1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
//
// simple driver to test "ecdsa256" core in hardware
//
//
// note, that the test program needs a custom bitstream where
// the core is located at offset 0 (without the core selector)
//
// stm32 headers
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
// locations of core registers
#define CORE_ADDR_NAME0 (0x00 << 2)
#define CORE_ADDR_NAME1 (0x01 << 2)
#define CORE_ADDR_VERSION (0x02 << 2)
#define CORE_ADDR_CONTROL (0x08 << 2)
#define CORE_ADDR_STATUS (0x09 << 2)
// locations of data buffers
#define CORE_ADDR_BUF_K (0x20 << 2)
#define CORE_ADDR_BUF_X (0x28 << 2)
#define CORE_ADDR_BUF_Y (0x30 << 2)
// bit maps
#define CORE_CONTROL_BIT_NEXT 0x00000002
#define CORE_STATUS_BIT_READY 0x00000002
// curve selection
#define USE_CURVE 1
#include "ecdsa_test_vector_nsa.h"
#include "ecdsa_test_vector_randomized.h"
#define bool uint32_t // very dirty hack, but works in this particular case
#include "ecdsa_fpga_lowlevel.h"
#include "ecdsa_fpga_multiword.h"
#include "ecdsa_fpga_curve.h"
#undef bool
#define BUF_NUM_WORDS FPGA_OPERAND_NUM_WORDS
//
// test vectors
//
static const uint32_t p256_d_nsa[BUF_NUM_WORDS] = ECDSA_P256_D_NSA_INIT;
static const uint32_t p256_qx_nsa[BUF_NUM_WORDS] = ECDSA_P256_QX_NSA_INIT;
static const uint32_t p256_qy_nsa[BUF_NUM_WORDS] = ECDSA_P256_QY_NSA_INIT;
static const uint32_t p256_k_nsa[BUF_NUM_WORDS] = ECDSA_P256_K_NSA_INIT;
static const uint32_t p256_rx_nsa[BUF_NUM_WORDS] = ECDSA_P256_RX_NSA_INIT;
static const uint32_t p256_ry_nsa[BUF_NUM_WORDS] = ECDSA_P256_RY_NSA_INIT;
static const uint32_t p256_d_random[BUF_NUM_WORDS] = ECDSA_P256_D_RANDOM_INIT;
static const uint32_t p256_qx_random[BUF_NUM_WORDS] = ECDSA_P256_QX_RANDOM_INIT;
static const uint32_t p256_qy_random[BUF_NUM_WORDS] = ECDSA_P256_QY_RANDOM_INIT;
static const uint32_t p256_gx[BUF_NUM_WORDS] = ECDSA_P256_GX_INIT;
static const uint32_t p256_gy[BUF_NUM_WORDS] = ECDSA_P256_GY_INIT;
static const uint32_t p256_hx[BUF_NUM_WORDS] = ECDSA_P256_HX_INIT;
static const uint32_t p256_hy[BUF_NUM_WORDS] = ECDSA_P256_HY_INIT;
static const uint32_t p256_n[BUF_NUM_WORDS] = ECDSA_P256_N_INIT;
static uint32_t p256_zero[BUF_NUM_WORDS];
static uint32_t p256_two [BUF_NUM_WORDS];
static uint32_t p256_n1 [BUF_NUM_WORDS];
static uint32_t p256_n2 [BUF_NUM_WORDS];
//
// prototypes
//
void toggle_yellow_led(void);
int test_p256_multiplier(const uint32_t *k, const uint32_t *px, const uint32_t *py);
//
// test routine
//
int main()
{
int ok;
stm_init();
fmc_init();
led_on(LED_GREEN);
led_off(LED_RED);
led_off(LED_YELLOW);
led_off(LED_BLUE);
uint32_t core_name0;
uint32_t core_name1;
uint32_t core_version;
fmc_read_32(CORE_ADDR_NAME0, &core_name0);
fmc_read_32(CORE_ADDR_NAME1, &core_name1);
fmc_read_32(CORE_ADDR_VERSION, &core_version);
// "ecds", "a256"
if ((core_name0 != 0x65636473) || (core_name1 != 0x61323536)) {
led_off(LED_GREEN);
led_on(LED_RED);
while (1);
}
// prepare more numbers
size_t w;
for (w=0; w<BUF_NUM_WORDS; w++)
{ p256_zero[w] = 0;
p256_two [w] = 0;
p256_n1 [w] = p256_n [w];
p256_n2 [w] = p256_n [w];
}
p256_two[BUF_NUM_WORDS-1] += 2;
p256_n1 [BUF_NUM_WORDS-1] += 1;
p256_n2 [BUF_NUM_WORDS-1] += 2;
// repeat forever
while (1)
{
ok = 1;
ok = ok && test_p256_multiplier(p256_d_nsa, p256_qx_nsa, p256_qy_nsa); /* Q = d * G */
ok = ok && test_p256_multiplier(p256_k_nsa, p256_rx_nsa, p256_ry_nsa); /* R = k * G */
ok = ok && test_p256_multiplier(p256_d_random, p256_qx_random, p256_qy_random); /* Q = d * G */
ok = ok && test_p256_multiplier(p256_n, p256_zero, p256_zero); /* O = n * G */
ok = ok && test_p256_multiplier(p256_n1, p256_gx, p256_gy); /* G = (n + 1) * G */
//
// The following two vectors test the virtually never taken path in the curve point
// addition routine when both input points are the same. During the first test (2 * G)
// the double of the base point is computed at the second doubling step of the multiplication
// algorithm, which does not require any special handling. During the second test the
// precomputed double of the base point (stored in internal read-only memory) is returned,
// because after doubling of G * ((n + 1) / 2) we get G * (n + 1) = G. The adder then has to
// compute G + G for which the formulae don't work, and special handling is required. The two
// test vectors verify that the hardcoded double of the base point matches the one computed
// on the fly. Note that in practice one should never be multiplying by anything larger than (n-1),
// because both the secret key and the per-message (random) number must be from [1, n-1].
//
ok = ok && test_p256_multiplier(p256_two, p256_hx, p256_hy); /* H = 2 * G */
ok = ok && test_p256_multiplier(p256_n2, p256_hx, p256_hy); /* H = (n + 2) * G */
if (!ok) {
led_off(LED_GREEN);
led_on(LED_RED);
}
toggle_yellow_led();
}
}
//
// this routine uses the hardware multiplier to obtain Q(qx,qy), which is the
// scalar multiple of the base point, qx and qy are then compared to the values
// px and py (correct result known in advance)
//
int test_p256_multiplier(const uint32_t *k, const uint32_t *px, const uint32_t *py)
{
int i, num_cyc;
uint32_t reg_control, reg_status;
uint32_t k_word, qx_word, qy_word;
// fill k
for (i=0; i<BUF_NUM_WORDS; i++) {
k_word = k[i];
fmc_write_32(CORE_ADDR_BUF_K + ((BUF_NUM_WORDS - (i + 1)) * sizeof(uint32_t)), k_word);
}
// clear 'next' control bit, then set 'next' control bit again to trigger new operation
reg_control = 0;
fmc_write_32(CORE_ADDR_CONTROL, reg_control);
reg_control = CORE_CONTROL_BIT_NEXT;
fmc_write_32(CORE_ADDR_CONTROL, reg_control);
// wait for 'ready' status bit to be set
num_cyc = 0;
do {
num_cyc++;
fmc_read_32(CORE_ADDR_STATUS, ®_status);
}
while (!(reg_status & CORE_STATUS_BIT_READY));
// read back x and y word-by-word, then compare to the reference values
for (i=0; i<BUF_NUM_WORDS; i++) {
fmc_read_32(CORE_ADDR_BUF_X + (i * sizeof(uint32_t)), &qx_word);
fmc_read_32(CORE_ADDR_BUF_Y + (i * sizeof(uint32_t)), &qy_word);
if ((qx_word != px[BUF_NUM_WORDS - (i + 1)])) return 0;
if ((qy_word != py[BUF_NUM_WORDS - (i + 1)])) return 0;
}
// everything went just fine
return 1;
}
//
// toggle the yellow led to indicate that we're not stuck somewhere
//
void toggle_yellow_led(void)
{
static int led_state = 0;
led_state = !led_state;
if (led_state) led_on(LED_YELLOW);
else led_off(LED_YELLOW);
}
//
// systick
//
void SysTick_Handler(void)
{
HAL_IncTick();
HAL_SYSTICK_IRQHandler();
}
//
// end of file
//
|