//======================================================================
//
// avalanche_entropy_core.v
// ------------------------
// Core functionality for the entropy provider core based on
// an external avalanche noise based source. (or any other source that
// can toggle a single bit input).
//
// Currently the design consists of a counter running at clock speeed.
// When a positive flank event is detected in the noise source the
// current LSB value of the counter is pushed into a 32bit
// entropy collection shift register.
//
// The core provides functionality to measure the time betwee
// positive flank events counted as number of clock cycles. There
// is also access ports for the collected entropy.
//
// No post-processing is currently performed done on the entropy.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2014, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module avalanche_entropy_core(
input wire clk,
input wire reset_n,
input wire noise,
input wire enable,
output wire entropy_enabled,
output wire [31 : 0] entropy_data,
output wire entropy_valid,
input wire entropy_ack,
output wire [31 : 0] delta,
output wire [7 : 0] debug,
input wire debug_update
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
// 1M cycles warmup delay.
localparam WARMUP_CYCLES = 24'h0f4240;
localparam DEBUG_DELAY = 32'h002c4b40;
localparam MIN_ENTROPY_BITS = 6'h20;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [23 : 0] warmup_cycle_ctr_reg;
reg [23 : 0] warmup_cycle_ctr_new;
reg warmup_cycle_ctr_we;
reg warmup_done;
reg noise_sample0_reg;
reg noise_sample_reg;
reg flank0_reg;
reg flank1_reg;
reg entropy_bit_reg;
reg [31 : 0] entropy_reg;
reg [31 : 0] entropy_new;
reg entropy_we;
reg entropy_valid_reg;
reg entropy_valid_new;
reg [5 : 0] bit_ctr_reg;
reg [5 : 0] bit_ctr_new;
reg bit_ctr_inc;
reg bit_ctr_we;
reg enable_reg;
reg [31 : 0] cycle_ctr_reg;
reg [31 : 0] cycle_ctr_new;
reg [31 : 0] delta_reg;
reg delta_we;
reg [31 : 0] debug_delay_ctr_reg;
reg [31 : 0] debug_delay_ctr_new;
reg debug_delay_ctr_we;
reg [7 : 0] debug_reg;
reg debug_we;
reg debug_update_reg;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign entropy_valid = entropy_valid_reg & warmup_done;
assign entropy_data = entropy_reg;
assign entropy_enabled = enable_reg & warmup_done;
assign delta = delta_reg;
assign debug = debug_reg;
//----------------------------------------------------------------
// reg_update
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
noise_sample0_reg <= 1'h0;
noise_sample_reg <= 1'h0;
flank0_reg <= 1'h0;
flank1_reg <= 1'h0;
entropy_valid_reg <= 1'h0;
entropy_reg <= 32'h0;
entropy_bit_reg <= 1'h0;
bit_ctr_reg <= 6'h0;
cycle_ctr_reg <= 32'h0;
delta_reg <= 32'h0;
debug_delay_ctr_reg <= 32'h0;
warmup_cycle_ctr_reg <= WARMUP_CYCLES;
debug_reg <= 8'h0;
debug_update_reg <= 1'h0;
enable_reg <= 1'h0;
end
else
begin
noise_sample0_reg <= noise;
noise_sample_reg <= noise_sample0_reg;
flank0_reg <= noise_sample_reg;
flank1_reg <= flank0_reg;
entropy_valid_reg <= entropy_valid_new;
entropy_bit_reg <= ~entropy_bit_reg;
cycle_ctr_reg <= cycle_ctr_new;
debug_update_reg <= debug_update;
enable_reg <= enable;
if (warmup_cycle_ctr_we)
warmup_cycle_ctr_reg <= warmup_cycle_ctr_new;
if (delta_we)
begin
delta_reg <= cycle_ctr_reg;
end
if (bit_ctr_we)
begin
bit_ctr_reg <= bit_ctr_new;
end
if (entropy_we)
begin
entropy_reg <= entropy_new;
end
if (debug_delay_ctr_we)
begin
debug_delay_ctr_reg <= debug_delay_ctr_new;
end
if (debug_we)
begin
debug_reg <= entropy_reg[7 : 0];
end
end
end // reg_update
//----------------------------------------------------------------
// debug_out
//
// Logic that updates the debug port.
//----------------------------------------------------------------
always @*
begin : debug_out
debug_delay_ctr_new = 32'h00000000;
debug_delay_ctr_we = 0;
debug_we = 0;
if (debug_update_reg)
begin
debug_delay_ctr_new = debug_delay_ctr_reg + 1'b1;
debug_delay_ctr_we = 1;
end
if (debug_delay_ctr_reg == DEBUG_DELAY)
begin
debug_delay_ctr_new = 32'h00000000;
debug_delay_ctr_we = 1;
debug_we = 1;
end
end
//----------------------------------------------------------------
// warmup_ctr
//
// Logic for the warmup counter. This counter starts
// decreasing when reset lifts and decreases until reaching zero.
// At zero the counter stops and asserts warmup_done.
//----------------------------------------------------------------
always @*
begin : warmup_ctr
if (warmup_cycle_ctr_reg == 0)
begin
warmup_cycle_ctr_new = 24'h000000;
warmup_cycle_ctr_we = 0;
warmup_done = 1;
end
else
begin
warmup_cycle_ctr_new = warmup_cycle_ctr_reg - 1'b1;
warmup_cycle_ctr_we = 1;
warmup_done = 0;
end
end
//----------------------------------------------------------------
// entropy_collect
//
// We collect entropy by adding the current state of the
// entropy bit register the entropy shift register every time
// we detect a positive flank in the noise source.
//----------------------------------------------------------------
always @*
begin : entropy_collect
entropy_new = 32'h00000000;
entropy_we = 1'b0;
bit_ctr_inc = 1'b0;
if ((flank0_reg) && (!flank1_reg))
begin
entropy_new = {entropy_reg[30 : 0], entropy_bit_reg};
entropy_we = 1'b1;
bit_ctr_inc = 1'b1;
end
end // entropy_collect
//----------------------------------------------------------------
// delta_logic
//
// The logic implements the delta time measuerment system.
//----------------------------------------------------------------
always @*
begin : delta_logic
cycle_ctr_new = cycle_ctr_reg + 1'b1;
delta_we = 1'b0;
if ((flank0_reg) && (!flank1_reg))
begin
cycle_ctr_new = 32'h00000000;
delta_we = 1'b1;
end
end // delta_logic
//----------------------------------------------------------------
// entropy_ack_logic
//
// The logic needed to handle detection that entropy has been
// read and ensure that we collect more than 32 entropy
// bits beforeproviding more entropy.
//----------------------------------------------------------------
always @*
begin : entropy_ack_logic
bit_ctr_new = 6'h00;
bit_ctr_we = 1'b0;
entropy_valid_new = 1'b0;
if (bit_ctr_reg == MIN_ENTROPY_BITS)
begin
entropy_valid_new = 1'b1;
end
if ((bit_ctr_inc) && (bit_ctr_reg < 6'h20))
begin
bit_ctr_new = bit_ctr_reg + 1'b1;
bit_ctr_we = 1'b1;
end
else if (entropy_ack)
begin
bit_ctr_new = 6'h00;
bit_ctr_we = 1'b1;
end
end // entropy_ack_logic
endmodule // avalanche_entropy_core
//======================================================================
// EOF avalanche_entropy_core.v
//======================================================================