= ~(USART_CR2_CLKEN); + huart->Instance->CR3 &= ~(USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN); + + /* Enable the LIN mode by setting the LINEN bit in the CR2 register */ + huart->Instance->CR2 |= USART_CR2_LINEN; + + /* Set the USART LIN Break detection length. */ + huart->Instance->CR2 &= ~(USART_CR2_LBDL); + huart->Instance->CR2 |= BreakDetectLength; + + /* Enable the peripheral */ + __HAL_UART_ENABLE(huart); + + /* Initialize the UART state*/ + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->State= HAL_UART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Initializes the Multi-Processor mode according to the specified + * parameters in the UART_InitTypeDef and create the associated handle. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param Address: USART address + * @param WakeUpMethod: specifies the USART wake-up method. + * This parameter can be one of the following values: + * @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection + * @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); + assert_param(IS_UART_ADDRESS(Address)); + assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); + assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); + + if(huart->State == HAL_UART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + huart->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_UART_MspInit(huart); + } + + huart->State = HAL_UART_STATE_BUSY; + + /* Disable the peripheral */ + __HAL_UART_DISABLE(huart); + + /* Set the UART Communication parameters */ + UART_SetConfig(huart); + + /* In Multi-Processor mode, the following bits must be kept cleared: + - LINEN and CLKEN bits in the USART_CR2 register, + - SCEN, HDSEL and IREN bits in the USART_CR3 register */ + huart->Instance->CR2 &= ~(USART_CR2_LINEN | USART_CR2_CLKEN); + huart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN); + + /* Clear the USART address */ + huart->Instance->CR2 &= ~(USART_CR2_ADD); + /* Set the USART address node */ + huart->Instance->CR2 |= Address; + + /* Set the wake up method by setting the WAKE bit in the CR1 register */ + huart->Instance->CR1 &= ~(USART_CR1_WAKE); + huart->Instance->CR1 |= WakeUpMethod; + + /* Enable the peripheral */ + __HAL_UART_ENABLE(huart); + + /* Initialize the UART state */ + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->State= HAL_UART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the UART peripheral. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) +{ + /* Check the UART handle allocation */ + if(huart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + + huart->State = HAL_UART_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_UART_MspDeInit(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + huart->State = HAL_UART_STATE_RESET; + + /* Process Lock */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief UART MSP Init. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ + __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_UART_MspInit could be implemented in the user file + */ +} + +/** + * @brief UART MSP DeInit. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ + __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_UART_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group2 IO operation functions + * @brief UART Transmit and Receive functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the UART asynchronous + and Half duplex data transfers. + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) Non blocking mode: The communication is performed using Interrupts + or DMA, these APIs return the HAL status. + The end of the data processing will be indicated through the + dedicated UART IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks + will be executed respectively at the end of the transmit or receive process. + The HAL_UART_ErrorCallback() user callback will be executed when + a communication error is detected. + + (#) Blocking mode APIs are: + (++) HAL_UART_Transmit() + (++) HAL_UART_Receive() + + (#) Non Blocking mode APIs with Interrupt are: + (++) HAL_UART_Transmit_IT() + (++) HAL_UART_Receive_IT() + (++) HAL_UART_IRQHandler() + + (#) Non Blocking mode functions with DMA are: + (++) HAL_UART_Transmit_DMA() + (++) HAL_UART_Receive_DMA() + + (#) A set of Transfer Complete Callbacks are provided in non blocking mode: + (++) HAL_UART_TxCpltCallback() + (++) HAL_UART_RxCpltCallback() + (++) HAL_UART_ErrorCallback() + + [..] + (@) In the Half duplex communication, it is forbidden to run the transmit + and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX + can't be useful. + +@endverbatim + * @{ + */ + +/** + * @brief Sends an amount of data in blocking mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = huart->State; + if((tmp1 == HAL_UART_STATE_READY) || (tmp1 == HAL_UART_STATE_BUSY_RX)) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + /* Check if a non-blocking receive process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_RX) + { + huart->State = HAL_UART_STATE_BUSY_TX_RX; + } + else + { + huart->State = HAL_UART_STATE_BUSY_TX; + } + + huart->TxXferSize = Size; + huart->TxXferCount = Size; + while(huart->TxXferCount > 0) + { + huart->TxXferCount--; + if(huart->Init.WordLength == UART_WORDLENGTH_9B) + { + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pData; + huart->Instance->DR = (*tmp & (uint16_t)0x01FF); + if(huart->Init.Parity == UART_PARITY_NONE) + { + pData +=2; + } + else + { + pData +=1; + } + } + else + { + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + huart->Instance->DR = (*pData++ & (uint8_t)0xFF); + } + } + + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Check if a non-blocking receive process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX_RX) + { + huart->State = HAL_UART_STATE_BUSY_RX; + } + else + { + huart->State = HAL_UART_STATE_READY; + } + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in blocking mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = huart->State; + if((tmp1 == HAL_UART_STATE_READY) || (tmp1 == HAL_UART_STATE_BUSY_TX)) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->ErrorCode = HAL_UART_ERROR_NONE; + /* Check if a non-blocking transmit process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX) + { + huart->State = HAL_UART_STATE_BUSY_TX_RX; + } + else + { + huart->State = HAL_UART_STATE_BUSY_RX; + } + + huart->RxXferSize = Size; + huart->RxXferCount = Size; + + /* Check the remain data to be received */ + while(huart->RxXferCount > 0) + { + huart->RxXferCount--; + if(huart->Init.WordLength == UART_WORDLENGTH_9B) + { + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pData ; + if(huart->Init.Parity == UART_PARITY_NONE) + { + *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF); + pData +=2; + } + else + { + *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF); + pData +=1; + } + + } + else + { + if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if(huart->Init.Parity == UART_PARITY_NONE) + { + *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); + } + else + { + *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); + } + + } + } + + /* Check if a non-blocking transmit process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX_RX) + { + huart->State = HAL_UART_STATE_BUSY_TX; + } + else + { + huart->State = HAL_UART_STATE_READY; + } + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sends an amount of data in non blocking mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + uint32_t tmp = 0; + + tmp = huart->State; + if((tmp == HAL_UART_STATE_READY) || (tmp == HAL_UART_STATE_BUSY_RX)) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pTxBuffPtr = pData; + huart->TxXferSize = Size; + huart->TxXferCount = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + /* Check if a receive process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_RX) + { + huart->State = HAL_UART_STATE_BUSY_TX_RX; + } + else + { + huart->State = HAL_UART_STATE_BUSY_TX; + } + + /* Enable the UART Parity Error Interrupt */ + __HAL_UART_ENABLE_IT(huart, UART_IT_PE); + + /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_UART_ENABLE_IT(huart, UART_IT_ERR); + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + /* Enable the UART Transmit data register empty Interrupt */ + __HAL_UART_ENABLE_IT(huart, UART_IT_TXE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in non blocking mode + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + uint32_t tmp = 0; + + tmp = huart->State; + if((tmp == HAL_UART_STATE_READY) || (tmp == HAL_UART_STATE_BUSY_TX)) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pRxBuffPtr = pData; + huart->RxXferSize = Size; + huart->RxXferCount = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + /* Check if a transmit process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX) + { + huart->State = HAL_UART_STATE_BUSY_TX_RX; + } + else + { + huart->State = HAL_UART_STATE_BUSY_RX; + } + + /* Enable the UART Parity Error Interrupt */ + __HAL_UART_ENABLE_IT(huart, UART_IT_PE); + + /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_UART_ENABLE_IT(huart, UART_IT_ERR); + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + /* Enable the UART Data Register not empty Interrupt */ + __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Sends an amount of data in non blocking mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0; + + tmp1 = huart->State; + if((tmp1 == HAL_UART_STATE_READY) || (tmp1 == HAL_UART_STATE_BUSY_RX)) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pTxBuffPtr = pData; + huart->TxXferSize = Size; + huart->TxXferCount = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + /* Check if a receive process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_RX) + { + huart->State = HAL_UART_STATE_BUSY_TX_RX; + } + else + { + huart->State = HAL_UART_STATE_BUSY_TX; + } + + /* Set the UART DMA transfer complete callback */ + huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; + + /* Set the UART DMA Half transfer complete callback */ + huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; + + /* Set the DMA error callback */ + huart->hdmatx->XferErrorCallback = UART_DMAError; + + /* Enable the UART transmit DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->DR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the UART CR3 register */ + huart->Instance->CR3 |= USART_CR3_DMAT; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in non blocking mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param pData: Pointer to data buffer + * @param Size: Amount of data to be received + * @note When the UART parity is enabled (PCE = 1) the data received contain the parity bit. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + uint32_t tmp1 = 0; + + tmp1 = huart->State; + if((tmp1 == HAL_UART_STATE_READY) || (tmp1 == HAL_UART_STATE_BUSY_TX)) + { + if((pData == NULL ) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->pRxBuffPtr = pData; + huart->RxXferSize = Size; + + huart->ErrorCode = HAL_UART_ERROR_NONE; + /* Check if a transmit process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX) + { + huart->State = HAL_UART_STATE_BUSY_TX_RX; + } + else + { + huart->State = HAL_UART_STATE_BUSY_RX; + } + + /* Set the UART DMA transfer complete callback */ + huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; + + /* Set the UART DMA Half transfer complete callback */ + huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; + + /* Set the DMA error callback */ + huart->hdmarx->XferErrorCallback = UART_DMAError; + + /* Enable the DMA Stream */ + tmp = (uint32_t*)&pData; + HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t*)tmp, Size); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the UART CR3 register */ + huart->Instance->CR3 |= USART_CR3_DMAR; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the DMA Transfer. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + if(huart->State == HAL_UART_STATE_BUSY_TX) + { + /* Disable the UART DMA Tx request */ + huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT); + } + else if(huart->State == HAL_UART_STATE_BUSY_RX) + { + /* Disable the UART DMA Rx request */ + huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR); + } + else if (huart->State == HAL_UART_STATE_BUSY_TX_RX) + { + /* Disable the UART DMA Tx & Rx requests */ + huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT); + huart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) +{ + /* Process Locked */ + __HAL_LOCK(huart); + + if(huart->State == HAL_UART_STATE_BUSY_TX) + { + /* Enable the UART DMA Tx request */ + huart->Instance->CR3 |= USART_CR3_DMAT; + } + else if(huart->State == HAL_UART_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_UART_CLEAR_OREFLAG(huart); + /* Enable the UART DMA Rx request */ + huart->Instance->CR3 |= USART_CR3_DMAR; + } + else if(huart->State == HAL_UART_STATE_BUSY_TX_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer*/ + __HAL_UART_CLEAR_OREFLAG(huart); + /* Enable the UART DMA Tx & Rx request */ + huart->Instance->CR3 |= USART_CR3_DMAT; + huart->Instance->CR3 |= USART_CR3_DMAR; + } + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback(): + when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated + and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() + */ + + /* Disable the UART Tx/Rx DMA requests */ + huart->Instance->CR3 &= ~USART_CR3_DMAT; + huart->Instance->CR3 &= ~USART_CR3_DMAR; + + /* Abort the UART DMA tx Stream */ + if(huart->hdmatx != NULL) + { + HAL_DMA_Abort(huart->hdmatx); + } + /* Abort the UART DMA rx Stream */ + if(huart->hdmarx != NULL) + { + HAL_DMA_Abort(huart->hdmarx); + } + + huart->State = HAL_UART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles UART interrupt request. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ +void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_PE); + tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_PE); + /* UART parity error interrupt occurred ------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_UART_CLEAR_PEFLAG(huart); + + huart->ErrorCode |= HAL_UART_ERROR_PE; + } + + tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_FE); + tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR); + /* UART frame error interrupt occurred -------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_UART_CLEAR_FEFLAG(huart); + + huart->ErrorCode |= HAL_UART_ERROR_FE; + } + + tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_NE); + tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR); + /* UART noise error interrupt occurred -------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_UART_CLEAR_NEFLAG(huart); + + huart->ErrorCode |= HAL_UART_ERROR_NE; + } + + tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_ORE); + tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_ERR); + /* UART Over-Run interrupt occurred ----------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_UART_CLEAR_OREFLAG(huart); + + huart->ErrorCode |= HAL_UART_ERROR_ORE; + } + + tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE); + tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_RXNE); + /* UART in mode Receiver ---------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + UART_Receive_IT(huart); + } + + tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_TXE); + tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_TXE); + /* UART in mode Transmitter ------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + UART_Transmit_IT(huart); + } + + tmp1 = __HAL_UART_GET_FLAG(huart, UART_FLAG_TC); + tmp2 = __HAL_UART_GET_IT_SOURCE(huart, UART_IT_TC); + /* UART in mode Transmitter end --------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + UART_EndTransmit_IT(huart); + } + + if(huart->ErrorCode != HAL_UART_ERROR_NONE) + { + /* Set the UART state ready to be able to start again the process */ + huart->State = HAL_UART_STATE_READY; + + HAL_UART_ErrorCallback(huart); + } +} + +/** + * @brief Tx Transfer completed callbacks. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ + __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_UART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ + __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_UART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ +__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_UART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callbacks. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ +__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_UART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief UART error callbacks. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ + __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_UART_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions + * @brief UART control functions + * +@verbatim + ============================================================================== + ##### Peripheral Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control the UART: + (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character. + (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode. + (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software. + +@endverbatim + * @{ + */ + +/** + * @brief Transmits break characters. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) +{ + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->State = HAL_UART_STATE_BUSY; + + /* Send break characters */ + huart->Instance->CR1 |= USART_CR1_SBK; + + huart->State = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Enters the UART in mute mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) +{ + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->State = HAL_UART_STATE_BUSY; + + /* Enable the USART mute mode by setting the RWU bit in the CR1 register */ + huart->Instance->CR1 |= USART_CR1_RWU; + + huart->State = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Exits the UART mute mode: wake up software. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart) +{ + /* Check the parameters */ + assert_param(IS_UART_INSTANCE(huart->Instance)); + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->State = HAL_UART_STATE_BUSY; + + /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */ + huart->Instance->CR1 &= (uint32_t)~((uint32_t)USART_CR1_RWU); + + huart->State = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Enables the UART transmitter and disables the UART receiver. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) +{ + uint32_t tmpreg = 0x00; + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->State = HAL_UART_STATE_BUSY; + + /*-------------------------- USART CR1 Configuration -----------------------*/ + tmpreg = huart->Instance->CR1; + + /* Clear TE and RE bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); + + /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ + tmpreg |= (uint32_t)USART_CR1_TE; + + /* Write to USART CR1 */ + huart->Instance->CR1 = (uint32_t)tmpreg; + + huart->State = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @brief Enables the UART receiver and disables the UART transmitter. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) +{ + uint32_t tmpreg = 0x00; + + /* Process Locked */ + __HAL_LOCK(huart); + + huart->State = HAL_UART_STATE_BUSY; + + /*-------------------------- USART CR1 Configuration -----------------------*/ + tmpreg = huart->Instance->CR1; + + /* Clear TE and RE bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); + + /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ + tmpreg |= (uint32_t)USART_CR1_RE; + + /* Write to USART CR1 */ + huart->Instance->CR1 = (uint32_t)tmpreg; + + huart->State = HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions + * @brief UART State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of + UART communication process, return Peripheral Errors occurred during communication + process + (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral. + (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the UART state. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL state + */ +HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart) +{ + return huart->State; +} + +/** +* @brief Return the UART error code +* @param huart : pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART. +* @retval UART Error Code +*/ +uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart) +{ + return huart->ErrorCode; +} + +/** + * @} + */ + +/** + * @brief DMA UART transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* DMA Normal mode*/ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + huart->TxXferCount = 0; + + /* Disable the DMA transfer for transmit request by setting the DMAT bit + in the UART CR3 register */ + huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAT); + + /* Enable the UART Transmit Complete Interrupt */ + __HAL_UART_ENABLE_IT(huart, UART_IT_TC); + } + /* DMA Circular mode */ + else + { + HAL_UART_TxCpltCallback(huart); + } +} + +/** + * @brief DMA UART transmit process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_UART_TxHalfCpltCallback(huart); +} + +/** + * @brief DMA UART receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* DMA Normal mode*/ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + huart->RxXferCount = 0; + + /* Disable the DMA transfer for the receiver request by setting the DMAR bit + in the UART CR3 register */ + huart->Instance->CR3 &= (uint32_t)~((uint32_t)USART_CR3_DMAR); + + /* Check if a transmit process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX_RX) + { + huart->State = HAL_UART_STATE_BUSY_TX; + } + else + { + huart->State = HAL_UART_STATE_READY; + } + } + HAL_UART_RxCpltCallback(huart); +} + +/** + * @brief DMA UART receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_UART_RxHalfCpltCallback(huart); +} + +/** + * @brief DMA UART communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void UART_DMAError(DMA_HandleTypeDef *hdma) +{ + UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + huart->RxXferCount = 0; + huart->TxXferCount = 0; + huart->State= HAL_UART_STATE_READY; + huart->ErrorCode |= HAL_UART_ERROR_DMA; + HAL_UART_ErrorCallback(huart); +} + +/** + * @brief This function handles UART Communication Timeout. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @param Flag: specifies the UART flag to check. + * @param Status: The new Flag status (SET or RESET). + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_UART_GET_FLAG(huart, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); + __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); + __HAL_UART_DISABLE_IT(huart, UART_IT_PE); + __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); + + huart->State= HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_UART_GET_FLAG(huart, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); + __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); + __HAL_UART_DISABLE_IT(huart, UART_IT_PE); + __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); + + huart->State= HAL_UART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(huart); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + +/** + * @brief Sends an amount of data in non blocking mode. + * @param huart: Pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = huart->State; + if((tmp1 == HAL_UART_STATE_BUSY_TX) || (tmp1 == HAL_UART_STATE_BUSY_TX_RX)) + { + if(huart->Init.WordLength == UART_WORDLENGTH_9B) + { + tmp = (uint16_t*) huart->pTxBuffPtr; + huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); + if(huart->Init.Parity == UART_PARITY_NONE) + { + huart->pTxBuffPtr += 2; + } + else + { + huart->pTxBuffPtr += 1; + } + } + else + { + huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF); + } + + if(--huart->TxXferCount == 0) + { + /* Disable the UART Transmit Complete Interrupt */ + __HAL_UART_DISABLE_IT(huart, UART_IT_TXE); + + /* Enable the UART Transmit Complete Interrupt */ + __HAL_UART_ENABLE_IT(huart, UART_IT_TC); + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + + +/** + * @brief Wraps up transmission in non blocking mode. