//
// simple driver to test "ecdsa256" core in hardware
//
//
// note, that the test program needs a custom bitstream where
// the core is located at offset 0 (without the core selector)
//
// stm32 headers
#include "stm-init.h"
#include "stm-led.h"
#include "stm-fmc.h"
// locations of core registers
#define CORE_ADDR_NAME0 (0x00 << 2)
#define CORE_ADDR_NAME1 (0x01 << 2)
#define CORE_ADDR_VERSION (0x02 << 2)
#define CORE_ADDR_CONTROL (0x08 << 2)
#define CORE_ADDR_STATUS (0x09 << 2)
// locations of data buffers
#define CORE_ADDR_BUF_K (0x20 << 2)
#define CORE_ADDR_BUF_X (0x28 << 2)
#define CORE_ADDR_BUF_Y (0x30 << 2)
// bit maps
#define CORE_CONTROL_BIT_NEXT 0x00000002
#define CORE_STATUS_BIT_READY 0x00000002
// curve selection
#define USE_CURVE 1
#include "../../../user/shatov/ecdsa_fpga_model/ecdsa_model.h"
#define BUF_NUM_WORDS (OPERAND_WIDTH / (sizeof(uint32_t) << 3)) // 8
//
// test vectors
//
static const uint32_t p256_d[BUF_NUM_WORDS] = ECDSA_D;
static const uint32_t p256_qx[BUF_NUM_WORDS] = ECDSA_Q_X;
static const uint32_t p256_qy[BUF_NUM_WORDS] = ECDSA_Q_Y;
static const uint32_t p256_k[BUF_NUM_WORDS] = ECDSA_K;
static const uint32_t p256_rx[BUF_NUM_WORDS] = ECDSA_R_X;
static const uint32_t p256_ry[BUF_NUM_WORDS] = ECDSA_R_Y;
static const uint32_t p256_i[BUF_NUM_WORDS] = ECDSA_ONE;
static const uint32_t p256_gx[BUF_NUM_WORDS] = ECDSA_G_X;
static const uint32_t p256_gy[BUF_NUM_WORDS] = ECDSA_G_Y;
static const uint32_t p256_hx[BUF_NUM_WORDS] = ECDSA_H_X;
static const uint32_t p256_hy[BUF_NUM_WORDS] = ECDSA_H_Y;
static const uint32_t p256_z[BUF_NUM_WORDS] = ECDSA_ZERO;
static const uint32_t p256_n[BUF_NUM_WORDS] = ECDSA_N;
static uint32_t p256_2[BUF_NUM_WORDS]; // 2
static uint32_t p256_n1[BUF_NUM_WORDS]; // n + 1
static uint32_t p256_n2[BUF_NUM_WORDS]; // n + 2
//
// prototypes
//
void toggle_yellow_led(void);
int test_p256_multiplier(const uint32_t *k, const uint32_t *px, const uint32_t *py);
//
// test routine
//
int main()
{
int ok;
stm_init();
fmc_init();
led_on(LED_GREEN);
led_off(LED_RED);
led_off(LED_YELLOW);
led_off(LED_BLUE);
uint32_t core_name0;
uint32_t core_name1;
fmc_read_32(CORE_ADDR_NAME0, &core_name0);
fmc_read_32(CORE_ADDR_NAME1, &core_name1);
// "ecds", "a256"
if ((core_name0 != 0x65636473) || (core_name1 != 0x61323536)) {
led_off(LED_GREEN);
led_on(LED_RED);
while (1);
}
// prepare more numbers
size_t w;
for (w=0; w<BUF_NUM_WORDS; w++)
{ p256_2[w] = p256_z[w]; // p256_2 = p256_z = 0
p256_n1[w] = p256_n[w]; // p256_n1 = p256_n = N
p256_n2[w] = p256_n[w]; // p256_n2 = p256_n = N
}
p256_2[BUF_NUM_WORDS-1] += 2; // p256_2 = 2
p256_n1[BUF_NUM_WORDS-1] += 1; // p256_n1 = N + 1
p256_n2[BUF_NUM_WORDS-1] += 2; // p256_n2 = N + 2
// repeat forever
while (1)
{
ok = 1;
ok = ok && test_p256_multiplier(p256_d, p256_qx, p256_qy); /* Q = d * G */
ok = ok && test_p256_multiplier(p256_k, p256_rx, p256_ry); /* R = k * G */
ok = ok && test_p256_multiplier(p256_z, p256_z, p256_z); /* O = 0 * G */
