aboutsummaryrefslogblamecommitdiff
path: root/bench/tb_modular_adder.v
blob: 713ff22322d7ff22ac5bf12af04cf4195814ff07 (plain) (tree)












































                                                                                


















































































































































































































































































































                                                                                                        




                                                                                
//------------------------------------------------------------------------------
//
// tb_modular_adder_256.v
// -----------------------------------------------------------------------------
// Testbench for modular multi-word adder.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2016, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------

//------------------------------------------------------------------------------
`timescale 1ns / 1ps
//------------------------------------------------------------------------------

module tb_modular_adder_256;


   //
   // Test Vectors
   //
   localparam	[255:0]	N	= 256'hffffffff00000001000000000000000000000000ffffffffffffffffffffffff;

   localparam	[255:0]	X_1	= 256'h1ddbd0769df27bab1e234019dad09dccce1e87e2193b417ffa1a3465d7439ecd;
   localparam	[255:0]	Y_1	= 256'h1f67cdc34bac91a072945d212f0a03442fc4855788583ecb7b2e375ad3848210;

   localparam	[255:0]	X_2	= 256'hff563f653b1392a6fa6b0295a280f7a904a11e22d8ae468e220301d8ac232fcf;
   localparam	[255:0]	Y_2	= 256'hf6f53c4b57b25453b68e923fb118e4f753d74af01fc58476dd15a80933453899;


   //
   // Core Parameters
   //
   localparam	WORD_COUNTER_WIDTH	=  3;
   localparam	OPERAND_NUM_WORDS	=  8;


   //
   // Clock (100 MHz)
   //
   reg clk = 1'b0;
   always #5 clk = ~clk;


   //
   // Inputs, Outputs
   //
   reg rst_n;
   reg ena;
   wire rdy;


   //
   // Buffers (X, Y, N)
   //
   wire [WORD_COUNTER_WIDTH-1:0] core_xy_addr;
   wire [WORD_COUNTER_WIDTH-1:0] core_n_addr;
   wire [WORD_COUNTER_WIDTH-1:0] core_s_addr;
   wire 			 core_s_wren;

   wire [                  31:0] core_x_data;
   wire [                  31:0] core_y_data;
   wire [                  31:0] core_n_data;
   wire [                  31:0] core_s_data;

   reg [WORD_COUNTER_WIDTH-1:0]  tb_xyn_addr;
   reg [WORD_COUNTER_WIDTH-1:0]  tb_s_addr;
   reg 				 tb_xyn_wren;

   reg [                  31:0]  tb_x_data;
   reg [                  31:0]  tb_y_data;
   reg [                  31:0]  tb_n_data;
   wire [                  31:0] tb_s_data;

   bram_1rw_1ro_readfirst #
     (
      .MEM_WIDTH			(32),
      .MEM_ADDR_BITS		(WORD_COUNTER_WIDTH)
      )
   bram_x
     (
      .clk		(clk),

      .a_addr	(tb_xyn_addr),
      .a_wr		(tb_xyn_wren),
      .a_in		(tb_x_data),
      .a_out	(),

      .b_addr	(core_xy_addr),
      .b_out	(core_x_data)
      );

   bram_1rw_1ro_readfirst #
     (
      .MEM_WIDTH			(32),
      .MEM_ADDR_BITS		(WORD_COUNTER_WIDTH)
      )
   bram_y
     (
      .clk		(clk),

      .a_addr	(tb_xyn_addr),
      .a_wr		(tb_xyn_wren),
      .a_in		(tb_y_data),
      .a_out	(),

      .b_addr	(core_xy_addr),
      .b_out	(core_y_data)
      );

   bram_1rw_1ro_readfirst #
     (
      .MEM_WIDTH			(32),
      .MEM_ADDR_BITS		(WORD_COUNTER_WIDTH)
      )
   bram_n
     (
      .clk		(clk),

      .a_addr	(tb_xyn_addr),
      .a_wr		(tb_xyn_wren),
      .a_in		(tb_n_data),
      .a_out	(),

      .b_addr	(core_n_addr),
      .b_out	(core_n_data)
      );

   bram_1rw_1ro_readfirst #
     (
      .MEM_WIDTH			(32),
      .MEM_ADDR_BITS		(WORD_COUNTER_WIDTH)
      )
   bram_s
     (
      .clk		(clk),

      .a_addr	(core_s_addr),
      .a_wr		(core_s_wren),
      .a_in		(core_s_data),
      .a_out	(),

      .b_addr	(tb_s_addr),
      .b_out	(tb_s_data)
      );