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart) +{ + /* Disable the UART Transmit Complete Interrupt */ + __HAL_UART_DISABLE_IT(huart, UART_IT_TC); + + /* Check if a receive process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX_RX) + { + huart->State = HAL_UART_STATE_BUSY_RX; + } + else + { + /* Disable the UART Parity Error Interrupt */ + __HAL_UART_DISABLE_IT(huart, UART_IT_PE); + + /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); + + huart->State = HAL_UART_STATE_READY; + } + + HAL_UART_TxCpltCallback(huart); + + return HAL_OK; +} + +/** + * @brief Receives an amount of data in non blocking mode + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval HAL status + */ +static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart) +{ + uint16_t* tmp; + uint32_t tmp1 = 0; + + tmp1 = huart->State; + if((tmp1 == HAL_UART_STATE_BUSY_RX) || (tmp1 == HAL_UART_STATE_BUSY_TX_RX)) + { + if(huart->Init.WordLength == UART_WORDLENGTH_9B) + { + tmp = (uint16_t*) huart->pRxBuffPtr; + if(huart->Init.Parity == UART_PARITY_NONE) + { + *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF); + huart->pRxBuffPtr += 2; + } + else + { + *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF); + huart->pRxBuffPtr += 1; + } + } + else + { + if(huart->Init.Parity == UART_PARITY_NONE) + { + *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF); + } + else + { + *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F); + } + } + + if(--huart->RxXferCount == 0) + { + __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE); + + /* Check if a transmit process is ongoing or not */ + if(huart->State == HAL_UART_STATE_BUSY_TX_RX) + { + huart->State = HAL_UART_STATE_BUSY_TX; + } + else + { + /* Disable the UART Parity Error Interrupt */ + __HAL_UART_DISABLE_IT(huart, UART_IT_PE); + + /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_UART_DISABLE_IT(huart, UART_IT_ERR); + + huart->State = HAL_UART_STATE_READY; + } + HAL_UART_RxCpltCallback(huart); + + return HAL_OK; + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configures the UART peripheral. + * @param huart: pointer to a UART_HandleTypeDef structure that contains + * the configuration information for the specified UART module. + * @retval None + */ +static void UART_SetConfig(UART_HandleTypeDef *huart) +{ + uint32_t tmpreg = 0x00; + + /* Check the parameters */ + assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); + assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); + assert_param(IS_UART_PARITY(huart->Init.Parity)); + assert_param(IS_UART_MODE(huart->Init.Mode)); + + /*-------------------------- USART CR2 Configuration -----------------------*/ + tmpreg = huart->Instance->CR2; + + /* Clear STOP[13:12] bits */ + tmpreg &= (uint32_t)~((uint32_t)USART_CR2_STOP); + + /* Configure the UART Stop Bits: Set STOP[13:12] bits according to huart->Init.StopBits value */ + tmpreg |= (uint32_t)huart->Init.StopBits; + + /* Write to USART CR2 */ + huart->Instance->CR2 = (uint32_t)tmpreg; + + /*-------------------------- USART CR1 Configuration -----------------------*/ + tmpreg = huart->Instance->CR1; + + /* Clear M, PCE, PS, TE and RE bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \ + USART_CR1_RE | USART_CR1_OVER8)); + + /* Configure the UART Word Length, Parity and mode: + Set the M bits according to huart->Init.WordLength value + Set PCE and PS bits according to huart->Init.Parity value + Set TE and RE bits according to huart->Init.Mode value + Set OVER8 bit according to huart->Init.OverSampling value */ + tmpreg |= (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling; + + /* Write to USART CR1 */ + huart->Instance->CR1 = (uint32_t)tmpreg; + + /*-------------------------- USART CR3 Configuration -----------------------*/ + tmpreg = huart->Instance->CR3; + + /* Clear CTSE and RTSE bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE)); + + /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */ + tmpreg |= huart->Init.HwFlowCtl; + + /* Write to USART CR3 */ + huart->Instance->CR3 = (uint32_t)tmpreg; + + /* Check the Over Sampling */ + if(huart->Init.OverSampling == UART_OVERSAMPLING_8) + { + /*-------------------------- USART BRR Configuration ---------------------*/ + if((huart->Instance == USART1) || (huart->Instance == USART6)) + { + huart->Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate); + } + else + { + huart->Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate); + } + } + else + { + /*-------------------------- USART BRR Configuration ---------------------*/ + if((huart->Instance == USART1) || (huart->Instance == USART6)) + { + huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate); + } + else + { + huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate); + } + } +} + +/** + * @} + */ + +#endif /* HAL_UART_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_usart.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_usart.c new file mode 100644 index 0000000..bbf2323 --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_usart.c @@ -0,0 +1,1857 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_usart.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief USART HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Universal Synchronous Asynchronous Receiver Transmitter (USART) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The USART HAL driver can be used as follows: + + (#) Declare a USART_HandleTypeDef handle structure. + (#) Initialize the USART low level resources by implementing the HAL_USART_MspInit () API: + (##) Enable the USARTx interface clock. + (##) USART pins configuration: + (+++) Enable the clock for the USART GPIOs. + (+++) Configure these USART pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_USART_Transmit_IT(), + HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_USART_Transmit_DMA() + HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx stream. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx Stream. + (+++) Associate the initialized DMA handle to the USART DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx Stream. + + (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware + flow control and Mode(Receiver/Transmitter) in the husart Init structure. + + (#) Initialize the USART registers by calling the HAL_USART_Init() API: + (++) These APIs configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_USART_MspInit(&husart) API. + + -@@- The specific USART interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_USART_ENABLE_IT() and __HAL_USART_DISABLE_IT() inside the transmit and receive process. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_USART_Transmit() + (+) Receive an amount of data in blocking mode using HAL_USART_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_USART_Transmit_IT() + (+) At transmission end of transfer HAL_USART_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_USART_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_USART_Receive_IT() + (+) At reception end of transfer HAL_USART_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_UART_RxCpltCallback + (+) In case of transfer Error, HAL_USART_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_USART_ErrorCallback + + *** DMA mode IO operation *** + ============================== + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_USART_Transmit_DMA() + (+) At transmission end of half transfer HAL_USART_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_USART_TxHalfCpltCallback + (+) At transmission end of transfer HAL_USART_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_USART_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_USART_Receive_DMA() + (+) At reception end of half transfer HAL_USART_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_USART_RxHalfCpltCallback + (+) At reception end of transfer HAL_USART_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_USART_RxCpltCallback + (+) In case of transfer Error, HAL_USART_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_USART_ErrorCallback + (+) Pause the DMA Transfer using HAL_USART_DMAPause() + (+) Resume the DMA Transfer using HAL_USART_DMAResume() + (+) Stop the DMA Transfer using HAL_USART_DMAStop() + + *** USART HAL driver macros list *** + ============================================= + [..] + Below the list of most used macros in USART HAL driver. + + (+) __HAL_USART_ENABLE: Enable the USART peripheral + (+) __HAL_USART_DISABLE: Disable the USART peripheral + (+) __HAL_USART_GET_FLAG : Check whether the specified USART flag is set or not + (+) __HAL_USART_CLEAR_FLAG : Clear the specified USART pending flag + (+) __HAL_USART_ENABLE_IT: Enable the specified USART interrupt + (+) __HAL_USART_DISABLE_IT: Disable the specified USART interrupt + + [..] + (@) You can refer to the USART HAL driver header file for more useful macros + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup USART USART + * @brief HAL USART Synchronous module driver + * @{ + */ +#ifdef HAL_USART_MODULE_ENABLED +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/** @addtogroup USART_Private_Constants + * @{ + */ +#define DUMMY_DATA 0xFFFF +#define USART_TIMEOUT_VALUE 22000 +/** + * @} + */ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup USART_Private_Functions + * @{ + */ +static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart); +static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart); +static void USART_SetConfig (USART_HandleTypeDef *husart); +static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); +static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); +static void USART_DMAError(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Timeout); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup USART_Exported_Functions USART Exported Functions + * @{ + */ + +/** @defgroup USART_Exported_Functions_Group1 USART Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USART + in asynchronous and in synchronous modes. + (+) For the asynchronous mode only these parameters can be configured: + (++) Baud Rate + (++) Word Length + (++) Stop Bit + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + Depending on the frame length defined by the M bit (8-bits or 9-bits), + please refer to Reference manual for possible USART frame formats. + (++) USART polarity + (++) USART phase + (++) USART LastBit + (++) Receiver/transmitter modes + + [..] + The HAL_USART_Init() function follows the USART synchronous configuration + procedure (details for the procedure are available in reference manual (RM0329)). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the USART mode according to the specified + * parameters in the USART_InitTypeDef and create the associated handle. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart) +{ + /* Check the USART handle allocation */ + if(husart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_USART_INSTANCE(husart->Instance)); + + if(husart->State == HAL_USART_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + husart->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_USART_MspInit(husart); + } + + husart->State = HAL_USART_STATE_BUSY; + + /* Set the USART Communication parameters */ + USART_SetConfig(husart); + + /* In USART mode, the following bits must be kept cleared: + - LINEN bit in the USART_CR2 register + - HDSEL, SCEN and IREN bits in the USART_CR3 register */ + husart->Instance->CR2 &= ~USART_CR2_LINEN; + husart->Instance->CR3 &= ~(USART_CR3_IREN | USART_CR3_SCEN | USART_CR3_HDSEL); + + /* Enable the Peripheral */ + __HAL_USART_ENABLE(husart); + + /* Initialize the USART state */ + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State= HAL_USART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the USART peripheral. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart) +{ + /* Check the USART handle allocation */ + if(husart == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_USART_INSTANCE(husart->Instance)); + + husart->State = HAL_USART_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_USART_DISABLE(husart); + + /* DeInit the low level hardware */ + HAL_USART_MspDeInit(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief USART MSP Init. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ + __weak void HAL_USART_MspInit(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_MspInit could be implemented in the user file + */ +} + +/** + * @brief USART MSP DeInit. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ + __weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup USART_Exported_Functions_Group2 IO operation functions + * @brief USART Transmit and Receive functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the USART synchronous + data transfers. + + [..] + The USART supports master mode only: it cannot receive or send data related to an input + clock (SCLK is always an output). + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) No-Blocking mode: The communication is performed using Interrupts + or DMA, These API's return the HAL status. + The end of the data processing will be indicated through the + dedicated USART IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_USART_TxCpltCallback(), HAL_USART_RxCpltCallback() and HAL_USART_TxRxCpltCallback() + user callbacks + will be executed respectively at the end of the transmit or Receive process + The HAL_USART_ErrorCallback() user callback will be executed when a communication + error is detected + + (#) Blocking mode APIs are : + (++) HAL_USART_Transmit() in simplex mode + (++) HAL_USART_Receive() in full duplex receive only + (++) HAL_USART_TransmitReceive() in full duplex mode + + (#) Non Blocking mode APIs with Interrupt are : + (++) HAL_USART_Transmit_IT()in simplex mode + (++) HAL_USART_Receive_IT() in full duplex receive only + (++) HAL_USART_TransmitReceive_IT() in full duplex mode + (++) HAL_USART_IRQHandler() + + (#) Non Blocking mode functions with DMA are : + (++) HAL_USART_Transmit_DMA()in simplex mode + (++) HAL_USART_Receive_DMA() in full duplex receive only + (++) HAL_USART_TransmitReceie_DMA() in full duplex mode + (++) HAL_USART_DMAPause() + (++) HAL_USART_DMAResume() + (++) HAL_USART_DMAStop() + + (#) A set of Transfer Complete Callbacks are provided in non Blocking mode: + (++) HAL_USART_TxHalfCpltCallback() + (++) HAL_USART_TxCpltCallback() + (++) HAL_USART_RxHalfCpltCallback() + (++) HAL_USART_RxCpltCallback() + (++) HAL_USART_ErrorCallback() + (++) HAL_USART_TxRxCpltCallback() + +@endverbatim + * @{ + */ + +/** + * @brief Simplex Send an amount of data in blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pTxData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + husart->TxXferSize = Size; + husart->TxXferCount = Size; + while(husart->TxXferCount > 0) + { + husart->TxXferCount--; + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + /* Wait for TC flag in order to write data in DR */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pTxData; + husart->Instance->DR = (*tmp & (uint16_t)0x01FF); + if(husart->Init.Parity == USART_PARITY_NONE) + { + pTxData += 2; + } + else + { + pTxData += 1; + } + } + else + { + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + husart->Instance->DR = (*pTxData++ & (uint8_t)0xFF); + } + } + + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Receive an amount of data in blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pRxData: Pointer to data buffer + * @param Size: Amount of data to be received + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pRxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + husart->RxXferSize = Size; + husart->RxXferCount = Size; + /* Check the remain data to be received */ + while(husart->RxXferCount > 0) + { + husart->RxXferCount--; + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + /* Wait until TXE flag is set to send dummy byte in order to generate the clock for the slave to send data */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + /* Send dummy byte in order to generate clock */ + husart->Instance->DR = (DUMMY_DATA & (uint16_t)0x01FF); + + /* Wait for RXNE Flag */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pRxData ; + if(husart->Init.Parity == USART_PARITY_NONE) + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x01FF); + pRxData +=2; + } + else + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x00FF); + pRxData +=1; + } + } + else + { + /* Wait until TXE flag is set to send dummy byte in order to generate the clock for the slave to send data */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* Send Dummy Byte in order to generate clock */ + husart->Instance->DR = (DUMMY_DATA & (uint16_t)0x00FF); + + /* Wait until RXNE flag is set to receive the byte */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if(husart->Init.Parity == USART_PARITY_NONE) + { + /* Receive data */ + *pRxData++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x00FF); + } + else + { + /* Receive data */ + *pRxData++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x007F); + } + + } + } + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send receive an amount of data in full-duplex mode (blocking mode). + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pTxData: Pointer to data transmitted buffer + * @param pRxData: Pointer to data received buffer + * @param Size: Amount of data to be sent + * @param Timeout: Timeout duration + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) +{ + uint16_t* tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + husart->RxXferSize = Size; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + husart->RxXferCount = Size; + + /* Check the remain data to be received */ + while(husart->TxXferCount > 0) + { + husart->TxXferCount--; + husart->RxXferCount--; + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + /* Wait for TC flag in order to write data in DR */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pTxData; + husart->Instance->DR = (*tmp & (uint16_t)0x01FF); + if(husart->Init.Parity == USART_PARITY_NONE) + { + pTxData += 2; + } + else + { + pTxData += 1; + } + + /* Wait for RXNE Flag */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t*) pRxData ; + if(husart->Init.Parity == USART_PARITY_NONE) + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x01FF); + pRxData += 2; + } + else + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x00FF); + pRxData += 1; + } + } + else + { + /* Wait for TC flag in order to write data in DR */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + husart->Instance->DR = (*pTxData++ & (uint8_t)0x00FF); + + /* Wait for RXNE Flag */ + if(USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if(husart->Init.Parity == USART_PARITY_NONE) + { + /* Receive data */ + *pRxData++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x00FF); + } + else + { + /* Receive data */ + *pRxData++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x007F); + } + } + } + + husart->State = HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Simplex Send an amount of data in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pTxData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + * @note The USART errors are not managed to avoid the overrun error. + */ +HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size) +{ + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + /* The USART Error Interrupts: (Frame error, Noise error, Overrun error) + are not managed by the USART transmit process to avoid the overrun interrupt + when the USART mode is configured for transmit and receive "USART_MODE_TX_RX" + to benefit for the frame error and noise interrupts the USART mode should be + configured only for transmit "USART_MODE_TX" + The __HAL_USART_ENABLE_IT(husart, USART_IT_ERR) can be used to enable the Frame error, + Noise error interrupt */ + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Transmit Data Register Empty Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TXE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Simplex Receive an amount of data in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pRxData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) +{ + if(husart->State == HAL_USART_STATE_READY) + { + if((pRxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->RxXferCount = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Data Register not empty Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_RXNE); + + /* Enable the USART Parity Error Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_PE); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_USART_ENABLE_IT(husart, USART_IT_ERR); + + /* Send dummy byte in order to generate the clock for the slave to send data */ + husart->Instance->DR = (DUMMY_DATA & (uint16_t)0x01FF); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send receive an amount of data in full-duplex mode (non-blocking). + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pTxData: Pointer to data transmitted buffer + * @param pRxData: Pointer to data received buffer + * @param Size: Amount of data to be received + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->RxXferCount = Size; + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX_RX; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + /* Enable the USART Data Register not empty Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_RXNE); + + /* Enable the USART Parity Error Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_PE); + + /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_USART_ENABLE_IT(husart, USART_IT_ERR); + + /* Enable the USART Transmit Data Register Empty Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TXE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Simplex Send an amount of data in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pTxData: Pointer to data buffer + * @param Size: Amount of data to be sent + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint16_t Size) +{ + uint32_t *tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + husart->TxXferCount = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX; + + /* Set the USART DMA transfer complete callback */ + husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; + + /* Set the DMA error callback */ + husart->hdmatx->XferErrorCallback = USART_DMAError; + + /* Enable the USART transmit DMA Stream */ + tmp = (uint32_t*)&pTxData; + HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->DR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_USART_CLEAR_FLAG(husart, USART_FLAG_TC); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + husart->Instance->CR3 |= USART_CR3_DMAT; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Receive an amount of data in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pRxData: Pointer to data buffer + * @param Size: Amount of data to be received + * @retval HAL status + * @note The USART DMA transmit stream must be configured in order to generate the clock for the slave. + * @note When the USART parity is enabled (PCE = 1) the data received contain the parity bit. + */ +HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size) +{ + uint32_t *tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pRxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->pTxBuffPtr = pRxData; + husart->TxXferSize = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_RX; + + /* Set the USART DMA Rx transfer complete callback */ + husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; + + /* Set the USART DMA Rx transfer error callback */ + husart->hdmarx->XferErrorCallback = USART_DMAError; + + /* Enable the USART receive DMA Stream */ + tmp = (uint32_t*)&pRxData; + HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->DR, *(uint32_t*)tmp, Size); + + /* Enable the USART transmit DMA Stream: the transmit stream is used in order + to generate in the non-blocking mode the clock to the slave device, + this mode isn't a simplex receive mode but a full-duplex receive one */ + HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->DR, Size); + + /* Clear the Overrun flag just before enabling the DMA Rx request: mandatory for the second transfer + when using the USART in circular mode */ + __HAL_USART_CLEAR_OREFLAG(husart); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + husart->Instance->CR3 |= USART_CR3_DMAR; + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + husart->Instance->CR3 |= USART_CR3_DMAT; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Transmit Receive an amount of data in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param pTxData: Pointer to data transmitted buffer + * @param pRxData: Pointer to data received buffer + * @param Size: Amount of data to be received + * @note When the USART parity is enabled (PCE = 1) the data received contain the parity bit. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size) +{ + uint32_t *tmp; + + if(husart->State == HAL_USART_STATE_READY) + { + if((pTxData == NULL) || (pRxData == NULL) || (Size == 0)) + { + return HAL_ERROR; + } + /* Process Locked */ + __HAL_LOCK(husart); + + husart->pRxBuffPtr = pRxData; + husart->RxXferSize = Size; + husart->pTxBuffPtr = pTxData; + husart->TxXferSize = Size; + + husart->ErrorCode = HAL_USART_ERROR_NONE; + husart->State = HAL_USART_STATE_BUSY_TX_RX; + + /* Set the USART DMA Rx transfer complete callback */ + husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt; + + /* Set the USART DMA Tx transfer complete callback */ + husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt; + + /* Set the USART DMA Half transfer complete callback */ + husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt; + + /* Set the USART DMA Tx transfer error callback */ + husart->hdmatx->XferErrorCallback = USART_DMAError; + + /* Set the USART DMA Rx transfer error callback */ + husart->hdmarx->XferErrorCallback = USART_DMAError; + + /* Enable the USART receive DMA Stream */ + tmp = (uint32_t*)&pRxData; + HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->DR, *(uint32_t*)tmp, Size); + + /* Enable the USART transmit DMA Stream */ + tmp = (uint32_t*)&pTxData; + HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t*)tmp, (uint32_t)&husart->Instance->DR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_USART_CLEAR_FLAG(husart, USART_FLAG_TC); + + /* Clear the Overrun flag: mandatory for the second transfer in circular mode */ + __HAL_USART_CLEAR_OREFLAG(husart); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + husart->Instance->CR3 |= USART_CR3_DMAR; + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + husart->Instance->CR3 |= USART_CR3_DMAT; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the DMA Transfer. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart) +{ + /* Process Locked */ + __HAL_LOCK(husart); + + /* Disable the USART DMA Tx request */ + husart->Instance->CR3 &= (uint32_t)(~USART_CR3_DMAT); + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart) +{ + /* Process Locked */ + __HAL_LOCK(husart); + + /* Enable the USART DMA Tx request */ + husart->Instance->CR3 |= USART_CR3_DMAT; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart) +{ + /* The Lock is not implemented on this API to allow the user application + to call the HAL USART API under callbacks HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback(): + when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated + and the correspond call back is executed HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback() + */ + + /* Abort the USART DMA Tx Stream */ + if(husart->hdmatx != NULL) + { + HAL_DMA_Abort(husart->hdmatx); + } + /* Abort the USART DMA Rx Stream */ + if(husart->hdmarx != NULL) + { + HAL_DMA_Abort(husart->hdmarx); + } + + /* Disable the USART Tx/Rx DMA requests */ + husart->Instance->CR3 &= ~USART_CR3_DMAT; + husart->Instance->CR3 &= ~USART_CR3_DMAR; + + husart->State = HAL_USART_STATE_READY; + + return HAL_OK; +} + +/** + * @brief This function handles USART interrupt request. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +void HAL_USART_IRQHandler(USART_HandleTypeDef *husart) +{ + uint32_t tmp1 = 0, tmp2 = 0; + + tmp1 = __HAL_USART_GET_FLAG(husart, USART_FLAG_PE); + tmp2 = __HAL_USART_GET_IT_SOURCE(husart, USART_IT_PE); + /* USART parity error interrupt occurred -----------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_USART_CLEAR_PEFLAG(husart); + husart->ErrorCode |= HAL_USART_ERROR_PE; + } + + tmp1 = __HAL_USART_GET_FLAG(husart, USART_FLAG_FE); + tmp2 = __HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR); + /* USART frame error interrupt occurred ------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_USART_CLEAR_FEFLAG(husart); + husart->ErrorCode |= HAL_USART_ERROR_FE; + } + + tmp1 = __HAL_USART_GET_FLAG(husart, USART_FLAG_NE); + tmp2 = __HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR); + /* USART noise error interrupt occurred ------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_USART_CLEAR_NEFLAG(husart); + husart->ErrorCode |= HAL_USART_ERROR_NE; + } + + tmp1 = __HAL_USART_GET_FLAG(husart, USART_FLAG_ORE); + tmp2 = __HAL_USART_GET_IT_SOURCE(husart, USART_IT_ERR); + /* USART Over-Run interrupt occurred ---------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + __HAL_USART_CLEAR_OREFLAG(husart); + husart->ErrorCode |= HAL_USART_ERROR_ORE; + } + + if(husart->ErrorCode != HAL_USART_ERROR_NONE) + { + /* Set the USART state ready to be able to start again the process */ + husart->State = HAL_USART_STATE_READY; + + HAL_USART_ErrorCallback(husart); + } + + tmp1 = __HAL_USART_GET_FLAG(husart, USART_FLAG_RXNE); + tmp2 = __HAL_USART_GET_IT_SOURCE(husart, USART_IT_RXNE); + /* USART in mode Receiver --------------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + USART_Receive_IT(husart); + } + else + { + USART_TransmitReceive_IT(husart); + } + } + + tmp1 = __HAL_USART_GET_FLAG(husart, USART_FLAG_TXE); + tmp2 = __HAL_USART_GET_IT_SOURCE(husart, USART_IT_TXE); + /* USART in mode Transmitter -----------------------------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + USART_Transmit_IT(husart); + } + else + { + USART_TransmitReceive_IT(husart); + } + } + + tmp1 = __HAL_USART_GET_FLAG(husart, USART_FLAG_TC); + tmp2 = __HAL_USART_GET_IT_SOURCE(husart, USART_IT_TC); + /* USART in mode Transmitter (transmission end) ----------------------------*/ + if((tmp1 != RESET) && (tmp2 != RESET)) + { + USART_EndTransmit_IT(husart); + } +} + +/** + * @brief Tx Transfer completed callbacks. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ + __weak void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx Half Transfer completed callbacks. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ + __weak void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Transfer completed callbacks. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +__weak void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Rx Half Transfer completed callbacks. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +__weak void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief Tx/Rx Transfers completed callback for the non-blocking process. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +__weak void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_TxCpltCallback could be implemented in the user file + */ +} + +/** + * @brief USART error callbacks. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ + __weak void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_USART_ErrorCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup USART_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief USART State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of + USART communication + process, return Peripheral Errors occurred during communication process + (+) HAL_USART_GetState() API can be helpful to check in run-time the state + of the USART peripheral. + (+) HAL_USART_GetError() check in run-time errors that could be occurred during + communication. +@endverbatim + * @{ + */ + +/** + * @brief Returns the USART state. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL state + */ +HAL_USART_StateTypeDef HAL_USART_GetState(USART_HandleTypeDef *husart) +{ + return husart->State; +} + +/** + * @brief Return the USART error code + * @param husart : pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART. + * @retval USART Error Code + */ +uint32_t HAL_USART_GetError(USART_HandleTypeDef *husart) +{ + return husart->ErrorCode; +} + +/** + * @} + */ + + +/** + * @brief DMA USART transmit process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + husart->TxXferCount = 0; + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + /* Disable the DMA transfer for transmit request by resetting the DMAT bit + in the USART CR3 register */ + CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + } + } + /* DMA Circular mode */ + else + { + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + HAL_USART_TxCpltCallback(husart); + } + } +} + +/** + * @brief DMA USART transmit process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_USART_TxHalfCpltCallback(husart); +} + +/** + * @brief DMA USART receive process complete callback. + * @param hdma: DMA handle + * @retval None + */ +static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + /* DMA Normal mode */ + if((hdma->Instance->CR & DMA_SxCR_CIRC) == 0) + { + husart->RxXferCount = 0; + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + /* Disable the DMA transfer for the Transmit/receiver requests by setting the DMAT/DMAR bit + in the USART CR3 register */ + husart->Instance->CR3 &= ~(USART_CR3_DMAR); + + husart->State= HAL_USART_STATE_READY; + HAL_USART_RxCpltCallback(husart); + } + /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ + else + { + /* Disable the DMA transfer for the Transmit/receiver requests by setting the DMAT/DMAR bit + in the USART CR3 register */ + husart->Instance->CR3 &= ~(USART_CR3_DMAR); + husart->Instance->CR3 &= ~(USART_CR3_DMAT); + + husart->State= HAL_USART_STATE_READY; + HAL_USART_TxRxCpltCallback(husart); + } + } + /* DMA circular mode */ + else + { + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + HAL_USART_RxCpltCallback(husart); + } + /* The USART state is HAL_USART_STATE_BUSY_TX_RX */ + else + { + HAL_USART_TxRxCpltCallback(husart); + } + } +} + +/** + * @brief DMA USART receive process half complete callback + * @param hdma: pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA module. + * @retval None + */ +static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = (USART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent; + + HAL_USART_RxHalfCpltCallback(husart); +} + +/** + * @brief DMA USART communication error callback. + * @param hdma: DMA handle + * @retval None + */ +static void USART_DMAError(DMA_HandleTypeDef *hdma) +{ + USART_HandleTypeDef* husart = ( USART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent; + + husart->RxXferCount = 0; + husart->TxXferCount = 0; + husart->ErrorCode |= HAL_USART_ERROR_DMA; + husart->State= HAL_USART_STATE_READY; + + HAL_USART_ErrorCallback(husart); +} + +/** + * @brief This function handles USART Communication Timeout. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @param Flag: specifies the USART flag to check. + * @param Status: The new Flag status (SET or RESET). + * @param Timeout: Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until flag is set */ + if(Status == RESET) + { + while(__HAL_USART_GET_FLAG(husart, Flag) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); + __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE); + __HAL_USART_DISABLE_IT(husart, USART_IT_PE); + __HAL_USART_DISABLE_IT(husart, USART_IT_ERR); + + husart->State= HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_TIMEOUT; + } + } + } + } + else + { + while(__HAL_USART_GET_FLAG(husart, Flag) != RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); + __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE); + __HAL_USART_DISABLE_IT(husart, USART_IT_PE); + __HAL_USART_DISABLE_IT(husart, USART_IT_ERR); + + husart->State= HAL_USART_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(husart); + + return HAL_TIMEOUT; + } + } + } + } + return HAL_OK; +} + + +/** + * @brief Simplex Send an amount of data in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + * @note The USART errors are not managed to avoid the overrun error. + */ +static HAL_StatusTypeDef USART_Transmit_IT(USART_HandleTypeDef *husart) +{ + uint16_t* tmp; + + if(husart->State == HAL_USART_STATE_BUSY_TX) + { + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + tmp = (uint16_t*) husart->pTxBuffPtr; + husart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); + if(husart->Init.Parity == USART_PARITY_NONE) + { + husart->pTxBuffPtr += 2; + } + else + { + husart->pTxBuffPtr += 1; + } + } + else + { + husart->Instance->DR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)0x00FF); + } + + if(--husart->TxXferCount == 0) + { + /* Disable the USART Transmit data register empty Interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); + + /* Enable the USART Transmit Complete Interrupt */ + __HAL_USART_ENABLE_IT(husart, USART_IT_TC); + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Wraps up transmission in non blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +static HAL_StatusTypeDef USART_EndTransmit_IT(USART_HandleTypeDef *husart) +{ + /* Disable the USART Transmit Complete Interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_TC); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_USART_DISABLE_IT(husart, USART_IT_ERR); + + husart->State = HAL_USART_STATE_READY; + + HAL_USART_TxCpltCallback(husart); + + return HAL_OK; +} + +/** + * @brief Simplex Receive an amount of data in non-blocking mode. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +static HAL_StatusTypeDef USART_Receive_IT(USART_HandleTypeDef *husart) +{ + uint16_t* tmp; + if(husart->State == HAL_USART_STATE_BUSY_RX) + { + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + tmp = (uint16_t*) husart->pRxBuffPtr; + if(husart->Init.Parity == USART_PARITY_NONE) + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x01FF); + husart->pRxBuffPtr += 2; + } + else + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x00FF); + husart->pRxBuffPtr += 1; + } + if(--husart->RxXferCount != 0x00) + { + /* Send dummy byte in order to generate the clock for the slave to send the next data */ + husart->Instance->DR = (DUMMY_DATA & (uint16_t)0x01FF); + } + } + else + { + if(husart->Init.Parity == USART_PARITY_NONE) + { + *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x00FF); + } + else + { + *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x007F); + } + + if(--husart->RxXferCount != 0x00) + { + /* Send dummy byte in order to generate the clock for the slave to send the next data */ + husart->Instance->DR = (DUMMY_DATA & (uint16_t)0x00FF); + } + } + + if(husart->RxXferCount == 0) + { + /* Disable the USART RXNE Interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE); + + /* Disable the USART Parity Error Interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_PE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_USART_DISABLE_IT(husart, USART_IT_ERR); + + husart->State = HAL_USART_STATE_READY; + HAL_USART_RxCpltCallback(husart); + + return HAL_OK; + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Full-Duplex Send receive an amount of data in full-duplex mode (non-blocking). + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval HAL status + */ +static HAL_StatusTypeDef USART_TransmitReceive_IT(USART_HandleTypeDef *husart) +{ + uint16_t* tmp; + + if(husart->State == HAL_USART_STATE_BUSY_TX_RX) + { + if(husart->TxXferCount != 0x00) + { + if(__HAL_USART_GET_FLAG(husart, USART_FLAG_TXE) != RESET) + { + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + tmp = (uint16_t*) husart->pTxBuffPtr; + husart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); + if(husart->Init.Parity == USART_PARITY_NONE) + { + husart->pTxBuffPtr += 2; + } + else + { + husart->pTxBuffPtr += 1; + } + } + else + { + husart->Instance->DR = (uint8_t)(*husart->pTxBuffPtr++ & (uint8_t)0x00FF); + } + husart->TxXferCount--; + + /* Check the latest data transmitted */ + if(husart->TxXferCount == 0) + { + __HAL_USART_DISABLE_IT(husart, USART_IT_TXE); + } + } + } + + if(husart->RxXferCount != 0x00) + { + if(__HAL_USART_GET_FLAG(husart, USART_FLAG_RXNE) != RESET) + { + if(husart->Init.WordLength == USART_WORDLENGTH_9B) + { + tmp = (uint16_t*) husart->pRxBuffPtr; + if(husart->Init.Parity == USART_PARITY_NONE) + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x01FF); + husart->pRxBuffPtr += 2; + } + else + { + *tmp = (uint16_t)(husart->Instance->DR & (uint16_t)0x00FF); + husart->pRxBuffPtr += 1; + } + } + else + { + if(husart->Init.Parity == USART_PARITY_NONE) + { + *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x00FF); + } + else + { + *husart->pRxBuffPtr++ = (uint8_t)(husart->Instance->DR & (uint8_t)0x007F); + } + } + husart->RxXferCount--; + } + } + + /* Check the latest data received */ + if(husart->RxXferCount == 0) + { + __HAL_USART_DISABLE_IT(husart, USART_IT_RXNE); + + /* Disable the USART Parity Error Interrupt */ + __HAL_USART_DISABLE_IT(husart, USART_IT_PE); + + /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */ + __HAL_USART_DISABLE_IT(husart, USART_IT_ERR); + + husart->State = HAL_USART_STATE_READY; + + HAL_USART_TxRxCpltCallback(husart); + + return HAL_OK; + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configures the USART peripheral. + * @param husart: pointer to a USART_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +static void USART_SetConfig(USART_HandleTypeDef *husart) +{ + uint32_t tmpreg = 0x00; + + /* Check the parameters */ + assert_param(IS_USART_INSTANCE(husart->Instance)); + assert_param(IS_USART_POLARITY(husart->Init.CLKPolarity)); + assert_param(IS_USART_PHASE(husart->Init.CLKPhase)); + assert_param(IS_USART_LASTBIT(husart->Init.CLKLastBit)); + assert_param(IS_USART_BAUDRATE(husart->Init.BaudRate)); + assert_param(IS_USART_WORD_LENGTH(husart->Init.WordLength)); + assert_param(IS_USART_STOPBITS(husart->Init.StopBits)); + assert_param(IS_USART_PARITY(husart->Init.Parity)); + assert_param(IS_USART_MODE(husart->Init.Mode)); + + /* The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the + receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. */ + husart->Instance->CR1 &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE)); + + /*---------------------------- USART CR2 Configuration ---------------------*/ + tmpreg = husart->Instance->CR2; + /* Clear CLKEN, CPOL, CPHA and LBCL bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | USART_CR2_LBCL | USART_CR2_STOP)); + /* Configure the USART Clock, CPOL, CPHA and LastBit -----------------------*/ + /* Set CPOL bit according to husart->Init.CLKPolarity value */ + /* Set CPHA bit according to husart->Init.CLKPhase value */ + /* Set LBCL bit according to husart->Init.CLKLastBit value */ + /* Set Stop Bits: Set STOP[13:12] bits according to husart->Init.StopBits value */ + tmpreg |= (uint32_t)(USART_CLOCK_ENABLE| husart->Init.CLKPolarity | + husart->Init.CLKPhase| husart->Init.CLKLastBit | husart->Init.StopBits); + /* Write to USART CR2 */ + husart->Instance->CR2 = (uint32_t)tmpreg; + + /*-------------------------- USART CR1 Configuration -----------------------*/ + tmpreg = husart->Instance->CR1; + + /* Clear M, PCE, PS, TE, RE and OVER8 bits */ + tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | \ + USART_CR1_RE | USART_CR1_OVER8)); + + /* Configure the USART Word Length, Parity and mode: + Set the M bits according to husart->Init.WordLength value + Set PCE and PS bits according to husart->Init.Parity value + Set TE and RE bits according to husart->Init.Mode value + Force OVER8 bit to 1 in order to reach the max USART frequencies */ + tmpreg |= (uint32_t)husart->Init.WordLength | husart->Init.Parity | husart->Init.Mode | USART_CR1_OVER8; + + /* Write to USART CR1 */ + husart->Instance->CR1 = (uint32_t)tmpreg; + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Clear CTSE and RTSE bits */ + husart->Instance->CR3 &= (uint32_t)~((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE)); + + /*-------------------------- USART BRR Configuration -----------------------*/ + if((husart->Instance == USART1) || (husart->Instance == USART6)) + { + husart->Instance->BRR = USART_BRR(HAL_RCC_GetPCLK2Freq(), husart->Init.BaudRate); + } + else + { + husart->Instance->BRR = USART_BRR(HAL_RCC_GetPCLK1Freq(), husart->Init.BaudRate); + } +} + +/** + * @} + */ + +#endif /* HAL_USART_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_wwdg.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_wwdg.c new file mode 100644 index 0000000..18b8d3f --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_wwdg.c @@ -0,0 +1,454 @@ +/** + ****************************************************************************** + * @file stm32f4xx_hal_wwdg.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief WWDG HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the Window Watchdog (WWDG) peripheral: + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral State functions + @verbatim + ============================================================================== + ##### WWDG specific features ##### + ============================================================================== + [..] + Once enabled the WWDG generates a system reset on expiry of a programmed + time period, unless the program refreshes the counter (downcounter) + before reaching 0x3F value (i.e. a reset is generated when the counter + value rolls over from 0x40 to 0x3F). + + (+) An MCU reset is also generated if the counter value is refreshed + before the counter has reached the refresh window value. This + implies that the counter must be refreshed in a limited window. + (+) Once enabled the WWDG cannot be disabled except by a system reset. + (+) WWDGRST flag in RCC_CSR register can be used to inform when a WWDG + reset occurs. + (+) The WWDG counter input clock is derived from the APB clock divided + by a programmable prescaler. + (+) WWDG clock (Hz) = PCLK1 / (4096 * Prescaler) + (+) WWDG timeout (mS) = 1000 * Counter / WWDG clock + (+) WWDG Counter refresh is allowed between the following limits : + (++) min time (mS) = 1000 * (Counter – Window) / WWDG clock + (++) max time (mS) = 1000 * (Counter – 0x40) / WWDG clock + + (+) Min-max timeout value at 50 MHz(PCLK1): 81.9 us / 41.9 ms + + + ##### How to use this driver ##### + ============================================================================== + [..] + (+) Enable WWDG APB1 clock using __HAL_RCC_WWDG_CLK_ENABLE(). + (+) Set the WWDG prescaler, refresh window and counter value + using HAL_WWDG_Init() function. + (+) Start the WWDG using HAL_WWDG_Start() function. + When the WWDG is enabled the counter value should be configured to + a value greater than 0x40 to prevent generating an immediate reset. + (+) Optionally you can enable the Early Wakeup Interrupt (EWI) which is + generated when the counter reaches 0x40, and then start the WWDG using + HAL_WWDG_Start_IT(). At EWI HAL_WWDG_WakeupCallback is executed and user can + add his own code by customization of function pointer HAL_WWDG_WakeupCallback + Once enabled, EWI interrupt cannot be disabled except by a system reset. + (+) Then the application program must refresh the WWDG counter at regular + intervals during normal operation to prevent an MCU reset, using + HAL_WWDG_Refresh() function. This operation must occur only when + the counter is lower than the refresh window value already programmed. + + *** WWDG HAL driver macros list *** + ================================== + [..] + Below the list of most used macros in WWDG HAL driver. + + (+) __HAL_WWDG_ENABLE: Enable the WWDG peripheral + (+) __HAL_WWDG_GET_FLAG: Get the selected WWDG's flag status + (+) __HAL_WWDG_CLEAR_FLAG: Clear the WWDG's pending flags + (+) __HAL_WWDG_ENABLE_IT: Enables the WWDG early wake-up interrupt + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup WWDG WWDG + * @brief WWDG HAL module driver. + * @{ + */ + +#ifdef HAL_WWDG_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Exported functions --------------------------------------------------------*/ +/** @defgroup WWDG_Exported_Functions WWDG Exported Functions + * @{ + */ + +/** @defgroup WWDG_Exported_Functions_Group1 Initialization and de-initialization functions + * @brief Initialization and Configuration functions. + * +@verbatim + ============================================================================== + ##### Initialization and de-initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize the WWDG according to the specified parameters + in the WWDG_InitTypeDef and create the associated handle + (+) DeInitialize the WWDG peripheral + (+) Initialize the WWDG MSP + (+) DeInitialize the WWDG MSP + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the WWDG according to the specified + * parameters in the WWDG_InitTypeDef and creates the associated handle. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Init(WWDG_HandleTypeDef *hwwdg) +{ + /* Check the WWDG handle allocation */ + if(hwwdg == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_WWDG_ALL_INSTANCE(hwwdg->Instance)); + assert_param(IS_WWDG_PRESCALER(hwwdg->Init.Prescaler)); + assert_param(IS_WWDG_WINDOW(hwwdg->Init.Window)); + assert_param(IS_WWDG_COUNTER(hwwdg->Init.Counter)); + + if(hwwdg->State == HAL_WWDG_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hwwdg->Lock = HAL_UNLOCKED; + /* Init the low level hardware */ + HAL_WWDG_MspInit(hwwdg); + } + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_BUSY; + + /* Set WWDG Prescaler and Window */ + MODIFY_REG(hwwdg->Instance->CFR, (WWDG_CFR_WDGTB | WWDG_CFR_W), (hwwdg->Init.Prescaler | hwwdg->Init.Window)); + /* Set WWDG Counter */ + MODIFY_REG(hwwdg->Instance->CR, WWDG_CR_T, hwwdg->Init.Counter); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_READY; + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief DeInitializes the WWDG peripheral. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_DeInit(WWDG_HandleTypeDef *hwwdg) +{ + /* Check the WWDG handle allocation */ + if(hwwdg == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_WWDG_ALL_INSTANCE(hwwdg->Instance)); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_BUSY; + + /* DeInit the low level hardware */ + HAL_WWDG_MspDeInit(hwwdg); + + /* Reset WWDG Control register */ + hwwdg->Instance->CR = (uint32_t)0x0000007F; + + /* Reset WWDG Configuration register */ + hwwdg->Instance->CFR = (uint32_t)0x0000007F; + + /* Reset WWDG Status register */ + hwwdg->Instance->SR = 0; + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hwwdg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Initializes the WWDG MSP. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +__weak void HAL_WWDG_MspInit(WWDG_HandleTypeDef *hwwdg) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_WWDG_MspInit could be implemented in the user file + */ +} + +/** + * @brief DeInitializes the WWDG MSP. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +__weak void HAL_WWDG_MspDeInit(WWDG_HandleTypeDef *hwwdg) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_WWDG_MspDeInit could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup WWDG_Exported_Functions_Group2 IO operation functions + * @brief IO operation functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Start the WWDG. + (+) Refresh the WWDG. + (+) Handle WWDG interrupt request. + +@endverbatim + * @{ + */ + +/** + * @brief Starts the WWDG. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Start(WWDG_HandleTypeDef *hwwdg) +{ + /* Process Locked */ + __HAL_LOCK(hwwdg); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_BUSY; + + /* Enable the peripheral */ + __HAL_WWDG_ENABLE(hwwdg); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hwwdg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Starts the WWDG with interrupt enabled. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Start_IT(WWDG_HandleTypeDef *hwwdg) +{ + /* Process Locked */ + __HAL_LOCK(hwwdg); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_BUSY; + + /* Enable the Early Wakeup Interrupt */ + __HAL_WWDG_ENABLE_IT(hwwdg, WWDG_IT_EWI); + + /* Enable the peripheral */ + __HAL_WWDG_ENABLE(hwwdg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Refreshes the WWDG. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @param Counter: value of counter to put in WWDG counter + * @retval HAL status + */ +HAL_StatusTypeDef HAL_WWDG_Refresh(WWDG_HandleTypeDef *hwwdg, uint32_t Counter) +{ + /* Process Locked */ + __HAL_LOCK(hwwdg); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_BUSY; + + /* Check the parameters */ + assert_param(IS_WWDG_COUNTER(Counter)); + + /* Write to WWDG CR the WWDG Counter value to refresh with */ + MODIFY_REG(hwwdg->Instance->CR, (uint32_t)WWDG_CR_T, Counter); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hwwdg); + + /* Return function status */ + return HAL_OK; +} + +/** + * @brief Handles WWDG interrupt request. + * @note The Early Wakeup Interrupt (EWI) can be used if specific safety operations + * or data logging must be performed before the actual reset is generated. + * The EWI interrupt is enabled using __HAL_WWDG_ENABLE_IT() macro. + * When the downcounter reaches the value 0x40, and EWI interrupt is + * generated and the corresponding Interrupt Service Routine (ISR) can + * be used to trigger specific actions (such as communications or data + * logging), before resetting the device. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +void HAL_WWDG_IRQHandler(WWDG_HandleTypeDef *hwwdg) +{ + /* Check if Early Wakeup Interrupt is enable */ + if(__HAL_WWDG_GET_IT_SOURCE(hwwdg, WWDG_IT_EWI) != RESET) + { + /* Check if WWDG Early Wakeup Interrupt occurred */ + if(__HAL_WWDG_GET_FLAG(hwwdg, WWDG_FLAG_EWIF) != RESET) + { + /* Early Wakeup callback */ + HAL_WWDG_WakeupCallback(hwwdg); + + /* Change WWDG peripheral state */ + hwwdg->State = HAL_WWDG_STATE_READY; + + /* Clear the WWDG Early Wakeup flag */ + __HAL_WWDG_CLEAR_FLAG(hwwdg, WWDG_FLAG_EWIF); + + /* Process Unlocked */ + __HAL_UNLOCK(hwwdg); + } + } +} + +/** + * @brief Early Wakeup WWDG callback. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval None + */ +__weak void HAL_WWDG_WakeupCallback(WWDG_HandleTypeDef* hwwdg) +{ + /* NOTE: This function Should not be modified, when the callback is needed, + the HAL_WWDG_WakeupCallback could be implemented in the user file + */ +} + +/** + * @} + */ + +/** @defgroup WWDG_Exported_Functions_Group3 Peripheral State functions + * @brief Peripheral State functions. + * +@verbatim + ============================================================================== + ##### Peripheral State functions ##### + ============================================================================== + [..] + This subsection permits to get in run-time the status of the peripheral + and the data flow. + +@endverbatim + * @{ + */ + +/** + * @brief Returns the WWDG state. + * @param hwwdg: pointer to a WWDG_HandleTypeDef structure that contains + * the configuration information for the specified WWDG module. + * @retval HAL state + */ +HAL_WWDG_StateTypeDef HAL_WWDG_GetState(WWDG_HandleTypeDef *hwwdg) +{ + return hwwdg->State; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* HAL_WWDG_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fmc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fmc.c new file mode 100644 index 0000000..cf0ce2a --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fmc.c @@ -0,0 +1,1733 @@ +/** + ****************************************************************************** + * @file stm32f4xx_ll_fmc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief FMC Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Flexible Memory Controller (FMC) peripheral memories: + * + Initialization/de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### FMC peripheral features ##### + ============================================================================== + [..] The Flexible memory controller (FMC) includes three memory controllers: + (+) The NOR/PSRAM memory controller + (+) The NAND/PC Card memory controller + (+) The Synchronous DRAM (SDRAM) controller + + [..] The FMC functional block makes the interface with synchronous and asynchronous static + memories, SDRAM memories, and 16-bit PC memory cards. Its main purposes are: + (+) to translate AHB transactions into the appropriate external device protocol + (+) to meet the access time requirements of the external memory devices + + [..] All external memories share the addresses, data and control signals with the controller. + Each external device is accessed by means of a unique Chip Select. The FMC performs + only one access at a time to an external device. + The main features of the FMC controller are the following: + (+) Interface with static-memory mapped devices including: + (++) Static random access memory (SRAM) + (++) Read-only memory (ROM) + (++) NOR Flash memory/OneNAND Flash memory + (++) PSRAM (4 memory banks) + (++) 16-bit PC Card compatible devices + (++) Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of + data + (+) Interface with synchronous DRAM (SDRAM) memories + (+) Independent Chip Select control for each memory bank + (+) Independent configuration for each memory bank + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup FMC_LL FMC Low Layer + * @brief FMC driver modules + * @{ + */ + +#if defined (HAL_SRAM_MODULE_ENABLED) || defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_NAND_MODULE_ENABLED) || defined(HAL_PCCARD_MODULE_ENABLED) || defined(HAL_SDRAM_MODULE_ENABLED) + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup FMC_LL_Private_Functions + * @{ + */ + +/** @addtogroup FMC_LL_NORSRAM + * @brief NORSRAM Controller functions + * + @verbatim + ============================================================================== + ##### How to use NORSRAM device driver ##### + ============================================================================== + + [..] + This driver contains a set of APIs to interface with the FMC NORSRAM banks in order + to run the NORSRAM external devices. + + (+) FMC NORSRAM bank reset using the function FMC_NORSRAM_DeInit() + (+) FMC NORSRAM bank control configuration using the function FMC_NORSRAM_Init() + (+) FMC NORSRAM bank timing configuration using the function FMC_NORSRAM_Timing_Init() + (+) FMC NORSRAM bank extended timing configuration using the function + FMC_NORSRAM_Extended_Timing_Init() + (+) FMC NORSRAM bank enable/disable write operation using the functions + FMC_NORSRAM_WriteOperation_Enable()/FMC_NORSRAM_WriteOperation_Disable() + + +@endverbatim + * @{ + */ + +/** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group1 + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC NORSRAM interface + (+) De-initialize the FMC NORSRAM interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the FMC_NORSRAM device according to the specified + * control parameters in the FMC_NORSRAM_InitTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Init: Pointer to NORSRAM Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_InitTypeDef* Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_BANK(Init->NSBank)); + assert_param(IS_FMC_MUX(Init->DataAddressMux)); + assert_param(IS_FMC_MEMORY(Init->MemoryType)); + assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FMC_BURSTMODE(Init->BurstAccessMode)); + assert_param(IS_FMC_WAIT_POLARITY(Init->WaitSignalPolarity)); +#if !defined (STM32F446xx) + assert_param(IS_FMC_WRAP_MODE(Init->WrapMode)); +#endif /* !defined (STM32F446xx) */ + assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(Init->WaitSignalActive)); + assert_param(IS_FMC_WRITE_OPERATION(Init->WriteOperation)); + assert_param(IS_FMC_WAITE_SIGNAL(Init->WaitSignal)); + assert_param(IS_FMC_EXTENDED_MODE(Init->ExtendedMode)); + assert_param(IS_FMC_ASYNWAIT(Init->AsynchronousWait)); + assert_param(IS_FMC_WRITE_BURST(Init->WriteBurst)); + assert_param(IS_FMC_CONTINOUS_CLOCK(Init->ContinuousClock)); +#if defined (STM32F446xx) + assert_param(IS_FMC_WRITE_FIFO(Init->WriteFifo)); + assert_param(IS_FMC_PAGESIZE(Init->PageSize)); +#endif /* defined (STM32F446xx) */ + + /* Get the BTCR register value */ + tmpr = Device->BTCR[Init->NSBank]; + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) + /* Clear MBKEN, MUXEN, MTYP, MWID, FACCEN, BURSTEN, WAITPOL, WRAPMOD, WAITCFG, WREN, + WAITEN, EXTMOD, ASYNCWAIT, CBURSTRW and CCLKEN bits */ + tmpr &= ((uint32_t)~(FMC_BCR1_MBKEN | FMC_BCR1_MUXEN | FMC_BCR1_MTYP | \ + FMC_BCR1_MWID | FMC_BCR1_FACCEN | FMC_BCR1_BURSTEN | \ + FMC_BCR1_WAITPOL | FMC_BCR1_WRAPMOD | FMC_BCR1_WAITCFG | \ + FMC_BCR1_WREN | FMC_BCR1_WAITEN | FMC_BCR1_EXTMOD | \ + FMC_BCR1_ASYNCWAIT | FMC_BCR1_CBURSTRW | FMC_BCR1_CCLKEN)); + + /* Set NORSRAM device control parameters */ + tmpr |= (uint32_t)(Init->DataAddressMux |\ + Init->MemoryType |\ + Init->MemoryDataWidth |\ + Init->BurstAccessMode |\ + Init->WaitSignalPolarity |\ + Init->WrapMode |\ + Init->WaitSignalActive |\ + Init->WriteOperation |\ + Init->WaitSignal |\ + Init->ExtendedMode |\ + Init->AsynchronousWait |\ + Init->WriteBurst |\ + Init->ContinuousClock); +#else /* defined(STM32F446xx) */ + /* Clear MBKEN, MUXEN, MTYP, MWID, FACCEN, BURSTEN, WAITPOL, CPSIZE, WAITCFG, WREN, + WAITEN, EXTMOD, ASYNCWAIT, CBURSTRW, CCLKEN and WFDIS bits */ + tmpr &= ((uint32_t)~(FMC_BCR1_MBKEN | FMC_BCR1_MUXEN | FMC_BCR1_MTYP | \ + FMC_BCR1_MWID | FMC_BCR1_FACCEN | FMC_BCR1_BURSTEN | \ + FMC_BCR1_WAITPOL | FMC_BCR1_WAITCFG | FMC_BCR1_CPSIZE | \ + FMC_BCR1_WREN | FMC_BCR1_WAITEN | FMC_BCR1_EXTMOD | \ + FMC_BCR1_ASYNCWAIT | FMC_BCR1_CBURSTRW | FMC_BCR1_CCLKEN | \ + FMC_BCR1_WFDIS)); + + /* Set NORSRAM device control parameters */ + tmpr |= (uint32_t)(Init->DataAddressMux |\ + Init->MemoryType |\ + Init->MemoryDataWidth |\ + Init->BurstAccessMode |\ + Init->WaitSignalPolarity |\ + Init->WaitSignalActive |\ + Init->WriteOperation |\ + Init->WaitSignal |\ + Init->ExtendedMode |\ + Init->AsynchronousWait |\ + Init->WriteBurst |\ + Init->ContinuousClock |\ + Init->PageSize |\ + Init->WriteFifo); +#endif /* defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) */ + + if(Init->MemoryType == FMC_MEMORY_TYPE_NOR) + { + tmpr |= (uint32_t)FMC_NORSRAM_FLASH_ACCESS_ENABLE; + } + + Device->BTCR[Init->NSBank] = tmpr; + + /* Configure synchronous mode when Continuous clock is enabled for bank2..4 */ + if((Init->ContinuousClock == FMC_CONTINUOUS_CLOCK_SYNC_ASYNC) && (Init->NSBank != FMC_NORSRAM_BANK1)) + { + Init->BurstAccessMode = FMC_BURST_ACCESS_MODE_ENABLE; + Device->BTCR[FMC_NORSRAM_BANK1] |= (uint32_t)(Init->BurstAccessMode |\ + Init->ContinuousClock); + } + +#if defined(STM32F446xx) + if(Init->NSBank != FMC_NORSRAM_BANK1) + { + Device->BTCR[FMC_NORSRAM_BANK1] |= (uint32_t)(Init->WriteFifo); + } +#endif /* defined(STM32F446xx) */ + + return HAL_OK; +} + +/** + * @brief DeInitialize the FMC_NORSRAM peripheral + * @param Device: Pointer to NORSRAM device instance + * @param ExDevice: Pointer to NORSRAM extended mode device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_DeInit(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(ExDevice)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Disable the FMC_NORSRAM device */ + __FMC_NORSRAM_DISABLE(Device, Bank); + + /* De-initialize the FMC_NORSRAM device */ + /* FMC_NORSRAM_BANK1 */ + if(Bank == FMC_NORSRAM_BANK1) + { + Device->BTCR[Bank] = 0x000030DB; + } + /* FMC_NORSRAM_BANK2, FMC_NORSRAM_BANK3 or FMC_NORSRAM_BANK4 */ + else + { + Device->BTCR[Bank] = 0x000030D2; + } + + Device->BTCR[Bank + 1] = 0x0FFFFFFF; + ExDevice->BWTR[Bank] = 0x0FFFFFFF; + + return HAL_OK; +} + +/** + * @brief Initialize the FMC_NORSRAM Timing according to the specified + * parameters in the FMC_NORSRAM_TimingTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Timing: Pointer to NORSRAM Timing structure + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_Timing_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); + assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); + assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); + assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); + assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision)); + assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency)); + assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Get the BTCR register value */ + tmpr = Device->BTCR[Bank + 1]; + + /* Clear ADDSET, ADDHLD, DATAST, BUSTURN, CLKDIV, DATLAT and ACCMOD bits */ + tmpr &= ((uint32_t)~(FMC_BTR1_ADDSET | FMC_BTR1_ADDHLD | FMC_BTR1_DATAST | \ + FMC_BTR1_BUSTURN | FMC_BTR1_CLKDIV | FMC_BTR1_DATLAT | \ + FMC_BTR1_ACCMOD)); + + /* Set FMC_NORSRAM device timing parameters */ + tmpr |= (uint32_t)(Timing->AddressSetupTime |\ + ((Timing->AddressHoldTime) << 4) |\ + ((Timing->DataSetupTime) << 8) |\ + ((Timing->BusTurnAroundDuration) << 16) |\ + (((Timing->CLKDivision)-1) << 20) |\ + (((Timing->DataLatency)-2) << 24) |\ + (Timing->AccessMode)); + + Device->BTCR[Bank + 1] = tmpr; + + /* Configure Clock division value (in NORSRAM bank 1) when continuous clock is enabled */ + if(HAL_IS_BIT_SET(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN)) + { + tmpr = (uint32_t)(Device->BTCR[FMC_NORSRAM_BANK1 + 1] & ~(((uint32_t)0x0F) << 20)); + tmpr |= (uint32_t)(((Timing->CLKDivision)-1) << 20); + Device->BTCR[FMC_NORSRAM_BANK1 + 1] = tmpr; + } + + return HAL_OK; +} + +/** + * @brief Initialize the FMC_NORSRAM Extended mode Timing according to the specified + * parameters in the FMC_NORSRAM_TimingTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Timing: Pointer to NORSRAM Timing structure + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_Extended_Timing_Init(FMC_NORSRAM_EXTENDED_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank, uint32_t ExtendedMode) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_EXTENDED_MODE(ExtendedMode)); + + /* Set NORSRAM device timing register for write configuration, if extended mode is used */ + if(ExtendedMode == FMC_EXTENDED_MODE_ENABLE) + { + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(Device)); + assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); + assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); + assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); + assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); +#if !defined(STM32F446xx) + assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision)); + assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency)); +#endif /* !defined(STM32F446xx) */ + assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Get the BWTR register value */ + tmpr = Device->BWTR[Bank]; + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) + /* Clear ADDSET, ADDHLD, DATAST, BUSTURN, CLKDIV, DATLAT and ACCMOD bits */ + tmpr &= ((uint32_t)~(FMC_BWTR1_ADDSET | FMC_BWTR1_ADDHLD | FMC_BWTR1_DATAST | \ + FMC_BWTR1_BUSTURN | FMC_BWTR1_CLKDIV | FMC_BWTR1_DATLAT | \ + FMC_BWTR1_ACCMOD)); + + tmpr |= (uint32_t)(Timing->AddressSetupTime |\ + ((Timing->AddressHoldTime) << 4) |\ + ((Timing->DataSetupTime) << 8) |\ + ((Timing->BusTurnAroundDuration) << 16) |\ + (((Timing->CLKDivision)-1) << 20) |\ + (((Timing->DataLatency)-2) << 24) |\ + (Timing->AccessMode)); +#else /* defined(STM32F446xx) */ + /* Clear ADDSET, ADDHLD, DATAST, BUSTURN and ACCMOD bits */ + tmpr &= ((uint32_t)~(FMC_BWTR1_ADDSET | FMC_BWTR1_ADDHLD | FMC_BWTR1_DATAST | \ + FMC_BWTR1_BUSTURN | FMC_BWTR1_ACCMOD)); + + tmpr |= (uint32_t)(Timing->AddressSetupTime |\ + ((Timing->AddressHoldTime) << 4) |\ + ((Timing->DataSetupTime) << 8) |\ + ((Timing->BusTurnAroundDuration) << 16) |\ + (Timing->AccessMode)); +#endif /* defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) */ + + Device->BWTR[Bank] = tmpr; + } + else + { + Device->BWTR[Bank] = 0x0FFFFFFF; + } + + return HAL_OK; +} +/** + * @} + */ + +/** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group2 + * @brief management functions + * +@verbatim + ============================================================================== + ##### FMC_NORSRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FMC NORSRAM interface. + +@endverbatim + * @{ + */ +/** + * @brief Enables dynamically FMC_NORSRAM write operation. + * @param Device: Pointer to NORSRAM device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Enable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Enable write operation */ + Device->BTCR[Bank] |= FMC_WRITE_OPERATION_ENABLE; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NORSRAM write operation. + * @param Device: Pointer to NORSRAM device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Disable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FMC_NORSRAM_BANK(Bank)); + + /* Disable write operation */ + Device->BTCR[Bank] &= ~FMC_WRITE_OPERATION_ENABLE; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup FMC_LL_NAND + * @brief NAND Controller functions + * + @verbatim + ============================================================================== + ##### How to use NAND device driver ##### + ============================================================================== + [..] + This driver contains a set of APIs to interface with the FMC NAND banks in order + to run the NAND external devices. + + (+) FMC NAND bank reset using the function FMC_NAND_DeInit() + (+) FMC NAND bank control configuration using the function FMC_NAND_Init() + (+) FMC NAND bank common space timing configuration using the function + FMC_NAND_CommonSpace_Timing_Init() + (+) FMC NAND bank attribute space timing configuration using the function + FMC_NAND_AttributeSpace_Timing_Init() + (+) FMC NAND bank enable/disable ECC correction feature using the functions + FMC_NAND_ECC_Enable()/FMC_NAND_ECC_Disable() + (+) FMC NAND bank get ECC correction code using the function FMC_NAND_GetECC() + +@endverbatim + * @{ + */ + +#if defined(STM32F446xx) +/** @defgroup HAL_FMC_NAND_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC NAND interface + (+) De-initialize the FMC NAND interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FMC_NAND device according to the specified + * control parameters in the FMC_NAND_HandleTypeDef + * @param Device: Pointer to NAND device instance + * @param Init: Pointer to NAND Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Init->NandBank)); + assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); + assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FMC_ECC_STATE(Init->EccComputation)); + assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize)); + assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); + assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); + + /* Get the NAND bank register value */ + tmpr = Device->PCR; + + /* Clear PWAITEN, PBKEN, PTYP, PWID, ECCEN, TCLR, TAR and ECCPS bits */ + tmpr &= ((uint32_t)~(FMC_PCR_PWAITEN | FMC_PCR_PBKEN | FMC_PCR_PTYP | \ + FMC_PCR_PWID | FMC_PCR_ECCEN | FMC_PCR_TCLR | \ + FMC_PCR_TAR | FMC_PCR_ECCPS)); + + /* Set NAND device control parameters */ + tmpr |= (uint32_t)(Init->Waitfeature |\ + FMC_PCR_MEMORY_TYPE_NAND |\ + Init->MemoryDataWidth |\ + Init->EccComputation |\ + Init->ECCPageSize |\ + ((Init->TCLRSetupTime) << 9) |\ + ((Init->TARSetupTime) << 13)); + + /* NAND bank registers configuration */ + Device->PCR = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_NAND Common space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Get the NAND bank 2 register value */ + tmpr = Device->PMEM; + + + /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PMEM_MEMSET2 | FMC_PMEM_MEMWAIT2 | FMC_PMEM_MEMHOLD2 | \ + FMC_PMEM_MEMHIZ2)); + + /* Set FMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24) + ); + + /* NAND bank registers configuration */ + Device->PMEM = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_NAND Attribute space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Get the NAND bank register value */ + tmpr = Device->PATT; + + /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PATT_ATTSET2 | FMC_PATT_ATTWAIT2 | FMC_PATT_ATTHOLD2 | \ + FMC_PATT_ATTHIZ2)); + + /* Set FMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + + /* NAND bank registers configuration */ + Device->PATT = tmpr; + + return HAL_OK; +} + + +/** + * @brief DeInitializes the FMC_NAND device + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Disable the NAND Bank */ + __FMC_NAND_DISABLE(Device, Bank); + + /* De-initialize the NAND Bank */ + /* Set the FMC_NAND_BANK registers to their reset values */ + Device->PCR = 0x00000018; + Device->SR = 0x00000040; + Device->PMEM = 0xFCFCFCFC; + Device->PATT = 0xFCFCFCFC; + + return HAL_OK; +} + +/** + * @} + */ + + +/** @defgroup HAL_FMC_NAND_Group2 Control functions + * @brief management functions + * +@verbatim + ============================================================================== + ##### FMC_NAND Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FMC NAND interface. + +@endverbatim + * @{ + */ + + +/** + * @brief Enables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Enable ECC feature */ + Device->PCR |= FMC_PCR_ECCEN; + + return HAL_OK; +} + + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Disable ECC feature */ + Device->PCR &= ~FMC_PCR_ECCEN; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param ECCval: Pointer to ECC value + * @param Bank: NAND bank number + * @param Timeout: Timeout wait value + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until FIFO is empty */ + while(__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + /* Get the ECCR register value */ + *ECCval = (uint32_t)Device->ECCR; + + return HAL_OK; +} + +/** + * @} + */ + +#else /* defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) */ +/** @defgroup HAL_FMC_NAND_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC NAND interface + (+) De-initialize the FMC NAND interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ +/** + * @brief Initializes the FMC_NAND device according to the specified + * control parameters in the FMC_NAND_HandleTypeDef + * @param Device: Pointer to NAND device instance + * @param Init: Pointer to NAND Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Init->NandBank)); + assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); + assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FMC_ECC_STATE(Init->EccComputation)); + assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize)); + assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); + assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); + + if(Init->NandBank == FMC_NAND_BANK2) + { + /* Get the NAND bank 2 register value */ + tmpr = Device->PCR2; + } + else + { + /* Get the NAND bank 3 register value */ + tmpr = Device->PCR3; + } + + /* Clear PWAITEN, PBKEN, PTYP, PWID, ECCEN, TCLR, TAR and ECCPS bits */ + tmpr &= ((uint32_t)~(FMC_PCR2_PWAITEN | FMC_PCR2_PBKEN | FMC_PCR2_PTYP | \ + FMC_PCR2_PWID | FMC_PCR2_ECCEN | FMC_PCR2_TCLR | \ + FMC_PCR2_TAR | FMC_PCR2_ECCPS)); + + /* Set NAND device control parameters */ + tmpr |= (uint32_t)(Init->Waitfeature |\ + FMC_PCR_MEMORY_TYPE_NAND |\ + Init->MemoryDataWidth |\ + Init->EccComputation |\ + Init->ECCPageSize |\ + ((Init->TCLRSetupTime) << 9) |\ + ((Init->TARSetupTime) << 13)); + + if(Init->NandBank == FMC_NAND_BANK2) + { + /* NAND bank 2 registers configuration */ + Device->PCR2 = tmpr; + } + else + { + /* NAND bank 3 registers configuration */ + Device->PCR3 = tmpr; + } + + return