1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
|
//======================================================================
//
// avalanche_entropy_core.v
// ------------------------
// Core functionality for the entropy provider core based on
// an external avalanche noise based source. (or any other source that
// can toggle a single bit input).
//
// Currently the design consists of a counter running at clock speeed.
// When a positive flank event is detected in the noise source the
// current LSB value of the counter is pushed into a 32bit
// entropy collection shift register.
//
// The core provides functionality to measure the time betwee
// positive flank events counted as number of clock cycles. There
// is also access ports for the collected entropy.
//
// No post-processing is currently performed done on the entropy.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module avalanche_entropy_core(
input wire clk,
input wire reset_n,
input wire noise,
input wire enable,
output wire entropy_enabled,
output wire [31 : 0] entropy_data,
output wire entropy_valid,
input wire entropy_ack,
output wire [31 : 0] delta,
output wire [7 : 0] debug,
input wire debug_update
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
// 1M cycles warmup delay.
localparam WARMUP_CYCLES = 24'h0f4240;
localparam DEBUG_DELAY = 32'h002c4b40;
localparam MIN_ENTROPY_BITS = 6'h20;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [23 : 0] warmup_cycle_ctr_reg;
reg [23 : 0] warmup_cycle_ctr_new;
reg warmup_cycle_ctr_we;
reg warmup_done;
reg noise_sample0_reg;
reg noise_sample_reg;
reg flank0_reg;
reg flank1_reg;
reg entropy_bit_reg;
reg [31 : 0] entropy_reg;
reg [31 : 0] entropy_new;
reg entropy_we;
reg entropy_valid_reg;
reg entropy_valid_new;
reg [5 : 0] bit_ctr_reg;
reg [5 : 0] bit_ctr_new;
reg bit_ctr_inc;
reg bit_ctr_we;
reg enable_reg;
reg [31 : 0] cycle_ctr_reg;
reg [31 : 0] cycle_ctr_new;
reg [31 : 0] delta_reg;
reg delta_we;
reg [31 : 0] debug_delay_ctr_reg;
reg [31 : 0] debug_delay_ctr_new;
reg debug_delay_ctr_we;
reg [7 : 0] debug_reg;
reg debug_we;
reg debug_update_reg;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign entropy_valid = entropy_valid_reg & warmup_done;
assign entropy_data = entropy_reg;
assign entropy_enabled = enable_reg & warmup_done;
assign delta = delta_reg;
assign debug = debug_reg;
//----------------------------------------------------------------
// reg_update
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
noise_sample0_reg <= 1'h0;
noise_sample_reg <= 1'h0;
flank0_reg <= 1'h0;
flank1_reg <= 1'h0;
entropy_valid_reg <= 1'h0;
entropy_reg <= 32'h0;
entropy_bit_reg <= 1'h0;
bit_ctr_reg <= 6'h0;
cycle_ctr_reg <= 32'h0;
delta_reg <= 32'h0;
debug_delay_ctr_reg <= 32'h0;
warmup_cycle_ctr_reg <= WARMUP_CYCLES;
debug_reg <= 8'h0;
debug_update_reg <= 1'h0;
enable_reg <= 1'h0;
end
else
begin
noise_sample0_reg <= noise;
noise_sample_reg <= noise_sample0_reg;
flank0_reg <= noise_sample_reg;
flank1_reg <= flank0_reg;
entropy_valid_reg <= entropy_valid_new;
entropy_bit_reg <= ~entropy_bit_reg;
cycle_ctr_reg <= cycle_ctr_new;
debug_update_reg <= debug_update;
enable_reg <= enable;
if (warmup_cycle_ctr_we)
warmup_cycle_ctr_reg <= warmup_cycle_ctr_new;
if (delta_we)
begin
delta_reg <= cycle_ctr_reg;
end
if (bit_ctr_we)
begin
bit_ctr_reg <= bit_ctr_new;
end
if (entropy_we)
begin
entropy_reg <= entropy_new;
end
if (debug_delay_ctr_we)
begin
debug_delay_ctr_reg <= debug_delay_ctr_new;
end
if (debug_we)
begin
debug_reg <= entropy_reg[7 : 0];
end
end
end // reg_update
//----------------------------------------------------------------
// debug_out
//
// Logic that updates the debug port.
//----------------------------------------------------------------
always @*
begin : debug_out
debug_delay_ctr_new = 32'h00000000;
debug_delay_ctr_we = 0;
debug_we = 0;
if (debug_update_reg)
begin
debug_delay_ctr_new = debug_delay_ctr_reg + 1'b1;
debug_delay_ctr_we = 1;
end
if (debug_delay_ctr_reg == DEBUG_DELAY)
begin
debug_delay_ctr_new = 32'h00000000;
debug_delay_ctr_we = 1;
debug_we = 1;
end
end
//----------------------------------------------------------------
// warmup_ctr
//
// Logic for the warmup counter. This counter starts
// decreasing when reset lifts and decreases until reaching zero.
// At zero the counter stops and asserts warmup_done.
//----------------------------------------------------------------
always @*
begin : warmup_ctr
if (warmup_cycle_ctr_reg == 0)
begin
warmup_cycle_ctr_new = 24'h000000;
warmup_cycle_ctr_we = 0;
warmup_done = 1;
end
else
begin
warmup_cycle_ctr_new = warmup_cycle_ctr_reg - 1'b1;
warmup_cycle_ctr_we = 1;
warmup_done = 0;
end
end
//----------------------------------------------------------------
// entropy_collect
//
// We collect entropy by adding the current state of the
// entropy bit register the entropy shift register every time
// we detect a positive flank in the noise source.
//----------------------------------------------------------------
always @*
begin : entropy_collect
entropy_new = 32'h00000000;
entropy_we = 1'b0;
bit_ctr_inc = 1'b0;
if ((flank0_reg) && (!flank1_reg))
begin
entropy_new = {entropy_reg[30 : 0], entropy_bit_reg};
entropy_we = 1'b1;
bit_ctr_inc = 1'b1;
end
end // entropy_collect
//----------------------------------------------------------------
// delta_logic
//
// The logic implements the delta time measuerment system.
//----------------------------------------------------------------
always @*
begin : delta_logic
cycle_ctr_new = cycle_ctr_reg + 1'b1;
delta_we = 1'b0;
if ((flank0_reg) && (!flank1_reg))
begin
cycle_ctr_new = 32'h00000000;
delta_we = 1'b1;
end
end // delta_logic
//----------------------------------------------------------------
// entropy_ack_logic
//
// The logic needed to handle detection that entropy has been
// read and ensure that we collect more than 32 entropy
// bits beforeproviding more entropy.
//----------------------------------------------------------------
always @*
begin : entropy_ack_logic
bit_ctr_new = 6'h00;
bit_ctr_we = 1'b0;
entropy_valid_new = 1'b0;
if (bit_ctr_reg == MIN_ENTROPY_BITS)
begin
entropy_valid_new = 1'b1;
end
if ((bit_ctr_inc) && (bit_ctr_reg < 6'h20))
begin
bit_ctr_new = bit_ctr_reg + 1'b1;
bit_ctr_we = 1'b1;
end
else if (entropy_ack)
begin
bit_ctr_new = 6'h00;
bit_ctr_we = 1'b1;
end
end // entropy_ack_logic
endmodule // avalanche_entropy_core
//======================================================================
// EOF avalanche_entropy_core.v
//======================================================================
|