   //
   // UUT
   //
   modular_adder #
     (
      .WORD_COUNTER_WIDTH	(WORD_COUNTER_WIDTH),
      .OPERAND_NUM_WORDS	(OPERAND_NUM_WORDS)
      )
   uut
     (
      .clk			(clk),
      .rst_n		(rst_n),

      .ena			(ena),
      .rdy			(rdy),

      .ab_addr		(core_xy_addr),
      .n_addr		(core_n_addr),
      .s_addr		(core_s_addr),
      .s_wren		(core_s_wren),

      .a_din		(core_x_data),
      .b_din		(core_y_data),
      .n_din		(core_n_data),
      .s_dout		(core_s_data)
      );


   //
   // Testbench Routine
   //
   reg 				 ok = 1;
   initial begin

      /* initialize control inputs */
      rst_n			= 0;
      ena			= 0;

      tb_xyn_wren	= 0;

      /* wait for some time */
      #200;

      /* de-assert reset */
      rst_n		= 1;

      /* wait for some time */
      #100;

      /* run tests */
      test_modular_adder(X_1, Y_1, N);
      test_modular_adder(X_2, Y_2, N);
      test_modular_adder(Y_1, X_1, N);
      test_modular_adder(Y_2, X_2, N);

      test_modular_adder(X_1, X_2, N);
      test_modular_adder(X_2, X_1, N);
      test_modular_adder(Y_1, Y_2, N);
      test_modular_adder(Y_2, Y_1, N);

      test_modular_adder(X_1, Y_2, N);
      test_modular_adder(Y_2, X_1, N);
      test_modular_adder(X_2, Y_1, N);
      test_modular_adder(Y_1, X_2, N);

      /* print result */
      if (ok)	$display("tb_modular_adder_256: SUCCESS");
      else	$display("tb_modular_adder_256: FAILURE");
      //
      $finish;
      //
   end


   //
   // Test Task
   //
   reg	[256:0]	s;
   wire [255:0] s_dummy = s[255:0];
   reg 		s_ok;

   integer 	w;

   reg [255:0] 	x_shreg;
   reg [255:0] 	y_shreg;
   reg [255:0] 	n_shreg;
   reg [255:0] 	s_shreg;

   task test_modular_adder;

      input	[255:0]	x;
      input [255:0] 	y;
      input [255:0] 	n;

      begin

	 /* start filling memories */
	 tb_xyn_wren	= 1;

	 /* initialize shift registers */
	 x_shreg = x;
	 y_shreg = y;
	 n_shreg = n;

	 /* write all the words */
	 for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin

	    /* set addresses */
	    tb_xyn_addr	= w[WORD_COUNTER_WIDTH-1:0];

	    /* set data words */
	    tb_x_data	= x_shreg[31:0];
	    tb_y_data	= y_shreg[31:0];
	    tb_n_data	= n_shreg[31:0];

	    /* shift inputs */
	    x_shreg = {{32{1'bX}}, x_shreg[255:32]};
	    y_shreg = {{32{1'bX}}, y_shreg[255:32]};
	    n_shreg = {{32{1'bX}}, n_shreg[255:32]};

	    /* wait for 1 clock tick */
	    #10;

	 end

	 /* wipe addresses */
	 tb_xyn_addr	= {WORD_COUNTER_WIDTH{1'bX}};

	 /* wipe data words */
	 tb_x_data	= {32{1'bX}};
	 tb_y_data	= {32{1'bX}};
	 tb_n_data	= {32{1'bX}};

	 /* stop filling memories */
	 tb_xyn_wren	= 0;

	 /* calculate reference value */
	 s = {1'b0, x} + {1'b0, y};
	 if (s >= {1'b0, n})
	   s = s - {1'b0, n};

	 /* start operation */
	 ena = 1;

	 /* clear flag */
	 #10 ena = 0;

	 /* wait for operation to complete */
	 while (!rdy) #10;

	 /* read result */
	 for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin

	    /* set address */
	    tb_s_addr	= w[WORD_COUNTER_WIDTH-1:0];

	    /* wait for 1 clock tick */
	    #10;

	    /* store data word */
	    s_shreg = {tb_s_data, s_shreg[255:32]};

	 end

	 /* compare */
	 s_ok = (s_shreg == s[255:0]);

	 /* display results */
	 $display("test_modular_adder(): %s", s_ok ? "OK" : "ERROR");

	 /* update global flag */
	 ok = ok && s_ok;

      end

   endtask


endmodule

//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------