HAL_OK; + +} + +/** + * @brief Initializes the FMC_NAND Common space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + if(Bank == FMC_NAND_BANK2) + { + /* Get the NAND bank 2 register value */ + tmpr = Device->PMEM2; + } + else + { + /* Get the NAND bank 3 register value */ + tmpr = Device->PMEM3; + } + + /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PMEM2_MEMSET2 | FMC_PMEM2_MEMWAIT2 | FMC_PMEM2_MEMHOLD2 | \ + FMC_PMEM2_MEMHIZ2)); + + /* Set FMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24) + ); + + if(Bank == FMC_NAND_BANK2) + { + /* NAND bank 2 registers configuration */ + Device->PMEM2 = tmpr; + } + else + { + /* NAND bank 3 registers configuration */ + Device->PMEM3 = tmpr; + } + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_NAND Attribute space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + if(Bank == FMC_NAND_BANK2) + { + /* Get the NAND bank 2 register value */ + tmpr = Device->PATT2; + } + else + { + /* Get the NAND bank 3 register value */ + tmpr = Device->PATT3; + } + + /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PATT2_ATTSET2 | FMC_PATT2_ATTWAIT2 | FMC_PATT2_ATTHOLD2 | \ + FMC_PATT2_ATTHIZ2)); + + /* Set FMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + + if(Bank == FMC_NAND_BANK2) + { + /* NAND bank 2 registers configuration */ + Device->PATT2 = tmpr; + } + else + { + /* NAND bank 3 registers configuration */ + Device->PATT3 = tmpr; + } + + return HAL_OK; +} + +/** + * @brief DeInitializes the FMC_NAND device + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Disable the NAND Bank */ + __FMC_NAND_DISABLE(Device, Bank); + + /* De-initialize the NAND Bank */ + if(Bank == FMC_NAND_BANK2) + { + /* Set the FMC_NAND_BANK2 registers to their reset values */ + Device->PCR2 = 0x00000018; + Device->SR2 = 0x00000040; + Device->PMEM2 = 0xFCFCFCFC; + Device->PATT2 = 0xFCFCFCFC; + } + /* FMC_Bank3_NAND */ + else + { + /* Set the FMC_NAND_BANK3 registers to their reset values */ + Device->PCR3 = 0x00000018; + Device->SR3 = 0x00000040; + Device->PMEM3 = 0xFCFCFCFC; + Device->PATT3 = 0xFCFCFCFC; + } + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup FMC_LL_NAND_Private_Functions_Group2 + * @brief management functions + * +@verbatim + ============================================================================== + ##### FMC_NAND Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FMC NAND interface. + +@endverbatim + * @{ + */ +/** + * @brief Enables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Enable ECC feature */ + if(Bank == FMC_NAND_BANK2) + { + Device->PCR2 |= FMC_PCR2_ECCEN; + } + else + { + Device->PCR3 |= FMC_PCR3_ECCEN; + } + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Disable ECC feature */ + if(Bank == FMC_NAND_BANK2) + { + Device->PCR2 &= ~FMC_PCR2_ECCEN; + } + else + { + Device->PCR3 &= ~FMC_PCR3_ECCEN; + } + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param ECCval: Pointer to ECC value + * @param Bank: NAND bank number + * @param Timeout: Timeout wait value + * @retval HAL status + */ +HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_FMC_NAND_DEVICE(Device)); + assert_param(IS_FMC_NAND_BANK(Bank)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until FIFO is empty */ + while(__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + if(Bank == FMC_NAND_BANK2) + { + /* Get the ECCR2 register value */ + *ECCval = (uint32_t)Device->ECCR2; + } + else + { + /* Get the ECCR3 register value */ + *ECCval = (uint32_t)Device->ECCR3; + } + + return HAL_OK; +} + +/** + * @} + */ + +#endif /* defined(STM32F446xx) */ +/** + * @} + */ + +#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) +/** @addtogroup FMC_LL_PCCARD + * @brief PCCARD Controller functions + * + @verbatim + ============================================================================== + ##### How to use PCCARD device driver ##### + ============================================================================== + [..] + This driver contains a set of APIs to interface with the FMC PCCARD bank in order + to run the PCCARD/compact flash external devices. + + (+) FMC PCCARD bank reset using the function FMC_PCCARD_DeInit() + (+) FMC PCCARD bank control configuration using the function FMC_PCCARD_Init() + (+) FMC PCCARD bank common space timing configuration using the function + FMC_PCCARD_CommonSpace_Timing_Init() + (+) FMC PCCARD bank attribute space timing configuration using the function + FMC_PCCARD_AttributeSpace_Timing_Init() + (+) FMC PCCARD bank IO space timing configuration using the function + FMC_PCCARD_IOSpace_Timing_Init() +@endverbatim + * @{ + */ + +/** @addtogroup FMC_LL_PCCARD_Private_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC PCCARD interface + (+) De-initialize the FMC PCCARD interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FMC_PCCARD device according to the specified + * control parameters in the FMC_PCCARD_HandleTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Init: Pointer to PCCARD Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_PCCARD_Init(FMC_PCCARD_TypeDef *Device, FMC_PCCARD_InitTypeDef *Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_PCCARD_DEVICE(Device)); + assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); + assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); + assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); + + /* Get PCCARD control register value */ + tmpr = Device->PCR4; + + /* Clear TAR, TCLR, PWAITEN and PWID bits */ + tmpr &= ((uint32_t)~(FMC_PCR4_TAR | FMC_PCR4_TCLR | FMC_PCR4_PWAITEN | \ + FMC_PCR4_PWID)); + + /* Set FMC_PCCARD device control parameters */ + tmpr |= (uint32_t)(Init->Waitfeature |\ + FMC_NAND_PCC_MEM_BUS_WIDTH_16 |\ + (Init->TCLRSetupTime << 9) |\ + (Init->TARSetupTime << 13)); + + Device->PCR4 = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_PCCARD Common space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Timing: Pointer to PCCARD timing structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_PCCARD_CommonSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_PCCARD_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + + /* Get PCCARD common space timing register value */ + tmpr = Device->PMEM4; + + /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PMEM4_MEMSET4 | FMC_PMEM4_MEMWAIT4 | FMC_PMEM4_MEMHOLD4 | \ + FMC_PMEM4_MEMHIZ4)); + /* Set PCCARD timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + + Device->PMEM4 = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_PCCARD Attribute space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Timing: Pointer to PCCARD timing structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_PCCARD_AttributeSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_PCCARD_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + + /* Get PCCARD timing parameters */ + tmpr = Device->PATT4; + + /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ + tmpr &= ((uint32_t)~(FMC_PATT4_ATTSET4 | FMC_PATT4_ATTWAIT4 | FMC_PATT4_ATTHOLD4 | \ + FMC_PATT4_ATTHIZ4)); + + /* Set PCCARD timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + Device->PATT4 = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_PCCARD IO space Timing according to the specified + * parameters in the FMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Timing: Pointer to PCCARD timing structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_PCCARD_IOSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FMC_PCCARD_DEVICE(Device)); + assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); + + /* Get FMC_PCCARD device timing parameters */ + tmpr = Device->PIO4; + + /* Clear IOSET4, IOWAIT4, IOHOLD4 and IOHIZ4 bits */ + tmpr &= ((uint32_t)~(FMC_PIO4_IOSET4 | FMC_PIO4_IOWAIT4 | FMC_PIO4_IOHOLD4 | \ + FMC_PIO4_IOHIZ4)); + + /* Set FMC_PCCARD device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + + Device->PIO4 = tmpr; + + return HAL_OK; +} + +/** + * @brief DeInitializes the FMC_PCCARD device + * @param Device: Pointer to PCCARD device instance + * @retval HAL status + */ +HAL_StatusTypeDef FMC_PCCARD_DeInit(FMC_PCCARD_TypeDef *Device) +{ + /* Check the parameters */ + assert_param(IS_FMC_PCCARD_DEVICE(Device)); + + /* Disable the FMC_PCCARD device */ + __FMC_PCCARD_DISABLE(Device); + + /* De-initialize the FMC_PCCARD device */ + Device->PCR4 = 0x00000018; + Device->SR4 = 0x00000000; + Device->PMEM4 = 0xFCFCFCFC; + Device->PATT4 = 0xFCFCFCFC; + Device->PIO4 = 0xFCFCFCFC; + + return HAL_OK; +} + +/** + * @} + */ +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx */ + + +/** @addtogroup FMC_LL_SDRAM + * @brief SDRAM Controller functions + * + @verbatim + ============================================================================== + ##### How to use SDRAM device driver ##### + ============================================================================== + [..] + This driver contains a set of APIs to interface with the FMC SDRAM banks in order + to run the SDRAM external devices. + + (+) FMC SDRAM bank reset using the function FMC_SDRAM_DeInit() + (+) FMC SDRAM bank control configuration using the function FMC_SDRAM_Init() + (+) FMC SDRAM bank timing configuration using the function FMC_SDRAM_Timing_Init() + (+) FMC SDRAM bank enable/disable write operation using the functions + FMC_SDRAM_WriteOperation_Enable()/FMC_SDRAM_WriteOperation_Disable() + (+) FMC SDRAM bank send command using the function FMC_SDRAM_SendCommand() + +@endverbatim + * @{ + */ + +/** @addtogroup FMC_LL_SDRAM_Private_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FMC SDRAM interface + (+) De-initialize the FMC SDRAM interface + (+) Configure the FMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FMC_SDRAM device according to the specified + * control parameters in the FMC_SDRAM_InitTypeDef + * @param Device: Pointer to SDRAM device instance + * @param Init: Pointer to SDRAM Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_InitTypeDef *Init) +{ + uint32_t tmpr1 = 0; + uint32_t tmpr2 = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Init->SDBank)); + assert_param(IS_FMC_COLUMNBITS_NUMBER(Init->ColumnBitsNumber)); + assert_param(IS_FMC_ROWBITS_NUMBER(Init->RowBitsNumber)); + assert_param(IS_FMC_SDMEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FMC_INTERNALBANK_NUMBER(Init->InternalBankNumber)); + assert_param(IS_FMC_CAS_LATENCY(Init->CASLatency)); + assert_param(IS_FMC_WRITE_PROTECTION(Init->WriteProtection)); + assert_param(IS_FMC_SDCLOCK_PERIOD(Init->SDClockPeriod)); + assert_param(IS_FMC_READ_BURST(Init->ReadBurst)); + assert_param(IS_FMC_READPIPE_DELAY(Init->ReadPipeDelay)); + + /* Set SDRAM bank configuration parameters */ + if (Init->SDBank != FMC_SDRAM_BANK2) + { + tmpr1 = Device->SDCR[FMC_SDRAM_BANK1]; + + /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ + tmpr1 &= ((uint32_t)~(FMC_SDCR1_NC | FMC_SDCR1_NR | FMC_SDCR1_MWID | \ + FMC_SDCR1_NB | FMC_SDCR1_CAS | FMC_SDCR1_WP | \ + FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); + + + tmpr1 |= (uint32_t)(Init->ColumnBitsNumber |\ + Init->RowBitsNumber |\ + Init->MemoryDataWidth |\ + Init->InternalBankNumber |\ + Init->CASLatency |\ + Init->WriteProtection |\ + Init->SDClockPeriod |\ + Init->ReadBurst |\ + Init->ReadPipeDelay + ); + Device->SDCR[FMC_SDRAM_BANK1] = tmpr1; + } + else /* FMC_Bank2_SDRAM */ + { + tmpr1 = Device->SDCR[FMC_SDRAM_BANK1]; + + /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ + tmpr1 &= ((uint32_t)~(FMC_SDCR1_NC | FMC_SDCR1_NR | FMC_SDCR1_MWID | \ + FMC_SDCR1_NB | FMC_SDCR1_CAS | FMC_SDCR1_WP | \ + FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); + + tmpr1 |= (uint32_t)(Init->SDClockPeriod |\ + Init->ReadBurst |\ + Init->ReadPipeDelay); + + tmpr2 = Device->SDCR[FMC_SDRAM_BANK2]; + + /* Clear NC, NR, MWID, NB, CAS, WP, SDCLK, RBURST, and RPIPE bits */ + tmpr2 &= ((uint32_t)~(FMC_SDCR1_NC | FMC_SDCR1_NR | FMC_SDCR1_MWID | \ + FMC_SDCR1_NB | FMC_SDCR1_CAS | FMC_SDCR1_WP | \ + FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE)); + + tmpr2 |= (uint32_t)(Init->ColumnBitsNumber |\ + Init->RowBitsNumber |\ + Init->MemoryDataWidth |\ + Init->InternalBankNumber |\ + Init->CASLatency |\ + Init->WriteProtection); + + Device->SDCR[FMC_SDRAM_BANK1] = tmpr1; + Device->SDCR[FMC_SDRAM_BANK2] = tmpr2; + } + + return HAL_OK; +} + +/** + * @brief Initializes the FMC_SDRAM device timing according to the specified + * parameters in the FMC_SDRAM_TimingTypeDef + * @param Device: Pointer to SDRAM device instance + * @param Timing: Pointer to SDRAM Timing structure + * @param Bank: SDRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_Timing_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr1 = 0; + uint32_t tmpr2 = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_LOADTOACTIVE_DELAY(Timing->LoadToActiveDelay)); + assert_param(IS_FMC_EXITSELFREFRESH_DELAY(Timing->ExitSelfRefreshDelay)); + assert_param(IS_FMC_SELFREFRESH_TIME(Timing->SelfRefreshTime)); + assert_param(IS_FMC_ROWCYCLE_DELAY(Timing->RowCycleDelay)); + assert_param(IS_FMC_WRITE_RECOVERY_TIME(Timing->WriteRecoveryTime)); + assert_param(IS_FMC_RP_DELAY(Timing->RPDelay)); + assert_param(IS_FMC_RCD_DELAY(Timing->RCDDelay)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Set SDRAM device timing parameters */ + if (Bank != FMC_SDRAM_BANK2) + { + tmpr1 = Device->SDTR[FMC_SDRAM_BANK1]; + + /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ + tmpr1 &= ((uint32_t)~(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | FMC_SDTR1_TRAS | \ + FMC_SDTR1_TRC | FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ + FMC_SDTR1_TRCD)); + + tmpr1 |= (uint32_t)(((Timing->LoadToActiveDelay)-1) |\ + (((Timing->ExitSelfRefreshDelay)-1) << 4) |\ + (((Timing->SelfRefreshTime)-1) << 8) |\ + (((Timing->RowCycleDelay)-1) << 12) |\ + (((Timing->WriteRecoveryTime)-1) <<16) |\ + (((Timing->RPDelay)-1) << 20) |\ + (((Timing->RCDDelay)-1) << 24)); + Device->SDTR[FMC_SDRAM_BANK1] = tmpr1; + } + else /* FMC_Bank2_SDRAM */ + { + tmpr1 = Device->SDTR[FMC_SDRAM_BANK2]; + + /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ + tmpr1 &= ((uint32_t)~(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | FMC_SDTR1_TRAS | \ + FMC_SDTR1_TRC | FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ + FMC_SDTR1_TRCD)); + + tmpr1 |= (uint32_t)(((Timing->LoadToActiveDelay)-1) |\ + (((Timing->ExitSelfRefreshDelay)-1) << 4) |\ + (((Timing->SelfRefreshTime)-1) << 8) |\ + (((Timing->WriteRecoveryTime)-1) <<16) |\ + (((Timing->RCDDelay)-1) << 24)); + + tmpr2 = Device->SDTR[FMC_SDRAM_BANK1]; + + /* Clear TMRD, TXSR, TRAS, TRC, TWR, TRP and TRCD bits */ + tmpr2 &= ((uint32_t)~(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | FMC_SDTR1_TRAS | \ + FMC_SDTR1_TRC | FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ + FMC_SDTR1_TRCD)); + tmpr2 |= (uint32_t)((((Timing->RowCycleDelay)-1) << 12) |\ + (((Timing->RPDelay)-1) << 20)); + + Device->SDTR[FMC_SDRAM_BANK2] = tmpr1; + Device->SDTR[FMC_SDRAM_BANK1] = tmpr2; + } + + return HAL_OK; +} + +/** + * @brief DeInitializes the FMC_SDRAM peripheral + * @param Device: Pointer to SDRAM device instance + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_DeInit(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* De-initialize the SDRAM device */ + Device->SDCR[Bank] = 0x000002D0; + Device->SDTR[Bank] = 0x0FFFFFFF; + Device->SDCMR = 0x00000000; + Device->SDRTR = 0x00000000; + Device->SDSR = 0x00000000; + + return HAL_OK; +} + +/** + * @} + */ + +/** @addtogroup FMC_LL_SDRAMPrivate_Functions_Group2 + * @brief management functions + * +@verbatim + ============================================================================== + ##### FMC_SDRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FMC SDRAM interface. + +@endverbatim + * @{ + */ +/** + * @brief Enables dynamically FMC_SDRAM write protection. + * @param Device: Pointer to SDRAM device instance + * @param Bank: SDRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Enable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Enable write protection */ + Device->SDCR[Bank] |= FMC_SDRAM_WRITE_PROTECTION_ENABLE; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FMC_SDRAM write protection. + * @param hsdram: FMC_SDRAM handle + * @retval HAL status + */ +HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Disable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Disable write protection */ + Device->SDCR[Bank] &= ~FMC_SDRAM_WRITE_PROTECTION_ENABLE; + + return HAL_OK; +} + +/** + * @brief Send Command to the FMC SDRAM bank + * @param Device: Pointer to SDRAM device instance + * @param Command: Pointer to SDRAM command structure + * @param Timing: Pointer to SDRAM Timing structure + * @param Timeout: Timeout wait value + * @retval HAL state + */ +HAL_StatusTypeDef FMC_SDRAM_SendCommand(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout) +{ + __IO uint32_t tmpr = 0; + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_COMMAND_MODE(Command->CommandMode)); + assert_param(IS_FMC_COMMAND_TARGET(Command->CommandTarget)); + assert_param(IS_FMC_AUTOREFRESH_NUMBER(Command->AutoRefreshNumber)); + assert_param(IS_FMC_MODE_REGISTER(Command->ModeRegisterDefinition)); + + /* Set command register */ + tmpr = (uint32_t)((Command->CommandMode) |\ + (Command->CommandTarget) |\ + (((Command->AutoRefreshNumber)-1) << 5) |\ + ((Command->ModeRegisterDefinition) << 9) + ); + + Device->SDCMR = tmpr; + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until command is send */ + while(HAL_IS_BIT_SET(Device->SDSR, FMC_SDSR_BUSY)) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + return HAL_OK; +} + +/** + * @brief Program the SDRAM Memory Refresh rate. + * @param Device: Pointer to SDRAM device instance + * @param RefreshRate: The SDRAM refresh rate value. + * @retval HAL state + */ +HAL_StatusTypeDef FMC_SDRAM_ProgramRefreshRate(FMC_SDRAM_TypeDef *Device, uint32_t RefreshRate) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_REFRESH_RATE(RefreshRate)); + + /* Set the refresh rate in command register */ + Device->SDRTR |= (RefreshRate<<1); + + return HAL_OK; +} + +/** + * @brief Set the Number of consecutive SDRAM Memory auto Refresh commands. + * @param Device: Pointer to SDRAM device instance + * @param AutoRefreshNumber: Specifies the auto Refresh number. + * @retval None + */ +HAL_StatusTypeDef FMC_SDRAM_SetAutoRefreshNumber(FMC_SDRAM_TypeDef *Device, uint32_t AutoRefreshNumber) +{ + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_AUTOREFRESH_NUMBER(AutoRefreshNumber)); + + /* Set the Auto-refresh number in command register */ + Device->SDCMR |= (AutoRefreshNumber << 5); + + return HAL_OK; +} + +/** + * @brief Returns the indicated FMC SDRAM bank mode status. + * @param Device: Pointer to SDRAM device instance + * @param Bank: Defines the FMC SDRAM bank. This parameter can be + * FMC_Bank1_SDRAM or FMC_Bank2_SDRAM. + * @retval The FMC SDRAM bank mode status, could be on of the following values: + * FMC_SDRAM_NORMAL_MODE, FMC_SDRAM_SELF_REFRESH_MODE or + * FMC_SDRAM_POWER_DOWN_MODE. + */ +uint32_t FMC_SDRAM_GetModeStatus(FMC_SDRAM_TypeDef *Device, uint32_t Bank) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_FMC_SDRAM_DEVICE(Device)); + assert_param(IS_FMC_SDRAM_BANK(Bank)); + + /* Get the corresponding bank mode */ + if(Bank == FMC_SDRAM_BANK1) + { + tmpreg = (uint32_t)(Device->SDSR & FMC_SDSR_MODES1); + } + else + { + tmpreg = ((uint32_t)(Device->SDSR & FMC_SDSR_MODES2) >> 2); + } + + /* Return the mode status */ + return tmpreg; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx || STM32F446xx */ +#endif /* HAL_SRAM_MODULE_ENABLED || HAL_NOR_MODULE_ENABLED || HAL_NAND_MODULE_ENABLED || HAL_PCCARD_MODULE_ENABLED || HAL_SDRAM_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fsmc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fsmc.c new file mode 100644 index 0000000..9121e9e --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fsmc.c @@ -0,0 +1,955 @@ +/** + ****************************************************************************** + * @file stm32f4xx_ll_fsmc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief FSMC Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the Flexible Static Memory Controller (FSMC) peripheral memories: + * + Initialization/de-initialization functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### FSMC peripheral features ##### + ============================================================================== + [..] The Flexible static memory controller (FSMC) includes two memory controllers: + (+) The NOR/PSRAM memory controller + (+) The NAND/PC Card memory controller + + [..] The FSMC functional block makes the interface with synchronous and asynchronous static + memories, SDRAM memories, and 16-bit PC memory cards. Its main purposes are: + (+) to translate AHB transactions into the appropriate external device protocol. + (+) to meet the access time requirements of the external memory devices. + + [..] All external memories share the addresses, data and control signals with the controller. + Each external device is accessed by means of a unique Chip Select. The FSMC performs + only one access at a time to an external device. + The main features of the FSMC controller are the following: + (+) Interface with static-memory mapped devices including: + (++) Static random access memory (SRAM). + (++) Read-only memory (ROM). + (++) NOR Flash memory/OneNAND Flash memory. + (++) PSRAM (4 memory banks). + (++) 16-bit PC Card compatible devices. + (++) Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of + data. + (+) Independent Chip Select control for each memory bank. + (+) Independent configuration for each memory bank. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup FSMC_LL FSMC Low Layer + * @brief FSMC driver modules + * @{ + */ + +#if defined (HAL_SRAM_MODULE_ENABLED) || defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_NAND_MODULE_ENABLED) || defined(HAL_PCCARD_MODULE_ENABLED) +#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +/** @addtogroup FSMC_LL_Private_Functions + * @{ + */ + +/** @addtogroup FSMC_LL_NORSRAM + * @brief NORSRAM Controller functions + * + @verbatim + ============================================================================== + ##### How to use NORSRAM device driver ##### + ============================================================================== + + [..] + This driver contains a set of APIs to interface with the FSMC NORSRAM banks in order + to run the NORSRAM external devices. + + (+) FSMC NORSRAM bank reset using the function FSMC_NORSRAM_DeInit() + (+) FSMC NORSRAM bank control configuration using the function FSMC_NORSRAM_Init() + (+) FSMC NORSRAM bank timing configuration using the function FSMC_NORSRAM_Timing_Init() + (+) FSMC NORSRAM bank extended timing configuration using the function + FSMC_NORSRAM_Extended_Timing_Init() + (+) FSMC NORSRAM bank enable/disable write operation using the functions + FSMC_NORSRAM_WriteOperation_Enable()/FSMC_NORSRAM_WriteOperation_Disable() + +@endverbatim + * @{ + */ + +/** @addtogroup FSMC_LL_NORSRAM_Private_Functions_Group1 + * @brief Initialization and Configuration functions + * + @verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FSMC NORSRAM interface + (+) De-initialize the FSMC NORSRAM interface + (+) Configure the FSMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initialize the FSMC_NORSRAM device according to the specified + * control parameters in the FSMC_NORSRAM_InitTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Init: Pointer to NORSRAM Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NORSRAM_Init(FSMC_NORSRAM_TypeDef *Device, FSMC_NORSRAM_InitTypeDef* Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_NORSRAM_BANK(Init->NSBank)); + assert_param(IS_FSMC_MUX(Init->DataAddressMux)); + assert_param(IS_FSMC_MEMORY(Init->MemoryType)); + assert_param(IS_FSMC_NORSRAM_MEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FSMC_BURSTMODE(Init->BurstAccessMode)); + assert_param(IS_FSMC_WAIT_POLARITY(Init->WaitSignalPolarity)); + assert_param(IS_FSMC_WRAP_MODE(Init->WrapMode)); + assert_param(IS_FSMC_WAIT_SIGNAL_ACTIVE(Init->WaitSignalActive)); + assert_param(IS_FSMC_WRITE_OPERATION(Init->WriteOperation)); + assert_param(IS_FSMC_WAITE_SIGNAL(Init->WaitSignal)); + assert_param(IS_FSMC_EXTENDED_MODE(Init->ExtendedMode)); + assert_param(IS_FSMC_ASYNWAIT(Init->AsynchronousWait)); + assert_param(IS_FSMC_WRITE_BURST(Init->WriteBurst)); + + /* Get the BTCR register value */ + tmpr = Device->BTCR[Init->NSBank]; + + /* Clear MBKEN, MUXEN, MTYP, MWID, FACCEN, BURSTEN, WAITPOL, WRAPMOD, WAITCFG, WREN, + WAITEN, EXTMOD, ASYNCWAIT, CBURSTRW and CCLKEN bits */ + tmpr &= ((uint32_t)~(FSMC_BCR1_MBKEN | FSMC_BCR1_MUXEN | FSMC_BCR1_MTYP | \ + FSMC_BCR1_MWID | FSMC_BCR1_FACCEN | FSMC_BCR1_BURSTEN | \ + FSMC_BCR1_WAITPOL | FSMC_BCR1_WRAPMOD | FSMC_BCR1_WAITCFG | \ + FSMC_BCR1_WREN | FSMC_BCR1_WAITEN | FSMC_BCR1_EXTMOD | \ + FSMC_BCR1_ASYNCWAIT | FSMC_BCR1_CBURSTRW)); + /* Set NORSRAM device control parameters */ + tmpr |= (uint32_t)(Init->DataAddressMux |\ + Init->MemoryType |\ + Init->MemoryDataWidth |\ + Init->BurstAccessMode |\ + Init->WaitSignalPolarity |\ + Init->WrapMode |\ + Init->WaitSignalActive |\ + Init->WriteOperation |\ + Init->WaitSignal |\ + Init->ExtendedMode |\ + Init->AsynchronousWait |\ + Init->WriteBurst + ); + + if(Init->MemoryType == FSMC_MEMORY_TYPE_NOR) + { + tmpr |= (uint32_t)FSMC_NORSRAM_FLASH_ACCESS_ENABLE; + } + + Device->BTCR[Init->NSBank] = tmpr; + + return HAL_OK; +} + +/** + * @brief DeInitialize the FSMC_NORSRAM peripheral + * @param Device: Pointer to NORSRAM device instance + * @param ExDevice: Pointer to NORSRAM extended mode device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NORSRAM_DeInit(FSMC_NORSRAM_TypeDef *Device, FSMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank) +{ + /* Check the parameters */ + assert_param(IS_FSMC_NORSRAM_DEVICE(Device)); + assert_param(IS_FSMC_NORSRAM_EXTENDED_DEVICE(ExDevice)); + + /* Disable the FSMC_NORSRAM device */ + __FSMC_NORSRAM_DISABLE(Device, Bank); + + /* De-initialize the FSMC_NORSRAM device */ + /* FSMC_NORSRAM_BANK1 */ + if(Bank == FSMC_NORSRAM_BANK1) + { + Device->BTCR[Bank] = 0x000030DB; + } + /* FSMC_NORSRAM_BANK2, FSMC_NORSRAM_BANK3 or FSMC_NORSRAM_BANK4 */ + else + { + Device->BTCR[Bank] = 0x000030D2; + } + + Device->BTCR[Bank + 1] = 0x0FFFFFFF; + ExDevice->BWTR[Bank] = 0x0FFFFFFF; + + return HAL_OK; +} + + +/** + * @brief Initialize the FSMC_NORSRAM Timing according to the specified + * parameters in the FSMC_NORSRAM_TimingTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Timing: Pointer to NORSRAM Timing structure + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NORSRAM_Timing_Init(FSMC_NORSRAM_TypeDef *Device, FSMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); + assert_param(IS_FSMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); + assert_param(IS_FSMC_DATASETUP_TIME(Timing->DataSetupTime)); + assert_param(IS_FSMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); + assert_param(IS_FSMC_CLK_DIV(Timing->CLKDivision)); + assert_param(IS_FSMC_DATA_LATENCY(Timing->DataLatency)); + assert_param(IS_FSMC_ACCESS_MODE(Timing->AccessMode)); + + /* Get the BTCR register value */ + tmpr = Device->BTCR[Bank + 1]; + + /* Clear ADDSET, ADDHLD, DATAST, BUSTURN, CLKDIV, DATLAT and ACCMOD bits */ + tmpr &= ((uint32_t)~(FSMC_BTR1_ADDSET | FSMC_BTR1_ADDHLD | FSMC_BTR1_DATAST | \ + FSMC_BTR1_BUSTURN | FSMC_BTR1_CLKDIV | FSMC_BTR1_DATLAT | \ + FSMC_BTR1_ACCMOD)); + + /* Set FSMC_NORSRAM device timing parameters */ + tmpr |= (uint32_t)(Timing->AddressSetupTime |\ + ((Timing->AddressHoldTime) << 4) |\ + ((Timing->DataSetupTime) << 8) |\ + ((Timing->BusTurnAroundDuration) << 16) |\ + (((Timing->CLKDivision)-1) << 20) |\ + (((Timing->DataLatency)-2) << 24) |\ + (Timing->AccessMode)); + + Device->BTCR[Bank + 1] = tmpr; + + return HAL_OK; +} + +/** + * @brief Initialize the FSMC_NORSRAM Extended mode Timing according to the specified + * parameters in the FSMC_NORSRAM_TimingTypeDef + * @param Device: Pointer to NORSRAM device instance + * @param Timing: Pointer to NORSRAM Timing structure + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NORSRAM_Extended_Timing_Init(FSMC_NORSRAM_EXTENDED_TypeDef *Device, FSMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank, uint32_t ExtendedMode) +{ + uint32_t tmpr = 0; + + /* Set NORSRAM device timing register for write configuration, if extended mode is used */ + if(ExtendedMode == FSMC_EXTENDED_MODE_ENABLE) + { + /* Check the parameters */ + assert_param(IS_FSMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); + assert_param(IS_FSMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); + assert_param(IS_FSMC_DATASETUP_TIME(Timing->DataSetupTime)); + assert_param(IS_FSMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); + assert_param(IS_FSMC_CLK_DIV(Timing->CLKDivision)); + assert_param(IS_FSMC_DATA_LATENCY(Timing->DataLatency)); + assert_param(IS_FSMC_ACCESS_MODE(Timing->AccessMode)); + + /* Get the BWTR register value */ + tmpr = Device->BWTR[Bank]; + + /* Clear ADDSET, ADDHLD, DATAST, BUSTURN, CLKDIV, DATLAT and ACCMOD bits */ + tmpr &= ((uint32_t)~(FSMC_BWTR1_ADDSET | FSMC_BWTR1_ADDHLD | FSMC_BWTR1_DATAST | \ + FSMC_BWTR1_BUSTURN | FSMC_BWTR1_CLKDIV | FSMC_BWTR1_DATLAT | \ + FSMC_BWTR1_ACCMOD)); + + tmpr |= (uint32_t)(Timing->AddressSetupTime |\ + ((Timing->AddressHoldTime) << 4) |\ + ((Timing->DataSetupTime) << 8) |\ + ((Timing->BusTurnAroundDuration) << 16) |\ + (((Timing->CLKDivision)-1) << 20) |\ + (((Timing->DataLatency)-2) << 24) |\ + (Timing->AccessMode)); + + Device->BWTR[Bank] = tmpr; + } + else + { + Device->BWTR[Bank] = 0x0FFFFFFF; + } + + return HAL_OK; +} +/** + * @} + */ + +/** @addtogroup FSMC_LL_NORSRAM_Private_Functions_Group2 + * @brief management functions + * +@verbatim + ============================================================================== + ##### FSMC_NORSRAM Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FSMC NORSRAM interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically FSMC_NORSRAM write operation. + * @param Device: Pointer to NORSRAM device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NORSRAM_WriteOperation_Enable(FSMC_NORSRAM_TypeDef *Device, uint32_t Bank) +{ + /* Enable write operation */ + Device->BTCR[Bank] |= FSMC_WRITE_OPERATION_ENABLE; + + return HAL_OK; +} + +/** + * @brief Disables dynamically FSMC_NORSRAM write operation. + * @param Device: Pointer to NORSRAM device instance + * @param Bank: NORSRAM bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NORSRAM_WriteOperation_Disable(FSMC_NORSRAM_TypeDef *Device, uint32_t Bank) +{ + /* Disable write operation */ + Device->BTCR[Bank] &= ~FSMC_WRITE_OPERATION_ENABLE; + + return HAL_OK; +} +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup FSMC_LL_NAND + * @brief NAND Controller functions + * + @verbatim + ============================================================================== + ##### How to use NAND device driver ##### + ============================================================================== + [..] + This driver contains a set of APIs to interface with the FSMC NAND banks in order + to run the NAND external devices. + + (+) FSMC NAND bank reset using the function FSMC_NAND_DeInit() + (+) FSMC NAND bank control configuration using the function FSMC_NAND_Init() + (+) FSMC NAND bank common space timing configuration using the function + FSMC_NAND_CommonSpace_Timing_Init() + (+) FSMC NAND bank attribute space timing configuration using the function + FSMC_NAND_AttributeSpace_Timing_Init() + (+) FSMC NAND bank enable/disable ECC correction feature using the functions + FSMC_NAND_ECC_Enable()/FSMC_NAND_ECC_Disable() + (+) FSMC NAND bank get ECC correction code using the function FSMC_NAND_GetECC() + +@endverbatim + * @{ + */ + +/** @addtogroup FSMC_LL_NAND_Private_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FSMC NAND interface + (+) De-initialize the FSMC NAND interface + (+) Configure the FSMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FSMC_NAND device according to the specified + * control parameters in the FSMC_NAND_HandleTypeDef + * @param Device: Pointer to NAND device instance + * @param Init: Pointer to NAND Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NAND_Init(FSMC_NAND_TypeDef *Device, FSMC_NAND_InitTypeDef *Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_NAND_BANK(Init->NandBank)); + assert_param(IS_FSMC_WAIT_FEATURE(Init->Waitfeature)); + assert_param(IS_FSMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth)); + assert_param(IS_FSMC_ECC_STATE(Init->EccComputation)); + assert_param(IS_FSMC_ECCPAGE_SIZE(Init->ECCPageSize)); + assert_param(IS_FSMC_TCLR_TIME(Init->TCLRSetupTime)); + assert_param(IS_FSMC_TAR_TIME(Init->TARSetupTime)); + + if(Init->NandBank == FSMC_NAND_BANK2) + { + /* Get the NAND bank 2 register value */ + tmpr = Device->PCR2; + } + else + { + /* Get the NAND bank 3 register value */ + tmpr = Device->PCR3; + } + + /* Clear PWAITEN, PBKEN, PTYP, PWID, ECCEN, TCLR, TAR and ECCPS bits */ + tmpr &= ((uint32_t)~(FSMC_PCR2_PWAITEN | FSMC_PCR2_PBKEN | FSMC_PCR2_PTYP | \ + FSMC_PCR2_PWID | FSMC_PCR2_ECCEN | FSMC_PCR2_TCLR | \ + FSMC_PCR2_TAR | FSMC_PCR2_ECCPS)); + + /* Set NAND device control parameters */ + tmpr |= (uint32_t)(Init->Waitfeature |\ + FSMC_PCR_MEMORY_TYPE_NAND |\ + Init->MemoryDataWidth |\ + Init->EccComputation |\ + Init->ECCPageSize |\ + ((Init->TCLRSetupTime) << 9) |\ + ((Init->TARSetupTime) << 13)); + + if(Init->NandBank == FSMC_NAND_BANK2) + { + /* NAND bank 2 registers configuration */ + Device->PCR2 = tmpr; + } + else + { + /* NAND bank 3 registers configuration */ + Device->PCR3 = tmpr; + } + + return HAL_OK; +} + +/** + * @brief Initializes the FSMC_NAND Common space Timing according to the specified + * parameters in the FSMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NAND_CommonSpace_Timing_Init(FSMC_NAND_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FSMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FSMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FSMC_HIZ_TIME(Timing->HiZSetupTime)); + + if(Bank == FSMC_NAND_BANK2) + { + /* Get the NAND bank 2 register value */ + tmpr = Device->PMEM2; + } + else + { + /* Get the NAND bank 3 register value */ + tmpr = Device->PMEM3; + } + + /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ + tmpr &= ((uint32_t)~(FSMC_PMEM2_MEMSET2 | FSMC_PMEM2_MEMWAIT2 | FSMC_PMEM2_MEMHOLD2 | \ + FSMC_PMEM2_MEMHIZ2)); + + /* Set FSMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24) + ); + + if(Bank == FSMC_NAND_BANK2) + { + /* NAND bank 2 registers configuration */ + Device->PMEM2 = tmpr; + } + else + { + /* NAND bank 3 registers configuration */ + Device->PMEM3 = tmpr; + } + + return HAL_OK; +} + +/** + * @brief Initializes the FSMC_NAND Attribute space Timing according to the specified + * parameters in the FSMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to NAND device instance + * @param Timing: Pointer to NAND timing structure + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NAND_AttributeSpace_Timing_Init(FSMC_NAND_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FSMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FSMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FSMC_HIZ_TIME(Timing->HiZSetupTime)); + + if(Bank == FSMC_NAND_BANK2) + { + /* Get the NAND bank 2 register value */ + tmpr = Device->PATT2; + } + else + { + /* Get the NAND bank 3 register value */ + tmpr = Device->PATT3; + } + + /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ + tmpr &= ((uint32_t)~(FSMC_PATT2_ATTSET2 | FSMC_PATT2_ATTWAIT2 | FSMC_PATT2_ATTHOLD2 | \ + FSMC_PATT2_ATTHIZ2)); + + /* Set FSMC_NAND device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24) + ); + + if(Bank == FSMC_NAND_BANK2) + { + /* NAND bank 2 registers configuration */ + Device->PATT2 = tmpr; + } + else + { + /* NAND bank 3 registers configuration */ + Device->PATT3 = tmpr; + } + + return HAL_OK; +} + +/** + * @brief DeInitializes the FSMC_NAND device + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NAND_DeInit(FSMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Disable the NAND Bank */ + __FSMC_NAND_DISABLE(Device, Bank); + + /* De-initialize the NAND Bank */ + if(Bank == FSMC_NAND_BANK2) + { + /* Set the FSMC_NAND_BANK2 registers to their reset values */ + Device->PCR2 = 0x00000018; + Device->SR2 = 0x00000040; + Device->PMEM2 = 0xFCFCFCFC; + Device->PATT2 = 0xFCFCFCFC; + } + /* FSMC_Bank3_NAND */ + else + { + /* Set the FSMC_NAND_BANK3 registers to their reset values */ + Device->PCR3 = 0x00000018; + Device->SR3 = 0x00000040; + Device->PMEM3 = 0xFCFCFCFC; + Device->PATT3 = 0xFCFCFCFC; + } + + return HAL_OK; +} +/** + * @} + */ + +/** @addtogroup FSMC_LL_NAND_Private_Functions_Group2 + * @brief management functions + * +@verbatim + ============================================================================== + ##### FSMC_NAND Control functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to control dynamically + the FSMC NAND interface. + +@endverbatim + * @{ + */ + +/** + * @brief Enables dynamically FSMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NAND_ECC_Enable(FSMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Enable ECC feature */ + if(Bank == FSMC_NAND_BANK2) + { + Device->PCR2 |= FSMC_PCR2_ECCEN; + } + else + { + Device->PCR3 |= FSMC_PCR3_ECCEN; + } + + return HAL_OK; +} + +/** + * @brief Disables dynamically FSMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param Bank: NAND bank number + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NAND_ECC_Disable(FSMC_NAND_TypeDef *Device, uint32_t Bank) +{ + /* Disable ECC feature */ + if(Bank == FSMC_NAND_BANK2) + { + Device->PCR2 &= ~FSMC_PCR2_ECCEN; + } + else + { + Device->PCR3 &= ~FSMC_PCR3_ECCEN; + } + + return HAL_OK; +} + +/** + * @brief Disables dynamically FSMC_NAND ECC feature. + * @param Device: Pointer to NAND device instance + * @param ECCval: Pointer to ECC value + * @param Bank: NAND bank number + * @param Timeout: Timeout wait value + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_NAND_GetECC(FSMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout) +{ + uint32_t tickstart = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_NAND_DEVICE(Device)); + assert_param(IS_FSMC_NAND_BANK(Bank)); + + /* Get tick */ + tickstart = HAL_GetTick(); + + /* Wait until FIFO is empty */ + while(__FSMC_NAND_GET_FLAG(Device, Bank, FSMC_FLAG_FEMPT) == RESET) + { + /* Check for the Timeout */ + if(Timeout != HAL_MAX_DELAY) + { + if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout)) + { + return HAL_TIMEOUT; + } + } + } + + if(Bank == FSMC_NAND_BANK2) + { + /* Get the ECCR2 register value */ + *ECCval = (uint32_t)Device->ECCR2; + } + else + { + /* Get the ECCR3 register value */ + *ECCval = (uint32_t)Device->ECCR3; + } + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @addtogroup FSMC_LL_PCCARD + * @brief PCCARD Controller functions + * + @verbatim + ============================================================================== + ##### How to use PCCARD device driver ##### + ============================================================================== + [..] + This driver contains a set of APIs to interface with the FSMC PCCARD bank in order + to run the PCCARD/compact flash external devices. + + (+) FSMC PCCARD bank reset using the function FSMC_PCCARD_DeInit() + (+) FSMC PCCARD bank control configuration using the function FSMC_PCCARD_Init() + (+) FSMC PCCARD bank common space timing configuration using the function + FSMC_PCCARD_CommonSpace_Timing_Init() + (+) FSMC PCCARD bank attribute space timing configuration using the function + FSMC_PCCARD_AttributeSpace_Timing_Init() + (+) FSMC PCCARD bank IO space timing configuration using the function + FSMC_PCCARD_IOSpace_Timing_Init() + +@endverbatim + * @{ + */ + +/** @addtogroup FSMC_LL_PCCARD_Private_Functions_Group1 + * @brief Initialization and Configuration functions + * +@verbatim + ============================================================================== + ##### Initialization and de_initialization functions ##### + ============================================================================== + [..] + This section provides functions allowing to: + (+) Initialize and configure the FSMC PCCARD interface + (+) De-initialize the FSMC PCCARD interface + (+) Configure the FSMC clock and associated GPIOs + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the FSMC_PCCARD device according to the specified + * control parameters in the FSMC_PCCARD_HandleTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Init: Pointer to PCCARD Initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_PCCARD_Init(FSMC_PCCARD_TypeDef *Device, FSMC_PCCARD_InitTypeDef *Init) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_WAIT_FEATURE(Init->Waitfeature)); + assert_param(IS_FSMC_TCLR_TIME(Init->TCLRSetupTime)); + assert_param(IS_FSMC_TAR_TIME(Init->TARSetupTime)); + + /* Get PCCARD control register value */ + tmpr = Device->PCR4; + + /* Clear TAR, TCLR, PWAITEN and PWID bits */ + tmpr &= ((uint32_t)~(FSMC_PCR4_TAR | FSMC_PCR4_TCLR | FSMC_PCR4_PWAITEN | \ + FSMC_PCR4_PWID)); + + /* Set FSMC_PCCARD device control parameters */ + tmpr |= (uint32_t)(Init->Waitfeature |\ + FSMC_NAND_PCC_MEM_BUS_WIDTH_16 |\ + (Init->TCLRSetupTime << 9) |\ + (Init->TARSetupTime << 13)); + + Device->PCR4 = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FSMC_PCCARD Common space Timing according to the specified + * parameters in the FSMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Timing: Pointer to PCCARD timing structure + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_PCCARD_CommonSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FSMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FSMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FSMC_HIZ_TIME(Timing->HiZSetupTime)); + + /* Get PCCARD common space timing register value */ + tmpr = Device->PMEM4; + + /* Clear MEMSETx, MEMWAITx, MEMHOLDx and MEMHIZx bits */ + tmpr &= ((uint32_t)~(FSMC_PMEM4_MEMSET4 | FSMC_PMEM4_MEMWAIT4 | FSMC_PMEM4_MEMHOLD4 | \ + FSMC_PMEM4_MEMHIZ4)); + /* Set PCCARD timing parameters */ + tmpr |= (uint32_t)((Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + (Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + + Device->PMEM4 = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FSMC_PCCARD Attribute space Timing according to the specified + * parameters in the FSMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Timing: Pointer to PCCARD timing structure + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_PCCARD_AttributeSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FSMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FSMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FSMC_HIZ_TIME(Timing->HiZSetupTime)); + + /* Get PCCARD timing parameters */ + tmpr = Device->PATT4; + + /* Clear ATTSETx, ATTWAITx, ATTHOLDx and ATTHIZx bits */ + tmpr &= ((uint32_t)~(FSMC_PATT4_ATTSET4 | FSMC_PATT4_ATTWAIT4 | FSMC_PATT4_ATTHOLD4 | \ + FSMC_PATT4_ATTHIZ4)); + + /* Set PCCARD timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + Device->PATT4 = tmpr; + + return HAL_OK; +} + +/** + * @brief Initializes the FSMC_PCCARD IO space Timing according to the specified + * parameters in the FSMC_NAND_PCC_TimingTypeDef + * @param Device: Pointer to PCCARD device instance + * @param Timing: Pointer to PCCARD timing structure + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_PCCARD_IOSpace_Timing_Init(FSMC_PCCARD_TypeDef *Device, FSMC_NAND_PCC_TimingTypeDef *Timing) +{ + uint32_t tmpr = 0; + + /* Check the parameters */ + assert_param(IS_FSMC_SETUP_TIME(Timing->SetupTime)); + assert_param(IS_FSMC_WAIT_TIME(Timing->WaitSetupTime)); + assert_param(IS_FSMC_HOLD_TIME(Timing->HoldSetupTime)); + assert_param(IS_FSMC_HIZ_TIME(Timing->HiZSetupTime)); + + /* Get FSMC_PCCARD device timing parameters */ + tmpr = Device->PIO4; + + /* Clear IOSET4, IOWAIT4, IOHOLD4 and IOHIZ4 bits */ + tmpr &= ((uint32_t)~(FSMC_PIO4_IOSET4 | FSMC_PIO4_IOWAIT4 | FSMC_PIO4_IOHOLD4 | \ + FSMC_PIO4_IOHIZ4)); + + /* Set FSMC_PCCARD device timing parameters */ + tmpr |= (uint32_t)(Timing->SetupTime |\ + ((Timing->WaitSetupTime) << 8) |\ + ((Timing->HoldSetupTime) << 16) |\ + ((Timing->HiZSetupTime) << 24)); + + Device->PIO4 = tmpr; + + return HAL_OK; +} + +/** + * @brief DeInitializes the FSMC_PCCARD device + * @param Device: Pointer to PCCARD device instance + * @retval HAL status + */ +HAL_StatusTypeDef FSMC_PCCARD_DeInit(FSMC_PCCARD_TypeDef *Device) +{ + /* Disable the FSMC_PCCARD device */ + __FSMC_PCCARD_DISABLE(Device); + + /* De-initialize the FSMC_PCCARD device */ + Device->PCR4 = 0x00000018; + Device->SR4 = 0x00000000; + Device->PMEM4 = 0xFCFCFCFC; + Device->PATT4 = 0xFCFCFCFC; + Device->PIO4 = 0xFCFCFCFC; + + return HAL_OK; +} +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ +#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx */ +#endif /* HAL_SRAM_MODULE_ENABLED || HAL_NOR_MODULE_ENABLED || HAL_NAND_MODULE_ENABLED || HAL_PCCARD_MODULE_ENABLED */ + +/** + * @} + */ + +/** + * @} + */ +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_sdmmc.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_sdmmc.c new file mode 100644 index 0000000..bc33c7a --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_sdmmc.c @@ -0,0 +1,505 @@ +/** + ****************************************************************************** + * @file stm32f4xx_ll_sdmmc.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief SDMMC Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the SDMMC peripheral: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### SDMMC peripheral features ##### + ============================================================================== + [..] The SD/SDIO MMC card host interface (SDIO) provides an interface between the APB2 + peripheral bus and MultiMedia cards (MMCs), SD memory cards, SDIO cards and CE-ATA + devices. + + [..] The SDIO features include the following: + (+) Full compliance with MultiMedia Card System Specification Version 4.2. Card support + for three different databus modes: 1-bit (default), 4-bit and 8-bit + (+) Full compatibility with previous versions of MultiMedia Cards (forward compatibility) + (+) Full compliance with SD Memory Card Specifications Version 2.0 + (+) Full compliance with SD I/O Card Specification Version 2.0: card support for two + different data bus modes: 1-bit (default) and 4-bit + (+) Full support of the CE-ATA features (full compliance with CE-ATA digital protocol + Rev1.1) + (+) Data transfer up to 48 MHz for the 8 bit mode + (+) Data and command output enable signals to control external bidirectional drivers. + + + ##### How to use this driver ##### + ============================================================================== + [..] + This driver is a considered as a driver of service for external devices drivers + that interfaces with the SDIO peripheral. + According to the device used (SD card/ MMC card / SDIO card ...), a set of APIs + is used in the device's driver to perform SDIO operations and functionalities. + + This driver is almost transparent for the final user, it is only used to implement other + functionalities of the external device. + + [..] + (+) The SDIO clock (SDIOCLK = 48 MHz) is coming from a specific output of PLL + (PLL48CLK). Before start working with SDIO peripheral make sure that the + PLL is well configured. + The SDIO peripheral uses two clock signals: + (++) SDIO adapter clock (SDIOCLK = 48 MHz) + (++) APB2 bus clock (PCLK2) + + -@@- PCLK2 and SDIO_CK clock frequencies must respect the following condition: + Frequency(PCLK2) >= (3 / 8 x Frequency(SDIO_CK)) + + (+) Enable/Disable peripheral clock using RCC peripheral macros related to SDIO + peripheral. + + (+) Enable the Power ON State using the SDIO_PowerState_ON(SDIOx) + function and disable it using the function SDIO_PowerState_OFF(SDIOx). + + (+) Enable/Disable the clock using the __SDIO_ENABLE()/__SDIO_DISABLE() macros. + + (+) Enable/Disable the peripheral interrupts using the macros __SDIO_ENABLE_IT(hsdio, IT) + and __SDIO_DISABLE_IT(hsdio, IT) if you need to use interrupt mode. + + (+) When using the DMA mode + (++) Configure the DMA in the MSP layer of the external device + (++) Active the needed channel Request + (++) Enable the DMA using __SDIO_DMA_ENABLE() macro or Disable it using the macro + __SDIO_DMA_DISABLE(). + + (+) To control the CPSM (Command Path State Machine) and send + commands to the card use the SDIO_SendCommand(SDIOx), + SDIO_GetCommandResponse() and SDIO_GetResponse() functions. First, user has + to fill the command structure (pointer to SDIO_CmdInitTypeDef) according + to the selected command to be sent. + The parameters that should be filled are: + (++) Command Argument + (++) Command Index + (++) Command Response type + (++) Command Wait + (++) CPSM Status (Enable or Disable). + + -@@- To check if the command is well received, read the SDIO_CMDRESP + register using the SDIO_GetCommandResponse(). + The SDIO responses registers (SDIO_RESP1 to SDIO_RESP2), use the + SDIO_GetResponse() function. + + (+) To control the DPSM (Data Path State Machine) and send/receive + data to/from the card use the SDIO_DataConfig(), SDIO_GetDataCounter(), + SDIO_ReadFIFO(), DIO_WriteFIFO() and SDIO_GetFIFOCount() functions. + + *** Read Operations *** + ======================= + [..] + (#) First, user has to fill the data structure (pointer to + SDIO_DataInitTypeDef) according to the selected data type to be received. + The parameters that should be filled are: + (++) Data Timeout + (++) Data Length + (++) Data Block size + (++) Data Transfer direction: should be from card (To SDIO) + (++) Data Transfer mode + (++) DPSM Status (Enable or Disable) + + (#) Configure the SDIO resources to receive the data from the card + according to selected transfer mode (Refer to Step 8, 9 and 10). + + (#) Send the selected Read command (refer to step 11). + + (#) Use the SDIO flags/interrupts to check the transfer status. + + *** Write Operations *** + ======================== + [..] + (#) First, user has to fill the data structure (pointer to + SDIO_DataInitTypeDef) according to the selected data type to be received. + The parameters that should be filled are: + (++) Data Timeout + (++) Data Length + (++) Data Block size + (++) Data Transfer direction: should be to card (To CARD) + (++) Data Transfer mode + (++) DPSM Status (Enable or Disable) + + (#) Configure the SDIO resources to send the data to the card according to + selected transfer mode. + + (#) Send the selected Write command. + + (#) Use the SDIO flags/interrupts to check the transfer status. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_HAL_Driver + * @{ + */ + +/** @defgroup SDMMC_LL SDMMC Low Layer + * @brief Low layer module for SD and MMC driver + * @{ + */ + +#if defined (HAL_SD_MODULE_ENABLED) || defined(HAL_MMC_MODULE_ENABLED) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup SDMMC_LL_Exported_Functions SDMMC_LL Exported Functions + * @{ + */ + +/** @defgroup HAL_SDMMC_LL_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization/de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the SDIO according to the specified + * parameters in the SDIO_InitTypeDef and create the associated handle. + * @param SDIOx: Pointer to SDIO register base + * @param Init: SDIO initialization structure + * @retval HAL status + */ +HAL_StatusTypeDef SDIO_Init(SDIO_TypeDef *SDIOx, SDIO_InitTypeDef Init) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_SDIO_ALL_INSTANCE(SDIOx)); + assert_param(IS_SDIO_CLOCK_EDGE(Init.ClockEdge)); + assert_param(IS_SDIO_CLOCK_BYPASS(Init.ClockBypass)); + assert_param(IS_SDIO_CLOCK_POWER_SAVE(Init.ClockPowerSave)); + assert_param(IS_SDIO_BUS_WIDE(Init.BusWide)); + assert_param(IS_SDIO_HARDWARE_FLOW_CONTROL(Init.HardwareFlowControl)); + assert_param(IS_SDIO_CLKDIV(Init.ClockDiv)); + + /* Set SDIO configuration parameters */ + tmpreg |= (Init.ClockEdge |\ + Init.ClockBypass |\ + Init.ClockPowerSave |\ + Init.BusWide |\ + Init.HardwareFlowControl |\ + Init.ClockDiv + ); + + /* Write to SDIO CLKCR */ + MODIFY_REG(SDIOx->CLKCR, CLKCR_CLEAR_MASK, tmpreg); + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HAL_SDMMC_LL_Group2 I/O operation functions + * @brief Data transfers functions + * +@verbatim + =============================================================================== + ##### I/O operation functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to manage the SDIO data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Read data (word) from Rx FIFO in blocking mode (polling) + * @param SDIOx: Pointer to SDIO register base + * @retval HAL status + */ +uint32_t SDIO_ReadFIFO(SDIO_TypeDef *SDIOx) +{ + /* Read data from Rx FIFO */ + return (SDIOx->FIFO); +} + +/** + * @brief Write data (word) to Tx FIFO in blocking mode (polling) + * @param SDIOx: Pointer to SDIO register base + * @param pWriteData: pointer to data to write + * @retval HAL status + */ +HAL_StatusTypeDef SDIO_WriteFIFO(SDIO_TypeDef *SDIOx, uint32_t *pWriteData) +{ + /* Write data to FIFO */ + SDIOx->FIFO = *pWriteData; + + return HAL_OK; +} + +/** + * @} + */ + +/** @defgroup HAL_SDMMC_LL_Group3 Peripheral Control functions + * @brief management functions + * +@verbatim + =============================================================================== + ##### Peripheral Control functions ##### + =============================================================================== + [..] + This subsection provides a set of functions allowing to control the SDIO data + transfers. + +@endverbatim + * @{ + */ + +/** + * @brief Set SDIO Power state to ON. + * @param SDIOx: Pointer to SDIO register base + * @retval HAL status + */ +HAL_StatusTypeDef SDIO_PowerState_ON(SDIO_TypeDef *SDIOx) +{ + /* Set power state to ON */ + SDIOx->POWER = SDIO_POWER_PWRCTRL; + + return HAL_OK; +} + +/** + * @brief Set SDIO Power state to OFF. + * @param SDIOx: Pointer to SDIO register base + * @retval HAL status + */ +HAL_StatusTypeDef SDIO_PowerState_OFF(SDIO_TypeDef *SDIOx) +{ + /* Set power state to OFF */ + SDIOx->POWER = (uint32_t)0x00000000; + + return HAL_OK; +} + +/** + * @brief Get SDIO Power state. + * @param SDIOx: Pointer to SDIO register base + * @retval Power status of the controller. The returned value can be one of the + * following values: + * - 0x00: Power OFF + * - 0x02: Power UP + * - 0x03: Power ON + */ +uint32_t SDIO_GetPowerState(SDIO_TypeDef *SDIOx) +{ + return (SDIOx->POWER & SDIO_POWER_PWRCTRL); +} + +/** + * @brief Configure the SDIO command path according to the specified parameters in + * SDIO_CmdInitTypeDef structure and send the command + * @param SDIOx: Pointer to SDIO register base + * @param SDIO_CmdInitStruct: pointer to a SDIO_CmdInitTypeDef structure that contains + * the configuration information for the SDIO command + * @retval HAL status + */ +HAL_StatusTypeDef SDIO_SendCommand(SDIO_TypeDef *SDIOx, SDIO_CmdInitTypeDef *SDIO_CmdInitStruct) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_SDIO_CMD_INDEX(SDIO_CmdInitStruct->CmdIndex)); + assert_param(IS_SDIO_RESPONSE(SDIO_CmdInitStruct->Response)); + assert_param(IS_SDIO_WAIT(SDIO_CmdInitStruct->WaitForInterrupt)); + assert_param(IS_SDIO_CPSM(SDIO_CmdInitStruct->CPSM)); + + /* Set the SDIO Argument value */ + SDIOx->ARG = SDIO_CmdInitStruct->Argument; + + /* Set SDIO command parameters */ + tmpreg |= (uint32_t)(SDIO_CmdInitStruct->CmdIndex |\ + SDIO_CmdInitStruct->Response |\ + SDIO_CmdInitStruct->WaitForInterrupt |\ + SDIO_CmdInitStruct->CPSM); + + /* Write to SDIO CMD register */ + MODIFY_REG(SDIOx->CMD, CMD_CLEAR_MASK, tmpreg); + + return HAL_OK; +} + +/** + * @brief Return the command index of last command for which response received + * @param SDIOx: Pointer to SDIO register base + * @retval Command index of the last command response received + */ +uint8_t SDIO_GetCommandResponse(SDIO_TypeDef *SDIOx) +{ + return (uint8_t)(SDIOx->RESPCMD); +} + + +/** + * @brief Return the response received from the card for the last command + * @param SDIO_RESP: Specifies the SDIO response register. + * This parameter can be one of the following values: + * @arg SDIO_RESP1: Response Register 1 + * @arg SDIO_RESP2: Response Register 2 + * @arg SDIO_RESP3: Response Register 3 + * @arg SDIO_RESP4: Response Register 4 + * @retval The Corresponding response register value + */ +uint32_t SDIO_GetResponse(uint32_t SDIO_RESP) +{ + __IO uint32_t tmp = 0; + + /* Check the parameters */ + assert_param(IS_SDIO_RESP(SDIO_RESP)); + + /* Get the response */ + tmp = SDIO_RESP_ADDR + SDIO_RESP; + + return (*(__IO uint32_t *) tmp); +} + +/** + * @brief Configure the SDIO data path according to the specified + * parameters in the SDIO_DataInitTypeDef. + * @param SDIOx: Pointer to SDIO register base + * @param SDIO_DataInitStruct : pointer to a SDIO_DataInitTypeDef structure + * that contains the configuration information for the SDIO command. + * @retval HAL status + */ +HAL_StatusTypeDef SDIO_DataConfig(SDIO_TypeDef *SDIOx, SDIO_DataInitTypeDef* SDIO_DataInitStruct) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_SDIO_DATA_LENGTH(SDIO_DataInitStruct->DataLength)); + assert_param(IS_SDIO_BLOCK_SIZE(SDIO_DataInitStruct->DataBlockSize)); + assert_param(IS_SDIO_TRANSFER_DIR(SDIO_DataInitStruct->TransferDir)); + assert_param(IS_SDIO_TRANSFER_MODE(SDIO_DataInitStruct->TransferMode)); + assert_param(IS_SDIO_DPSM(SDIO_DataInitStruct->DPSM)); + + /* Set the SDIO Data Timeout value */ + SDIOx->DTIMER = SDIO_DataInitStruct->DataTimeOut; + + /* Set the SDIO DataLength value */ + SDIOx->DLEN = SDIO_DataInitStruct->DataLength; + + /* Set the SDIO data configuration parameters */ + tmpreg |= (uint32_t)(SDIO_DataInitStruct->DataBlockSize |\ + SDIO_DataInitStruct->TransferDir |\ + SDIO_DataInitStruct->TransferMode |\ + SDIO_DataInitStruct->DPSM); + + /* Write to SDIO DCTRL */ + MODIFY_REG(SDIOx->DCTRL, DCTRL_CLEAR_MASK, tmpreg); + + return HAL_OK; + +} + +/** + * @brief Returns number of remaining data bytes to be transferred. + * @param SDIOx: Pointer to SDIO register base + * @retval Number of remaining data bytes to be transferred + */ +uint32_t SDIO_GetDataCounter(SDIO_TypeDef *SDIOx) +{ + return (SDIOx->DCOUNT); +} + +/** + * @brief Get the FIFO data + * @param SDIOx: Pointer to SDIO register base + * @retval Data received + */ +uint32_t SDIO_GetFIFOCount(SDIO_TypeDef *SDIOx) +{ + return (SDIOx->FIFO); +} + + +/** + * @brief Sets one of the two options of inserting read wait interval. + * @param SDIO_ReadWaitMode: SD I/O Read Wait operation mode. + * This parameter can be: + * @arg SDIO_READ_WAIT_MODE_CLK: Read Wait control by stopping SDIOCLK + * @arg SDIO_READ_WAIT_MODE_DATA2: Read Wait control using SDIO_DATA2 + * @retval None + */ +HAL_StatusTypeDef SDIO_SetSDIOReadWaitMode(uint32_t SDIO_ReadWaitMode) +{ + /* Check the parameters */ + assert_param(IS_SDIO_READWAIT_MODE(SDIO_ReadWaitMode)); + + *(__IO uint32_t *)DCTRL_RWMOD_BB = SDIO_ReadWaitMode; + + return HAL_OK; +} + +/** + * @} + */ + +/** + * @} + */ + +#endif /* (HAL_SD_MODULE_ENABLED) || (HAL_MMC_MODULE_ENABLED) */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ diff --git a/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_usb.c b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_usb.c new file mode 100644 index 0000000..f45004c --- /dev/null +++ b/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_usb.c @@ -0,0 +1,1705 @@ +/** + ****************************************************************************** + * @file stm32f4xx_ll_usb.c + * @author MCD Application Team + * @version V1.3.2 + * @date 26-June-2015 + * @brief USB Low Layer HAL module driver. + * + * This file provides firmware functions to manage the following + * functionalities of the USB Peripheral Controller: + * + Initialization/de-initialization functions + * + I/O operation functions + * + Peripheral Control functions + * + Peripheral State functions + * + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + (#) Fill parameters of Init structure in USB_OTG_CfgTypeDef structure. + + (#) Call USB_CoreInit() API to initialize the USB Core peripheral. + + (#) The upper HAL HCD/PCD driver will call the right routines for its internal processes. + + @endverbatim + ****************************************************************************** + * @attention + * + * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * 1. Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * 3. Neither the name of STMicroelectronics nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f4xx_hal.h" + +/** @addtogroup STM32F4xx_LL_USB_DRIVER + * @{ + */ + +#if defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ +static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx); + +/* Exported functions --------------------------------------------------------*/ + +/** @defgroup LL_USB_Exported_Functions USB Low Layer Exported Functions + * @{ + */ + +/** @defgroup LL_USB_Group1 Initialization/de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + =============================================================================== + ##### Initialization/de-initialization functions ##### + =============================================================================== + [..] This section provides functions allowing to: + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the USB Core + * @param USBx: USB Instance + * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_CoreInit(USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + if (cfg.phy_itface == USB_OTG_ULPI_PHY) + { + + USBx->GCCFG &= ~(USB_OTG_GCCFG_PWRDWN); + + /* Init The ULPI Interface */ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL); + + /* Select vbus source */ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI); + if(cfg.use_external_vbus == 1) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_ULPIEVBUSD; + } + /* Reset after a PHY select */ + USB_CoreReset(USBx); + } + else /* FS interface (embedded Phy) */ + { + /* Select FS Embedded PHY */ + USBx->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL; + + /* Reset after a PHY select and set Host mode */ + USB_CoreReset(USBx); + + /* Deactivate the power down*/ + USBx->GCCFG = USB_OTG_GCCFG_PWRDWN; + } + + if(cfg.dma_enable == ENABLE) + { + USBx->GAHBCFG |= (USB_OTG_GAHBCFG_HBSTLEN_1 | USB_OTG_GAHBCFG_HBSTLEN_2); + USBx->GAHBCFG |= USB_OTG_GAHBCFG_DMAEN; + } + + return HAL_OK; +} + +/** + * @brief USB_EnableGlobalInt + * Enables the controller's Global Int in the AHB Config reg + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_EnableGlobalInt(USB_OTG_GlobalTypeDef *USBx) +{ + USBx->GAHBCFG |= USB_OTG_GAHBCFG_GINT; + return HAL_OK; +} + + +/** + * @brief USB_DisableGlobalInt + * Disable the controller's Global Int in the AHB Config reg + * @param USBx : Selected device + * @retval HAL status +*/ +HAL_StatusTypeDef USB_DisableGlobalInt(USB_OTG_GlobalTypeDef *USBx) +{ + USBx->GAHBCFG &= ~USB_OTG_GAHBCFG_GINT; + return HAL_OK; +} + +/** + * @brief USB_SetCurrentMode : Set functional mode + * @param USBx : Selected device + * @param mode : current core mode + * This parameter can be one of these values: + * @arg USB_OTG_DEVICE_MODE: Peripheral mode + * @arg USB_OTG_HOST_MODE: Host mode + * @arg USB_OTG_DRD_MODE: Dual Role Device mode + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetCurrentMode(USB_OTG_GlobalTypeDef *USBx , USB_OTG_ModeTypeDef mode) +{ + USBx->GUSBCFG &= ~(USB_OTG_GUSBCFG_FHMOD | USB_OTG_GUSBCFG_FDMOD); + + if ( mode == USB_OTG_HOST_MODE) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_FHMOD; + } + else if ( mode == USB_OTG_DEVICE_MODE) + { + USBx->GUSBCFG |= USB_OTG_GUSBCFG_FDMOD; + } + HAL_Delay(50); + + return HAL_OK; +} + +/** + * @brief USB_DevInit : Initializes the USB_OTG controller registers + * for device mode + * @param USBx : Selected device + * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevInit (USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + uint32_t i = 0; + + /*Activate VBUS Sensing B */ +#if defined(STM32F446xx) + USBx->GCCFG |= USB_OTG_GCCFG_VBDEN; + + if (cfg.vbus_sensing_enable == 0) + { + /* Deactivate VBUS Sensing B */ + USBx->GCCFG &= ~USB_OTG_GCCFG_VBDEN; + + /* B-peripheral session valid override enable*/ + USBx->GOTGCTL |= USB_OTG_GOTGCTL_BVALOEN; + USBx->GOTGCTL |= USB_OTG_GOTGCTL_BVALOVAL; + } +#else + USBx->GCCFG |= USB_OTG_GCCFG_VBUSBSEN; + + if (cfg.vbus_sensing_enable == 0) + { + USBx->GCCFG |= USB_OTG_GCCFG_NOVBUSSENS; + } +#endif /* STM32F446xx */ + + /* Restart the Phy Clock */ + USBx_PCGCCTL = 0; + + /* Device mode configuration */ + USBx_DEVICE->DCFG |= DCFG_FRAME_INTERVAL_80; + + if(cfg.phy_itface == USB_OTG_ULPI_PHY) + { + if(cfg.speed == USB_OTG_SPEED_HIGH) + { + /* Set High speed phy */ + USB_SetDevSpeed (USBx , USB_OTG_SPEED_HIGH); + } + else + { + /* set High speed phy in Full speed mode */ + USB_SetDevSpeed (USBx , USB_OTG_SPEED_HIGH_IN_FULL); + } + } + else + { + /* Set Full speed phy */ + USB_SetDevSpeed (USBx , USB_OTG_SPEED_FULL); + } + + /* Flush the FIFOs */ + USB_FlushTxFifo(USBx , 0x10); /* all Tx FIFOs */ + USB_FlushRxFifo(USBx); + + /* Clear all pending Device Interrupts */ + USBx_DEVICE->DIEPMSK = 0; + USBx_DEVICE->DOEPMSK = 0; + USBx_DEVICE->DAINT = 0xFFFFFFFF; + USBx_DEVICE->DAINTMSK = 0; + + for (i = 0; i < cfg.dev_endpoints; i++) + { + if ((USBx_INEP(i)->DIEPCTL & USB_OTG_DIEPCTL_EPENA) == USB_OTG_DIEPCTL_EPENA) + { + USBx_INEP(i)->DIEPCTL = (USB_OTG_DIEPCTL_EPDIS | USB_OTG_DIEPCTL_SNAK); + } + else + { + USBx_INEP(i)->DIEPCTL = 0; + } + + USBx_INEP(i)->DIEPTSIZ = 0; + USBx_INEP(i)->DIEPINT = 0xFF; + } + + for (i = 0; i < cfg.dev_endpoints; i++) + { + if ((USBx_OUTEP(i)->DOEPCTL & USB_OTG_DOEPCTL_EPENA) == USB_OTG_DOEPCTL_EPENA) + { + USBx_OUTEP(i)->DOEPCTL = (USB_OTG_DOEPCTL_EPDIS | USB_OTG_DOEPCTL_SNAK); + } + else + { + USBx_OUTEP(i)->DOEPCTL = 0; + } + + USBx_OUTEP(i)->DOEPTSIZ = 0; + USBx_OUTEP(i)->DOEPINT = 0xFF; + } + + USBx_DEVICE->DIEPMSK &= ~(USB_OTG_DIEPMSK_TXFURM); + + if (cfg.dma_enable == 1) + { + /*Set threshold parameters */ + USBx_DEVICE->DTHRCTL = (USB_OTG_DTHRCTL_TXTHRLEN_6 | USB_OTG_DTHRCTL_RXTHRLEN_6); + USBx_DEVICE->DTHRCTL |= (USB_OTG_DTHRCTL_RXTHREN | USB_OTG_DTHRCTL_ISOTHREN | USB_OTG_DTHRCTL_NONISOTHREN); + + i= USBx_DEVICE->DTHRCTL; + } + + /* Disable all interrupts. */ + USBx->GINTMSK = 0; + + /* Clear any pending interrupts */ + USBx->GINTSTS = 0xBFFFFFFF; + + /* Enable the common interrupts */ + if (cfg.dma_enable == DISABLE) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM; + } + + /* Enable interrupts matching to the Device mode ONLY */ + USBx->GINTMSK |= (USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_USBRST |\ + USB_OTG_GINTMSK_ENUMDNEM | USB_OTG_GINTMSK_IEPINT |\ + USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IISOIXFRM|\ + USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM); + + if(cfg.Sof_enable) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_SOFM; + } + + if (cfg.vbus_sensing_enable == ENABLE) + { + USBx->GINTMSK |= (USB_OTG_GINTMSK_SRQIM | USB_OTG_GINTMSK_OTGINT); + } + + return HAL_OK; +} + + +/** + * @brief USB_OTG_FlushTxFifo : Flush a Tx FIFO + * @param USBx : Selected device + * @param num : FIFO number + * This parameter can be a value from 1 to 15 + 15 means Flush all Tx FIFOs + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushTxFifo (USB_OTG_GlobalTypeDef *USBx, uint32_t num ) +{ + uint32_t count = 0; + + USBx->GRSTCTL = ( USB_OTG_GRSTCTL_TXFFLSH |(uint32_t)( num << 6)); + + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH) == USB_OTG_GRSTCTL_TXFFLSH); + + return HAL_OK; +} + + +/** + * @brief USB_FlushRxFifo : Flush Rx FIFO + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_FlushRxFifo(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t count = 0; + + USBx->GRSTCTL = USB_OTG_GRSTCTL_RXFFLSH; + + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_RXFFLSH) == USB_OTG_GRSTCTL_RXFFLSH); + + return HAL_OK; +} + +/** + * @brief USB_SetDevSpeed :Initializes the DevSpd field of DCFG register + * depending the PHY type and the enumeration speed of the device. + * @param USBx : Selected device + * @param speed : device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_HIGH_IN_FULL: High speed core in Full Speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + * @retval Hal status + */ +HAL_StatusTypeDef USB_SetDevSpeed(USB_OTG_GlobalTypeDef *USBx , uint8_t speed) +{ + USBx_DEVICE->DCFG |= speed; + return HAL_OK; +} + +/** + * @brief USB_GetDevSpeed :Return the Dev Speed + * @param USBx : Selected device + * @retval speed : device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + */ +uint8_t USB_GetDevSpeed(USB_OTG_GlobalTypeDef *USBx) +{ + uint8_t speed = 0; + + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ) + { + speed = USB_OTG_SPEED_HIGH; + } + else if (((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ)|| + ((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_FS_PHY_48MHZ)) + { + speed = USB_OTG_SPEED_FULL; + } + else if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_LS_PHY_6MHZ) + { + speed = USB_OTG_SPEED_LOW; + } + + return speed; +} + +/** + * @brief Activate and configure an endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + if (ep->is_in == 1) + { + USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num))); + + if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_USBAEP) == 0) + { + USBx_INEP(ep->num)->DIEPCTL |= ((ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DIEPCTL_SD0PID_SEVNFRM) | (USB_OTG_DIEPCTL_USBAEP)); + } + + } + else + { + USBx_DEVICE->DAINTMSK |= USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16); + + if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_USBAEP) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL |= ((ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + (USB_OTG_DIEPCTL_SD0PID_SEVNFRM)| (USB_OTG_DOEPCTL_USBAEP)); + } + } + return HAL_OK; +} +/** + * @brief Activate and configure a dedicated endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + static __IO uint32_t debug = 0; + + /* Read DEPCTLn register */ + if (ep->is_in == 1) + { + if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_USBAEP) == 0) + { + USBx_INEP(ep->num)->DIEPCTL |= ((ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DIEPCTL_SD0PID_SEVNFRM) | (USB_OTG_DIEPCTL_USBAEP)); + } + + + debug |= ((ep->maxpacket & USB_OTG_DIEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DIEPCTL_SD0PID_SEVNFRM) | (USB_OTG_DIEPCTL_USBAEP)); + + USBx_DEVICE->DEACHMSK |= USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num))); + } + else + { + if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_USBAEP) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL |= ((ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DOEPCTL_USBAEP)); + + debug = (uint32_t)(((uint32_t )USBx) + USB_OTG_OUT_ENDPOINT_BASE + (0)*USB_OTG_EP_REG_SIZE); + debug = (uint32_t )&USBx_OUTEP(ep->num)->DOEPCTL; + debug |= ((ep->maxpacket & USB_OTG_DOEPCTL_MPSIZ ) | (ep->type << 18 ) |\ + ((ep->num) << 22 ) | (USB_OTG_DOEPCTL_USBAEP)); + } + + USBx_DEVICE->DEACHMSK |= USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16); + } + + return HAL_OK; +} +/** + * @brief De-activate and de-initialize an endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeactivateEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + /* Read DEPCTLn register */ + if (ep->is_in == 1) + { + USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num)))); + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num)))); + USBx_INEP(ep->num)->DIEPCTL &= ~ USB_OTG_DIEPCTL_USBAEP; + } + else + { + USBx_DEVICE->DEACHMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16)); + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16)); + USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_USBAEP; + } + return HAL_OK; +} + +/** + * @brief De-activate and de-initialize a dedicated endpoint + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_DeactivateDedicatedEndpoint(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + /* Read DEPCTLn register */ + if (ep->is_in == 1) + { + USBx_INEP(ep->num)->DIEPCTL &= ~ USB_OTG_DIEPCTL_USBAEP; + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_IEPM & ((1 << (ep->num)))); + } + else + { + USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_USBAEP; + USBx_DEVICE->DAINTMSK &= ~(USB_OTG_DAINTMSK_OEPM & ((1 << (ep->num)) << 16)); + } + return HAL_OK; +} + +/** + * @brief USB_EPStartXfer : setup and starts a transfer over an EP + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPStartXfer(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep, uint8_t dma) +{ + uint16_t pktcnt = 0; + + /* IN endpoint */ + if (ep->is_in == 1) + { + /* Zero Length Packet? */ + if (ep->xfer_len == 0) + { + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + } + else + { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (((ep->xfer_len + ep->maxpacket -1)/ ep->maxpacket) << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len); + + if (ep->type == EP_TYPE_ISOC) + { + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_MULCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_MULCNT & (1 << 29)); + } + } + + if (dma == 1) + { + USBx_INEP(ep->num)->DIEPDMA = (uint32_t)(ep->dma_addr); + } + else + { + if (ep->type != EP_TYPE_ISOC) + { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (ep->xfer_len > 0) + { + USBx_DEVICE->DIEPEMPMSK |= 1 << ep->num; + } + } + } + + if (ep->type == EP_TYPE_ISOC) + { + if ((USBx_DEVICE->DSTS & ( 1 << 8 )) == 0) + { + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SODDFRM; + } + else + { + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; + } + } + + /* EP enable, IN data in FIFO */ + USBx_INEP(ep->num)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + + if (ep->type == EP_TYPE_ISOC) + { + USB_WritePacket(USBx, ep->xfer_buff, ep->num, ep->xfer_len, dma); + } + } + else /* OUT endpoint */ + { + /* Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT); + + if (ep->xfer_len == 0) + { + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & ep->maxpacket); + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19)) ; + } + else + { + pktcnt = (ep->xfer_len + ep->maxpacket -1)/ ep->maxpacket; + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (pktcnt << 19)); ; + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket * pktcnt)); + } + + if (dma == 1) + { + USBx_OUTEP(ep->num)->DOEPDMA = (uint32_t)ep->xfer_buff; + } + + if (ep->type == EP_TYPE_ISOC) + { + if ((USBx_DEVICE->DSTS & ( 1 << 8 )) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SODDFRM; + } + else + { + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; + } + } + /* EP enable */ + USBx_OUTEP(ep->num)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA); + } + return HAL_OK; +} + +/** + * @brief USB_EP0StartXfer : setup and starts a transfer over the EP 0 + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_EP0StartXfer(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep, uint8_t dma) +{ + /* IN endpoint */ + if (ep->is_in == 1) + { + /* Zero Length Packet? */ + if (ep->xfer_len == 0) + { + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + } + else + { + /* Program the transfer size and packet count + * as follows: xfersize = N * maxpacket + + * short_packet pktcnt = N + (short_packet + * exist ? 