//------------------------------------------------------------------------------
//
// tb_curve_adder_256.v
// -----------------------------------------------------------------------------
// Testbench for 256-bit curve point adder.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2016, NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
`timescale 1ns / 1ps
//------------------------------------------------------------------------------
module tb_curve_adder_256;
//
// Test Vectors
//
localparam [255:0] PX_1 = 256'ha536512112e4bb911ae72744a914761ddc53700f889c88e583e0edd45c179b08;
localparam [255:0] PY_1 = 256'h239e73bf40f4831ab71ccea072291893ac8582982ea6fec6bd6aaf36ac32d22e;
localparam [255:0] PZ_1 = 256'h32258ae04c5498bb34b29c54a7f95afc10c009540c51731eae164750ca385029;
localparam [255:0] RX_1 = 256'he4fcdd1a151b405b2a567d20d7674031c6d5b207b0b5dcf277015d81784492d5;
localparam [255:0] RY_1 = 256'h4782c540b58988b07bb8e0c5ad3ff562dd45c075a39ee71896d5eb33702dd656;
localparam [255:0] RZ_1 = 256'hae637ff2fd5468780241afb3a8ebaeb8618e86b4a1a211b350546c9e6fea93d4;
localparam [255:0] PX_2 = 256'he58a6470e038f6b261d5a9a72fb2bd96b6bad433ff7baea6a40b5facf5085189;
localparam [255:0] PY_2 = 256'h03dd8785b592307811ee5512e2d713c5dc65f60f01883340fe0f56f858a39474;
localparam [255:0] PZ_2 = 256'h1b4657b1e79c9074fbf7f63f96ce2854db4808afc72841fac623dc68d9bff64d;
localparam [255:0] RX_2 = 256'hc354e99a827a3f1c30f29f6b1d72273eb0daaeb06bb373ed315e305b89d857ca;
localparam [255:0] RY_2 = 256'h0cb054f95589c1fcbe763df3b8d7badd568d5e93a667076dddfc70dcfab74948;
localparam [255:0] RZ_2 = 256'hd79d9170dd628aee82d149715a6ec6cc44426ccae236d2a146edbd15a564ea53;
localparam [255:0] PX_3 = 256'hbf5fe30c79025a0b638b0fd62bf1349aee0a9fc7fc2719291b0c23535c16eb52;
localparam [255:0] PY_3 = 256'h8a637c7c0b9459de664d40a717e1abc0f843f03169fae943e0835cbe767da06b;
localparam [255:0] PZ_3 = 256'h0871d93601d654216912866514a788a92e8a9b6047611bf185d459e204727377;
localparam [255:0] RX_3 = 256'h1ba6259b5b750e4d6e4f490f661646cd9491be16965f47044ac2688048e567c5;
localparam [255:0] RY_3 = 256'h80e55c16f403f8d7282bca628477771a45330567caa5aaab9a54919dbe05e3e4;
localparam [255:0] RZ_3 = 256'hb99663f045c9602b05f23aaaa508e6167d15740be900175dbeceb957a9dad951;
localparam [255:0] PX_4 = 256'hxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx;
localparam [255:0] PY_4 = 256'hxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx;
localparam [255:0] PZ_4 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
localparam [255:0] RX_4 = 256'h6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296; // G.x
localparam [255:0] RY_4 = 256'h4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5; // G.y
localparam [255:0] RZ_4 = 256'h0000000000000000000000000000000000000000000000000000000000000001;
localparam [255:0] PX_5 = 256'h6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296; // G.x
localparam [255:0] PY_5 = 256'h4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5; // G.y
localparam [255:0] PZ_5 = 256'h0000000000000000000000000000000000000000000000000000000000000001;
localparam [255:0] RX_5 = 256'h29d05c193da77b710e86323538b77e1b11f904fea42998be16bd8d744ece7ad0; // H.x
localparam [255:0] RY_5 = 256'hb01cbd1c01e58065711814b583f061e9d431cca994cea1313449bf97c840ae07; // H.y
localparam [255:0] RZ_5 = 256'h0000000000000000000000000000000000000000000000000000000000000001;
localparam [255:0] PX_6 = 256'h6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296; // G.x
localparam [255:0] PY_6 = 256'h4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5; // G.y
localparam [255:0] PZ_6 = 256'h0000000000000000000000000000000000000000000000000000000000000001;
localparam [255:0] RX_6 = 256'h0000000000000000000000000000000000000000000000000000000000000001;
localparam [255:0] RY_6 = 256'h0000000000000000000000000000000000000000000000000000000000000001;
localparam [255:0] RZ_6 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
localparam [255:0] Q = 256'hffffffff00000001000000000000000000000000ffffffffffffffffffffffff;
//
// Core Parameters
//
localparam WORD_COUNTER_WIDTH = 3;
localparam OPERAND_NUM_WORDS = 8;
//
// Clock (100 MHz)
//
reg clk = 1'b0;
always #5 clk = ~clk;
//
// Inputs, Outputs
//
reg rst_n;
reg ena;
wire rdy;
//
// Buffers (PX, PY, PZ, RX, RY, RZ, Q)
//
wire [WORD_COUNTER_WIDTH-1:0] core_px_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_py_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_pz_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_rx_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_ry_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_rz_addr;
wire [WORD_COUNTER_WIDTH-1:0] core_q_addr;
wire core_rx_wren;
wire core_ry_wren;
wire core_rz_wren;
wire [ 32-1:0] core_px_data;
wire [ 32-1:0] core_py_data;
wire [ 32-1:0] core_pz_data;
wire [ 32-1:0] core_rx_data_wr;
wire [ 32-1:0] core_ry_data_wr;
wire [ 32-1:0] core_rz_data_wr;
wire [ 32-1:0] core_rx_data_rd;
wire [ 32-1:0] core_ry_data_rd;
wire [ 32-1:0] core_rz_data_rd;
wire [ 32-1:0] core_q_data;
reg [WORD_COUNTER_WIDTH-1:0] tb_xyzq_addr;
reg tb_xyzq_wren;
reg [ 31:0] tb_px_data;
reg [ 31:0] tb_py_data;
reg [ 31:0] tb_pz_data;
wire [ 31:0] tb_rx_data;
wire [ 31:0] tb_ry_data;
wire [ 31:0] tb_rz_data;
reg [ 31:0] tb_q_data;
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_px
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_px_data), .a_out(),
.b_addr(core_px_addr), .b_out(core_px_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_py
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_py_data), .a_out(),
.b_addr(core_py_addr), .b_out(core_py_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_pz
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_pz_data), .a_out(),
.b_addr(core_pz_addr), .b_out(core_pz_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_q
( .clk(clk),
.a_addr(tb_xyzq_addr), .a_wr(tb_xyzq_wren), .a_in(tb_q_data), .a_out(),
.b_addr(core_q_addr), .b_out(core_q_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_rx
( .clk(clk),
.a_addr(core_rx_addr), .a_wr(core_rx_wren), .a_in(core_rx_data_wr), .a_out(core_rx_data_rd),
.b_addr(tb_xyzq_addr), .b_out(tb_rx_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_ry
( .clk(clk),
.a_addr(core_ry_addr), .a_wr(core_ry_wren), .a_in(core_ry_data_wr), .a_out(core_ry_data_rd),
.b_addr(tb_xyzq_addr), .b_out(tb_ry_data)
);
bram_1rw_1ro_readfirst # (.MEM_WIDTH(32), .MEM_ADDR_BITS(WORD_COUNTER_WIDTH))
bram_rz
( .clk(clk),
.a_addr(core_rz_addr), .a_wr(core_rz_wren), .a_in(core_rz_data_wr), .a_out(core_rz_data_rd),
.b_addr(tb_xyzq_addr), .b_out(tb_rz_data)
);
//
// Opcode
//
wire [ 5: 0] add_uop_addr;
wire [19: 0] add_uop;
uop_add_rom add_rom
(
.clk (clk),
.addr (add_uop_addr),
.data (add_uop)
);
//
// UUT
//
curve_dbl_add_256 uut
(
.clk (clk),
.rst_n (rst_n),
.ena (ena),
.rdy (rdy),
.uop_addr (add_uop_addr),
.uop (add_uop),
.px_addr (core_px_addr),
.py_addr (core_py_addr),
.pz_addr (core_pz_addr),
.rx_addr (core_rx_addr),
.ry_addr (core_ry_addr),
.rz_addr (core_rz_addr),
.q_addr (core_q_addr),
.rx_wren (core_rx_wren),
.ry_wren (core_ry_wren),
.rz_wren (core_rz_wren),
.px_din (core_px_data),
.py_din (core_py_data),
.pz_din (core_pz_data),
.rx_din (core_rx_data_rd),
.ry_din (core_ry_data_rd),
.rz_din (core_rz_data_rd),
.rx_dout (core_rx_data_wr),
.ry_dout (core_ry_data_wr),
.rz_dout (core_rz_data_wr),
.q_din (core_q_data)
);
//
// Testbench Routine
//
reg ok = 1;
initial begin
/* initialize control inputs */
rst_n = 0;
ena = 0;
/* wait for some time */
#200;
/* de-assert reset */
rst_n = 1;
/* wait for some time */
#100;
/* run tests */
test_curve_adder(PX_1, PY_1, PZ_1, RX_1, RY_1, RZ_1);
test_curve_adder(PX_2, PY_2, PZ_2, RX_2, RY_2, RZ_2);
test_curve_adder(PX_3, PY_3, PZ_3, RX_3, RY_3, RZ_3);
test_curve_adder(PX_4, PY_4, PZ_4, RX_4, RY_4, RZ_4);
test_curve_adder(PX_5, PY_5, PZ_5, RX_5, RY_5, RZ_5);
test_curve_adder(PX_6, Q - PY_6, PZ_6, RX_6, RY_6, RZ_6);
/* print result */
if (ok) $display("tb_curve_adder_256: SUCCESS");
else $display("tb_curve_adder_256: FAILURE");
//
$finish;
//
end
//
// Test Task
//
reg t_ok;
integer w;
task test_curve_adder;
input [255:0] px;
input [255:0] py;
input [255:0] pz;
input [255:0] rx;
input [255:0] ry;
input [255:0] rz;
reg [255:0] px_shreg;
reg [255:0] py_shreg;
reg [255:0] pz_shreg;
reg [255:0] rx_shreg;
reg [255:0] ry_shreg;
reg [255:0] rz_shreg;
reg [255:0] q_shreg;
begin
/* start filling memories */
tb_xyzq_wren = 1;
/* initialize shift registers */
px_shreg = px;
py_shreg = py;
pz_shreg = pz;
q_shreg = Q;
/* write all the words */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set addresses */
tb_xyzq_addr = w[WORD_COUNTER_WIDTH-1:0];
/* set data words */
tb_px_data = px_shreg[31:0];
tb_py_data = py_shreg[31:0];
tb_pz_data = pz_shreg[31:0];
tb_q_data = q_shreg[31:0];
/* shift inputs */
px_shreg = {{32{1'bX}}, px_shreg[255:32]};
py_shreg = {{32{1'bX}}, py_shreg[255:32]};
pz_shreg = {{32{1'bX}}, pz_shreg[255:32]};
q_shreg = {{32{1'bX}}, q_shreg[255:32]};
/* wait for 1 clock tick */
#10;
end
/* wipe addresses */
tb_xyzq_addr = {WORD_COUNTER_WIDTH{1'bX}};
/* wipe data words */
tb_px_data = {32{1'bX}};
tb_py_data = {32{1'bX}};
tb_pz_data = {32{1'bX}};
tb_q_data = {32{1'bX}};
/* stop filling memories */
tb_xyzq_wren = 0;
/* start operation */
ena = 1;
/* clear flag */
#10 ena = 0;
/* wait for operation to complete */
while (!rdy) #10;
/* read result */
for (w=0; w<OPERAND_NUM_WORDS; w=w+1) begin
/* set address */
tb_xyzq_addr = w[WORD_COUNTER_WIDTH-1:0];
/* wait for 1 clock tick */
#10;
/* store data word */
rx_shreg = {tb_rx_data, rx_shreg[255:32]};
ry_shreg = {tb_ry_data, ry_shreg[255:32]};
rz_shreg = {tb_rz_data, rz_shreg[255:32]};
end
/* compare */
t_ok = (rx_shreg == rx) &&
(ry_shreg == ry) &&
(rz_shreg == rz);
/* display results */
$display("test_curve_adder(): %s", t_ok ? "OK" : "ERROR");
/* update global flag */
ok = ok && t_ok;
end
endtask
endmodule
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------