ok = ok && test_p256_multiplier(p256_i, p256_gx, p256_gy); /* G = 1 * G */
ok = ok && test_p256_multiplier(p256_n, p256_z, p256_z); /* O = n * G */
ok = ok && test_p256_multiplier(p256_n1, p256_gx, p256_gy); /* G = (n + 1) * G */
//
// The following two vectors test the virtually never taken path in the curve point
// addition routine when both input points are the same. During the first test (2 * G)
// the double of the base point is computed at the second doubling step of the multiplication
// algorithm, which does not require any special handling. During the second test the
// precomputed double of the base point (stored in internal read-only memory) is returned,
// because after doubling of G * ((n + 1) / 2) we get G * (n + 1) = G. The adder then has to
// compute G + G for which the formulae don't work, and special handling is required. The two
// test vectors verify that the hardcoded double of the base point matches the one computed
// on the fly. Note that in practice one should never be multiplying by anything larger than (n-1),
// because both the secret key and the per-message (random) number must be from [1, n-1].
//
ok = ok && test_p256_multiplier(p256_2, p256_hx, p256_hy); /* H = 2 * G */
ok = ok && test_p256_multiplier(p256_n2, p256_hx, p256_hy); /* H = (n + 2) * G */
if (!ok) {
led_off(LED_GREEN);
led_on(LED_RED);
}
toggle_yellow_led();
}
}
//
// this routine uses the hardware multiplier to obtain Q(qx,qy), which is the
// scalar multiple of the base point, qx and qy are then compared to the values
// px and py (correct result known in advance)
//
int test_p256_multiplier(const uint32_t *k, const uint32_t *px, const uint32_t *py)
{
int i, num_cyc;
uint32_t reg_control, reg_status;
uint32_t k_word, qx_word, qy_word;
// fill k
for (i=0; i<BUF_NUM_WORDS; i++) {
k_word = k[i];
fmc_write_32(CORE_ADDR_BUF_K + ((BUF_NUM_WORDS - (i + 1)) * sizeof(uint32_t)), &k_word);
}
// clear 'next' control bit, then set 'next' control bit again to trigger new operation
reg_control = 0;
fmc_write_32(CORE_ADDR_CONTROL, ®_control);
reg_control = CORE_CONTROL_BIT_NEXT;
fmc_write_32(CORE_ADDR_CONTROL, ®_control);
// wait for 'ready' status bit to be set
num_cyc = 0;
do {
num_cyc++;
fmc_read_32(CORE_ADDR_STATUS, ®_status);
}
while (!(reg_status & CORE_STATUS_BIT_READY));
// read back x and y word-by-word, then compare to the reference values
for (i=0; i<BUF_NUM_WORDS; i++) {
fmc_read_32(CORE_ADDR_BUF_X + (i * sizeof(uint32_t)), &qx_word);
fmc_read_32(CORE_ADDR_BUF_Y + (i * sizeof(uint32_t)), &qy_word);
if ((qx_word != px[BUF_NUM_WORDS - (i + 1)])) return 0;
if ((qy_word != py[BUF_NUM_WORDS - (i + 1)])) return 0;
}
// everything went just fine
return 1;
}
//
// toggle the yellow led to indicate that we're not stuck somewhere
//
void toggle_yellow_led(void)
{
static int led_state = 0;
led_state = !led_state;
if (led_state) led_on(LED_YELLOW);
else led_off(LED_YELLOW);
}
//
// end of file
//