1 : 0) + */ + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_XFRSIZ); + USBx_INEP(ep->num)->DIEPTSIZ &= ~(USB_OTG_DIEPTSIZ_PKTCNT); + + if(ep->xfer_len > ep->maxpacket) + { + ep->xfer_len = ep->maxpacket; + } + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_INEP(ep->num)->DIEPTSIZ |= (USB_OTG_DIEPTSIZ_XFRSIZ & ep->xfer_len); + + } + + if (dma == 1) + { + USBx_INEP(ep->num)->DIEPDMA = (uint32_t)(ep->dma_addr); + } + else + { + /* Enable the Tx FIFO Empty Interrupt for this EP */ + if (ep->xfer_len > 0) + { + USBx_DEVICE->DIEPEMPMSK |= 1 << (ep->num); + } + } + + /* EP enable, IN data in FIFO */ + USBx_INEP(ep->num)->DIEPCTL |= (USB_OTG_DIEPCTL_CNAK | USB_OTG_DIEPCTL_EPENA); + } + else /* OUT endpoint */ + { + /* Program the transfer size and packet count as follows: + * pktcnt = N + * xfersize = N * maxpacket + */ + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); + USBx_OUTEP(ep->num)->DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT); + + if (ep->xfer_len > 0) + { + ep->xfer_len = ep->maxpacket; + } + + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19)); + USBx_OUTEP(ep->num)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_XFRSIZ & (ep->maxpacket)); + + + if (dma == 1) + { + USBx_OUTEP(ep->num)->DOEPDMA = (uint32_t)(ep->xfer_buff); + } + + /* EP enable */ + USBx_OUTEP(ep->num)->DOEPCTL |= (USB_OTG_DOEPCTL_CNAK | USB_OTG_DOEPCTL_EPENA); + } + return HAL_OK; +} + +/** + * @brief USB_WritePacket : Writes a packet into the Tx FIFO associated + * with the EP/channel + * @param USBx : Selected device + * @param src : pointer to source buffer + * @param ch_ep_num : endpoint or host channel number + * @param len : Number of bytes to write + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL status + */ +HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src, uint8_t ch_ep_num, uint16_t len, uint8_t dma) +{ + uint32_t count32b= 0 , i= 0; + + if (dma == 0) + { + count32b = (len + 3) / 4; + for (i = 0; i < count32b; i++, src += 4) + { + USBx_DFIFO(ch_ep_num) = *((__packed uint32_t *)src); + } + } + return HAL_OK; +} + +/** + * @brief USB_ReadPacket : read a packet from the Tx FIFO associated + * with the EP/channel + * @param USBx : Selected device + * @param src : source pointer + * @param ch_ep_num : endpoint or host channel number + * @param len : Number of bytes to read + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval pointer to destination buffer + */ +void *USB_ReadPacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *dest, uint16_t len) +{ + uint32_t i=0; + uint32_t count32b = (len + 3) / 4; + + for ( i = 0; i < count32b; i++, dest += 4 ) + { + *(__packed uint32_t *)dest = USBx_DFIFO(0); + + } + return ((void *)dest); +} + +/** + * @brief USB_EPSetStall : set a stall condition over an EP + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPSetStall(USB_OTG_GlobalTypeDef *USBx , USB_OTG_EPTypeDef *ep) +{ + if (ep->is_in == 1) + { + if (((USBx_INEP(ep->num)->DIEPCTL) & USB_OTG_DIEPCTL_EPENA) == 0) + { + USBx_INEP(ep->num)->DIEPCTL &= ~(USB_OTG_DIEPCTL_EPDIS); + } + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_STALL; + } + else + { + if (((USBx_OUTEP(ep->num)->DOEPCTL) & USB_OTG_DOEPCTL_EPENA) == 0) + { + USBx_OUTEP(ep->num)->DOEPCTL &= ~(USB_OTG_DOEPCTL_EPDIS); + } + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_STALL; + } + return HAL_OK; +} + + +/** + * @brief USB_EPClearStall : Clear a stall condition over an EP + * @param USBx : Selected device + * @param ep: pointer to endpoint structure + * @retval HAL status + */ +HAL_StatusTypeDef USB_EPClearStall(USB_OTG_GlobalTypeDef *USBx, USB_OTG_EPTypeDef *ep) +{ + if (ep->is_in == 1) + { + USBx_INEP(ep->num)->DIEPCTL &= ~USB_OTG_DIEPCTL_STALL; + if (ep->type == EP_TYPE_INTR || ep->type == EP_TYPE_BULK) + { + USBx_INEP(ep->num)->DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM; /* DATA0 */ + } + } + else + { + USBx_OUTEP(ep->num)->DOEPCTL &= ~USB_OTG_DOEPCTL_STALL; + if (ep->type == EP_TYPE_INTR || ep->type == EP_TYPE_BULK) + { + USBx_OUTEP(ep->num)->DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM; /* DATA0 */ + } + } + return HAL_OK; +} + +/** + * @brief USB_StopDevice : Stop the usb device mode + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_StopDevice(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t i; + + /* Clear Pending interrupt */ + for (i = 0; i < 15 ; i++) + { + USBx_INEP(i)->DIEPINT = 0xFF; + USBx_OUTEP(i)->DOEPINT = 0xFF; + } + USBx_DEVICE->DAINT = 0xFFFFFFFF; + + /* Clear interrupt masks */ + USBx_DEVICE->DIEPMSK = 0; + USBx_DEVICE->DOEPMSK = 0; + USBx_DEVICE->DAINTMSK = 0; + + /* Flush the FIFO */ + USB_FlushRxFifo(USBx); + USB_FlushTxFifo(USBx , 0x10 ); + + return HAL_OK; +} + +/** + * @brief USB_SetDevAddress : Stop the usb device mode + * @param USBx : Selected device + * @param address : new device address to be assigned + * This parameter can be a value from 0 to 255 + * @retval HAL status + */ +HAL_StatusTypeDef USB_SetDevAddress (USB_OTG_GlobalTypeDef *USBx, uint8_t address) +{ + USBx_DEVICE->DCFG &= ~ (USB_OTG_DCFG_DAD); + USBx_DEVICE->DCFG |= (address << 4) & USB_OTG_DCFG_DAD ; + + return HAL_OK; +} + +/** + * @brief USB_DevConnect : Connect the USB device by enabling the pull-up/pull-down + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevConnect (USB_OTG_GlobalTypeDef *USBx) +{ + USBx_DEVICE->DCTL &= ~USB_OTG_DCTL_SDIS ; + HAL_Delay(3); + + return HAL_OK; +} + +/** + * @brief USB_DevDisconnect : Disconnect the USB device by disabling the pull-up/pull-down + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_DevDisconnect (USB_OTG_GlobalTypeDef *USBx) +{ + USBx_DEVICE->DCTL |= USB_OTG_DCTL_SDIS ; + HAL_Delay(3); + + return HAL_OK; +} + +/** + * @brief USB_ReadInterrupts: return the global USB interrupt status + * @param USBx : Selected device + * @retval HAL status + */ +uint32_t USB_ReadInterrupts (USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t v = 0; + + v = USBx->GINTSTS; + v &= USBx->GINTMSK; + return v; +} + +/** + * @brief USB_ReadDevAllOutEpInterrupt: return the USB device OUT endpoints interrupt status + * @param USBx : Selected device + * @retval HAL status + */ +uint32_t USB_ReadDevAllOutEpInterrupt (USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t v; + v = USBx_DEVICE->DAINT; + v &= USBx_DEVICE->DAINTMSK; + return ((v & 0xffff0000) >> 16); +} + +/** + * @brief USB_ReadDevAllInEpInterrupt: return the USB device IN endpoints interrupt status + * @param USBx : Selected device + * @retval HAL status + */ +uint32_t USB_ReadDevAllInEpInterrupt (USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t v; + v = USBx_DEVICE->DAINT; + v &= USBx_DEVICE->DAINTMSK; + return ((v & 0xFFFF)); +} + +/** + * @brief Returns Device OUT EP Interrupt register + * @param USBx : Selected device + * @param epnum : endpoint number + * This parameter can be a value from 0 to 15 + * @retval Device OUT EP Interrupt register + */ +uint32_t USB_ReadDevOutEPInterrupt (USB_OTG_GlobalTypeDef *USBx , uint8_t epnum) +{ + uint32_t v; + v = USBx_OUTEP(epnum)->DOEPINT; + v &= USBx_DEVICE->DOEPMSK; + return v; +} + +/** + * @brief Returns Device IN EP Interrupt register + * @param USBx : Selected device + * @param epnum : endpoint number + * This parameter can be a value from 0 to 15 + * @retval Device IN EP Interrupt register + */ +uint32_t USB_ReadDevInEPInterrupt (USB_OTG_GlobalTypeDef *USBx , uint8_t epnum) +{ + uint32_t v, msk, emp; + + msk = USBx_DEVICE->DIEPMSK; + emp = USBx_DEVICE->DIEPEMPMSK; + msk |= ((emp >> epnum) & 0x1) << 7; + v = USBx_INEP(epnum)->DIEPINT & msk; + return v; +} + +/** + * @brief USB_ClearInterrupts: clear a USB interrupt + * @param USBx : Selected device + * @param interrupt : interrupt flag + * @retval None + */ +void USB_ClearInterrupts (USB_OTG_GlobalTypeDef *USBx, uint32_t interrupt) +{ + USBx->GINTSTS |= interrupt; +} + +/** + * @brief Returns USB core mode + * @param USBx : Selected device + * @retval return core mode : Host or Device + * This parameter can be one of these values: + * 0 : Host + * 1 : Device + */ +uint32_t USB_GetMode(USB_OTG_GlobalTypeDef *USBx) +{ + return ((USBx->GINTSTS ) & 0x1); +} + + +/** + * @brief Activate EP0 for Setup transactions + * @param USBx : Selected device + * @retval HAL status + */ +HAL_StatusTypeDef USB_ActivateSetup (USB_OTG_GlobalTypeDef *USBx) +{ + /* Set the MPS of the IN EP based on the enumeration speed */ + USBx_INEP(0)->DIEPCTL &= ~USB_OTG_DIEPCTL_MPSIZ; + + if((USBx_DEVICE->DSTS & USB_OTG_DSTS_ENUMSPD) == DSTS_ENUMSPD_LS_PHY_6MHZ) + { + USBx_INEP(0)->DIEPCTL |= 3; + } + USBx_DEVICE->DCTL |= USB_OTG_DCTL_CGINAK; + + return HAL_OK; +} + + +/** + * @brief Prepare the EP0 to start the first control setup + * @param USBx : Selected device + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @param psetup : pointer to setup packet + * @retval HAL status + */ +HAL_StatusTypeDef USB_EP0_OutStart(USB_OTG_GlobalTypeDef *USBx, uint8_t dma, uint8_t *psetup) +{ + USBx_OUTEP(0)->DOEPTSIZ = 0; + USBx_OUTEP(0)->DOEPTSIZ |= (USB_OTG_DOEPTSIZ_PKTCNT & (1 << 19)) ; + USBx_OUTEP(0)->DOEPTSIZ |= (3 * 8); + USBx_OUTEP(0)->DOEPTSIZ |= USB_OTG_DOEPTSIZ_STUPCNT; + + if (dma == 1) + { + USBx_OUTEP(0)->DOEPDMA = (uint32_t)psetup; + /* EP enable */ + USBx_OUTEP(0)->DOEPCTL = 0x80008000; + } + + return HAL_OK; +} + + +/** + * @brief Reset the USB Core (needed after USB clock settings change) + * @param USBx : Selected device + * @retval HAL status + */ +static HAL_StatusTypeDef USB_CoreReset(USB_OTG_GlobalTypeDef *USBx) +{ + uint32_t count = 0; + + /* Wait for AHB master IDLE state. */ + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0); + + /* Core Soft Reset */ + count = 0; + USBx->GRSTCTL |= USB_OTG_GRSTCTL_CSRST; + + do + { + if (++count > 200000) + { + return HAL_TIMEOUT; + } + } + while ((USBx->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST); + + return HAL_OK; +} + + +/** + * @brief USB_HostInit : Initializes the USB OTG controller registers + * for Host mode + * @param USBx : Selected device + * @param cfg : pointer to a USB_OTG_CfgTypeDef structure that contains + * the configuration information for the specified USBx peripheral. + * @retval HAL status + */ +HAL_StatusTypeDef USB_HostInit (USB_OTG_GlobalTypeDef *USBx, USB_OTG_CfgTypeDef cfg) +{ + uint32_t i; + + /* Restart the Phy Clock */ + USBx_PCGCCTL = 0; + + /* Activate VBUS Sensing B */ +#if defined(STM32F446xx) + USBx->GCCFG |= USB_OTG_GCCFG_VBDEN; +#else + USBx->GCCFG &=~ (USB_OTG_GCCFG_VBUSASEN); + USBx->GCCFG &=~ (USB_OTG_GCCFG_VBUSBSEN); + USBx->GCCFG |= USB_OTG_GCCFG_NOVBUSSENS; +#endif /* STM32F446xx */ + + /* Disable the FS/LS support mode only */ + if((cfg.speed == USB_OTG_SPEED_FULL)&& + (USBx != USB_OTG_FS)) + { + USBx_HOST->HCFG |= USB_OTG_HCFG_FSLSS; + } + else + { + USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSS); + } + + /* Make sure the FIFOs are flushed. */ + USB_FlushTxFifo(USBx, 0x10 ); /* all Tx FIFOs */ + USB_FlushRxFifo(USBx); + + /* Clear all pending HC Interrupts */ + for (i = 0; i < cfg.Host_channels; i++) + { + USBx_HC(i)->HCINT = 0xFFFFFFFF; + USBx_HC(i)->HCINTMSK = 0; + } + + /* Enable VBUS driving */ + USB_DriveVbus(USBx, 1); + + HAL_Delay(200); + + /* Disable all interrupts. */ + USBx->GINTMSK = 0; + + /* Clear any pending interrupts */ + USBx->GINTSTS = 0xFFFFFFFF; + + if(USBx == USB_OTG_FS) + { + /* set Rx FIFO size */ + USBx->GRXFSIZ = (uint32_t )0x80; + USBx->DIEPTXF0_HNPTXFSIZ = (uint32_t )(((0x60 << 16)& USB_OTG_NPTXFD) | 0x80); + USBx->HPTXFSIZ = (uint32_t )(((0x40 << 16)& USB_OTG_HPTXFSIZ_PTXFD) | 0xE0); + } + else + { + /* set Rx FIFO size */ + USBx->GRXFSIZ = (uint32_t )0x200; + USBx->DIEPTXF0_HNPTXFSIZ = (uint32_t )(((0x100 << 16)& USB_OTG_NPTXFD) | 0x200); + USBx->HPTXFSIZ = (uint32_t )(((0xE0 << 16)& USB_OTG_HPTXFSIZ_PTXFD) | 0x300); + } + + /* Enable the common interrupts */ + if (cfg.dma_enable == DISABLE) + { + USBx->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM; + } + + /* Enable interrupts matching to the Host mode ONLY */ + USBx->GINTMSK |= (USB_OTG_GINTMSK_PRTIM | USB_OTG_GINTMSK_HCIM |\ + USB_OTG_GINTMSK_SOFM |USB_OTG_GINTSTS_DISCINT|\ + USB_OTG_GINTMSK_PXFRM_IISOOXFRM | USB_OTG_GINTMSK_WUIM); + + return HAL_OK; +} + +/** + * @brief USB_InitFSLSPClkSel : Initializes the FSLSPClkSel field of the + * HCFG register on the PHY type and set the right frame interval + * @param USBx : Selected device + * @param freq : clock frequency + * This parameter can be one of these values: + * HCFG_48_MHZ : Full Speed 48 MHz Clock + * HCFG_6_MHZ : Low Speed 6 MHz Clock + * @retval HAL status + */ +HAL_StatusTypeDef USB_InitFSLSPClkSel(USB_OTG_GlobalTypeDef *USBx , uint8_t freq) +{ + USBx_HOST->HCFG &= ~(USB_OTG_HCFG_FSLSPCS); + USBx_HOST->HCFG |= (freq & USB_OTG_HCFG_FSLSPCS); + + if (freq == HCFG_48_MHZ) + { + USBx_HOST->HFIR = (uint32_t)48000; + } + else if (freq == HCFG_6_MHZ) + { + USBx_HOST->HFIR = (uint32_t)6000; + } + return HAL_OK; +} + +/** +* @brief USB_OTG_ResetPort : Reset Host Port + * @param USBx : Selected device + * @retval HAL status + * @note (1)The application must wait at least 10 ms + * before clearing the reset bit. + */ +HAL_StatusTypeDef USB_ResetPort(USB_OTG_GlobalTypeDef *USBx) +{ + __IO uint32_t hprt0; + + hprt0 = USBx_HPRT0; + + hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + USBx_HPRT0 = (USB_OTG_HPRT_PRST | hprt0); + HAL_Delay (10); /* See Note #1 */ + USBx_HPRT0 = ((~USB_OTG_HPRT_PRST) & hprt0); + return HAL_OK; +} + +/** + * @brief USB_DriveVbus : activate or de-activate vbus + * @param state : VBUS state + * This parameter can be one of these values: + * 0 : VBUS Active + * 1 : VBUS Inactive + * @retval HAL status +*/ +HAL_StatusTypeDef USB_DriveVbus (USB_OTG_GlobalTypeDef *USBx, uint8_t state) +{ + __IO uint32_t hprt0; + + hprt0 = USBx_HPRT0; + hprt0 &= ~(USB_OTG_HPRT_PENA | USB_OTG_HPRT_PCDET |\ + USB_OTG_HPRT_PENCHNG | USB_OTG_HPRT_POCCHNG ); + + if (((hprt0 & USB_OTG_HPRT_PPWR) == 0 ) && (state == 1 )) + { + USBx_HPRT0 = (USB_OTG_HPRT_PPWR | hprt0); + } + if (((hprt0 & USB_OTG_HPRT_PPWR) == USB_OTG_HPRT_PPWR) && (state == 0 )) + { + USBx_HPRT0 = ((~USB_OTG_HPRT_PPWR) & hprt0); + } + return HAL_OK; +} + +/** + * @brief Return Host Core speed + * @param USBx : Selected device + * @retval speed : Host speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + */ +uint32_t USB_GetHostSpeed (USB_OTG_GlobalTypeDef *USBx) +{ + __IO uint32_t hprt0; + + hprt0 = USBx_HPRT0; + return ((hprt0 & USB_OTG_HPRT_PSPD) >> 17); +} + +/** + * @brief Return Host Current Frame number + * @param USBx : Selected device + * @retval current frame number +*/ +uint32_t USB_GetCurrentFrame (USB_OTG_GlobalTypeDef *USBx) +{ + return (USBx_HOST->HFNUM & USB_OTG_HFNUM_FRNUM); +} + +/** + * @brief Initialize a host channel + * @param USBx : Selected device + * @param ch_num : Channel number + * This parameter can be a value from 1 to 15 + * @param epnum : Endpoint number + * This parameter can be a value from 1 to 15 + * @param dev_address : Current device address + * This parameter can be a value from 0 to 255 + * @param speed : Current device speed + * This parameter can be one of these values: + * @arg USB_OTG_SPEED_HIGH: High speed mode + * @arg USB_OTG_SPEED_FULL: Full speed mode + * @arg USB_OTG_SPEED_LOW: Low speed mode + * @param ep_type : Endpoint Type + * This parameter can be one of these values: + * @arg EP_TYPE_CTRL: Control type + * @arg EP_TYPE_ISOC: Isochronous type + * @arg EP_TYPE_BULK: Bulk type + * @arg EP_TYPE_INTR: Interrupt type + * @param mps : Max Packet Size + * This parameter can be a value from 0 to32K + * @retval HAL state + */ +HAL_StatusTypeDef USB_HC_Init(USB_OTG_GlobalTypeDef *USBx, + uint8_t ch_num, + uint8_t epnum, + uint8_t dev_address, + uint8_t speed, + uint8_t ep_type, + uint16_t mps) +{ + + /* Clear old interrupt conditions for this host channel. */ + USBx_HC(ch_num)->HCINT = 0xFFFFFFFF; + + /* Enable channel interrupts required for this transfer. */ + switch (ep_type) + { + case EP_TYPE_CTRL: + case EP_TYPE_BULK: + + USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\ + USB_OTG_HCINTMSK_STALLM |\ + USB_OTG_HCINTMSK_TXERRM |\ + USB_OTG_HCINTMSK_DTERRM |\ + USB_OTG_HCINTMSK_AHBERR |\ + USB_OTG_HCINTMSK_NAKM ; + + if (epnum & 0x80) + { + USBx_HC(ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM; + } + else + { + if(USBx != USB_OTG_FS) + { + USBx_HC(ch_num)->HCINTMSK |= (USB_OTG_HCINTMSK_NYET | USB_OTG_HCINTMSK_ACKM); + } + } + break; + + case EP_TYPE_INTR: + + USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\ + USB_OTG_HCINTMSK_STALLM |\ + USB_OTG_HCINTMSK_TXERRM |\ + USB_OTG_HCINTMSK_DTERRM |\ + USB_OTG_HCINTMSK_NAKM |\ + USB_OTG_HCINTMSK_AHBERR |\ + USB_OTG_HCINTMSK_FRMORM ; + + if (epnum & 0x80) + { + USBx_HC(ch_num)->HCINTMSK |= USB_OTG_HCINTMSK_BBERRM; + } + + break; + case EP_TYPE_ISOC: + + USBx_HC(ch_num)->HCINTMSK = USB_OTG_HCINTMSK_XFRCM |\ + USB_OTG_HCINTMSK_ACKM |\ + USB_OTG_HCINTMSK_AHBERR |\ + USB_OTG_HCINTMSK_FRMORM ; + + if (epnum & 0x80) + { + USBx_HC(ch_num)->HCINTMSK |= (USB_OTG_HCINTMSK_TXERRM | USB_OTG_HCINTMSK_BBERRM); + } + break; + } + + /* Enable the top level host channel interrupt. */ + USBx_HOST->HAINTMSK |= (1 << ch_num); + + /* Make sure host channel interrupts are enabled. */ + USBx->GINTMSK |= USB_OTG_GINTMSK_HCIM; + + /* Program the HCCHAR register */ + USBx_HC(ch_num)->HCCHAR = (((dev_address << 22) & USB_OTG_HCCHAR_DAD) |\ + (((epnum & 0x7F)<< 11) & USB_OTG_HCCHAR_EPNUM)|\ + ((((epnum & 0x80) == 0x80)<< 15) & USB_OTG_HCCHAR_EPDIR)|\ + (((speed == HPRT0_PRTSPD_LOW_SPEED)<< 17) & USB_OTG_HCCHAR_LSDEV)|\ + ((ep_type << 18) & USB_OTG_HCCHAR_EPTYP)|\ + (mps & USB_OTG_HCCHAR_MPSIZ)); + + if (ep_type == EP_TYPE_INTR) + { + USBx_HC(ch_num)->HCCHAR |= USB_OTG_HCCHAR_ODDFRM ; + } + + return HAL_OK; +} + +/** + * @brief Start a transfer over a host channel + * @param USBx : Selected device + * @param hc : pointer to host channel structure + * @param dma: USB dma enabled or disabled + * This parameter can be one of these values: + * 0 : DMA feature not used + * 1 : DMA feature used + * @retval HAL state + */ +#if defined (__CC_ARM) /*!< ARM Compiler */ +#pragma O0 +#elif defined (__GNUC__) /*!< GNU Compiler */ +#pragma GCC optimize ("O0") +#endif /* __CC_ARM */ +HAL_StatusTypeDef USB_HC_StartXfer(USB_OTG_GlobalTypeDef *USBx, USB_OTG_HCTypeDef *hc, uint8_t dma) +{ + uint8_t is_oddframe = 0; + uint16_t len_words = 0; + uint16_t num_packets = 0; + uint16_t max_hc_pkt_count = 256; + uint32_t tmpreg = 0; + + if((USBx != USB_OTG_FS) && (hc->speed == USB_OTG_SPEED_HIGH)) + { + if((dma == 0) && (hc->do_ping == 1)) + { + USB_DoPing(USBx, hc->ch_num); + return HAL_OK; + } + else if(dma == 1) + { + USBx_HC(hc->ch_num)->HCINTMSK &= ~(USB_OTG_HCINTMSK_NYET | USB_OTG_HCINTMSK_ACKM); + hc->do_ping = 0; + } + } + + /* Compute the expected number of packets associated to the transfer */ + if (hc->xfer_len > 0) + { + num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet; + + if (num_packets > max_hc_pkt_count) + { + num_packets = max_hc_pkt_count; + hc->xfer_len = num_packets * hc->max_packet; + } + } + else + { + num_packets = 1; + } + if (hc->ep_is_in) + { + hc->xfer_len = num_packets * hc->max_packet; + } + + /* Initialize the HCTSIZn register */ + USBx_HC(hc->ch_num)->HCTSIZ = (((hc->xfer_len) & USB_OTG_HCTSIZ_XFRSIZ)) |\ + ((num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) |\ + (((hc->data_pid) << 29) & USB_OTG_HCTSIZ_DPID); + + if (dma) + { + /* xfer_buff MUST be 32-bits aligned */ + USBx_HC(hc->ch_num)->HCDMA = (uint32_t)hc->xfer_buff; + } + + is_oddframe = (USBx_HOST->HFNUM & 0x01) ? 0 : 1; + USBx_HC(hc->ch_num)->HCCHAR &= ~USB_OTG_HCCHAR_ODDFRM; + USBx_HC(hc->ch_num)->HCCHAR |= (is_oddframe << 29); + + /* Set host channel enable */ + tmpreg = USBx_HC(hc->ch_num)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hc->ch_num)->HCCHAR = tmpreg; + + if (dma == 0) /* Slave mode */ + { + if((hc->ep_is_in == 0) && (hc->xfer_len > 0)) + { + switch(hc->ep_type) + { + /* Non periodic transfer */ + case EP_TYPE_CTRL: + case EP_TYPE_BULK: + + len_words = (hc->xfer_len + 3) / 4; + + /* check if there is enough space in FIFO space */ + if(len_words > (USBx->HNPTXSTS & 0xFFFF)) + { + /* need to process data in nptxfempty interrupt */ + USBx->GINTMSK |= USB_OTG_GINTMSK_NPTXFEM; + } + break; + /* Periodic transfer */ + case EP_TYPE_INTR: + case EP_TYPE_ISOC: + len_words = (hc->xfer_len + 3) / 4; + /* check if there is enough space in FIFO space */ + if(len_words > (USBx_HOST->HPTXSTS & 0xFFFF)) /* split the transfer */ + { + /* need to process data in ptxfempty interrupt */ + USBx->GINTMSK |= USB_OTG_GINTMSK_PTXFEM; + } + break; + + default: + break; + } + + /* Write packet into the Tx FIFO. */ + USB_WritePacket(USBx, hc->xfer_buff, hc->ch_num, hc->xfer_len, 0); + } + } + + return HAL_OK; +} + +/** + * @brief Read all host channel interrupts status + * @param USBx : Selected device + * @retval HAL state + */ +uint32_t USB_HC_ReadInterrupt (USB_OTG_GlobalTypeDef *USBx) +{ + return ((USBx_HOST->HAINT) & 0xFFFF); +} + +/** + * @brief Halt a host channel + * @param USBx : Selected device + * @param hc_num : Host Channel number + * This parameter can be a value from 1 to 15 + * @retval HAL state + */ +HAL_StatusTypeDef USB_HC_Halt(USB_OTG_GlobalTypeDef *USBx , uint8_t hc_num) +{ + uint32_t count = 0; + + /* Check for space in the request queue to issue the halt. */ + if (((USBx_HC(hc_num)->HCCHAR) & (HCCHAR_CTRL << 18)) || ((USBx_HC(hc_num)->HCCHAR) & (HCCHAR_BULK << 18))) + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS; + + if ((USBx->HNPTXSTS & 0xFFFF) == 0) + { + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR; + do + { + if (++count > 1000) + { + break; + } + } + while ((USBx_HC(hc_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + else + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + } + } + else + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHDIS; + + if ((USBx_HOST->HPTXSTS & 0xFFFF) == 0) + { + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + USBx_HC(hc_num)->HCCHAR &= ~USB_OTG_HCCHAR_EPDIR; + do + { + if (++count > 1000) + { + break; + } + } + while ((USBx_HC(hc_num)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + else + { + USBx_HC(hc_num)->HCCHAR |= USB_OTG_HCCHAR_CHENA; + } + } + + return HAL_OK; +} + +/** + * @brief Initiate Do Ping protocol + * @param USBx : Selected device + * @param hc_num : Host Channel number + * This parameter can be a value from 1 to 15 + * @retval HAL state + */ +HAL_StatusTypeDef USB_DoPing(USB_OTG_GlobalTypeDef *USBx , uint8_t ch_num) +{ + uint8_t num_packets = 1; + uint32_t tmpreg = 0; + + USBx_HC(ch_num)->HCTSIZ = ((num_packets << 19) & USB_OTG_HCTSIZ_PKTCNT) |\ + USB_OTG_HCTSIZ_DOPING; + + /* Set host channel enable */ + tmpreg = USBx_HC(ch_num)->HCCHAR; + tmpreg &= ~USB_OTG_HCCHAR_CHDIS; + tmpreg |= USB_OTG_HCCHAR_CHENA; + USBx_HC(ch_num)->HCCHAR = tmpreg; + + return HAL_OK; +} + +/** + * @brief Stop Host Core + * @param USBx : Selected device + * @retval HAL state + */ +HAL_StatusTypeDef USB_StopHost(USB_OTG_GlobalTypeDef *USBx) +{ + uint8_t i; + uint32_t count = 0; + uint32_t value; + + USB_DisableGlobalInt(USBx); + + /* Flush FIFO */ + USB_FlushTxFifo(USBx, 0x10); + USB_FlushRxFifo(USBx); + + /* Flush out any leftover queued requests. */ + for (i = 0; i <= 15; i++) + { + + value = USBx_HC(i)->HCCHAR ; + value |= USB_OTG_HCCHAR_CHDIS; + value &= ~USB_OTG_HCCHAR_CHENA; + value &= ~USB_OTG_HCCHAR_EPDIR; + USBx_HC(i)->HCCHAR = value; + } + + /* Halt all channels to put them into a known state. */ + for (i = 0; i <= 15; i++) + { + value = USBx_HC(i)->HCCHAR ; + + value |= USB_OTG_HCCHAR_CHDIS; + value |= USB_OTG_HCCHAR_CHENA; + value &= ~USB_OTG_HCCHAR_EPDIR; + + USBx_HC(i)->HCCHAR = value; + do + { + if (++count > 1000) + { + break; + } + } + while ((USBx_HC(i)->HCCHAR & USB_OTG_HCCHAR_CHENA) == USB_OTG_HCCHAR_CHENA); + } + + /* Clear any pending Host interrupts */ + USBx_HOST->HAINT = 0xFFFFFFFF; + USBx->GINTSTS = 0xFFFFFFFF; + USB_EnableGlobalInt(USBx); + return HAL_OK; +} +/** + * @} + */ + +#endif /* defined (HAL_PCD_MODULE_ENABLED) || defined (HAL_HCD_MODULE_ENABLED) */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |