aboutsummaryrefslogtreecommitdiff
path: root/modexpng_fpga_model.py
blob: c73532fc0f8ffc62f473e3b4ed1a10a10baeb077 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
#!/usr/bin/python3
#
#
# ModExpNG core math model.
#
#
# Copyright (c) 2019, NORDUnet A/S
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
#   be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#


# -------
# Imports
#--------

import sys
import importlib


# --------------
# Model Settings
# --------------

# length of public key
KEY_LENGTH = 1024

# how many parallel multipliers to use
NUM_MULTS  = 8


# ---------------
# Internal Values
# ---------------

# half of key length
_KEY_LENGTH_HALF = KEY_LENGTH // 2

# width of internal math pipeline
_WORD_WIDTH = 16

# folder with test vector scripts
_VECTOR_PATH = "/vector"

# name of test vector class
_VECTOR_CLASS = "Vector"


# ------------------
# Debugging Settings
# ------------------
DUMP_VECTORS = False
DUMP_INDICES = False
DUMP_MACS_CLEARING = False
DUMP_MACS_ACCUMULATION = False
DUMP_MULT_PARTS = False
DUMP_RCMB = True


#
# Multi-Precision Integer
#
class ModExpNG_Operand():

    def __init__(self, number, length, words = None):

        if words is None:

            # length must be divisible by word width
            if (length % _WORD_WIDTH) > 0:
                raise Exception("Bad number length!")

            self._init_from_number(number, length)

        else:

            # length must match words count
            if len(words) != length:
                raise Exception("Bad words count!")

            self._init_from_words(words, length)

    def format_verilog_concat(self, name):

        for i in range(len(self.words)):
            if i > 0:
                if (i % 4) == 0: print("")
                else:            print(" ", end='')
            print("%s[%2d] = 17'h%05x;" % (name, i, self.words[i]), end='')
        print("")

    def _init_from_words(self, words, count):

        for i in range(count):

            # word must not exceed 17 bits
            if words[i] >= (2 ** (_WORD_WIDTH + 1)):
                raise Exception("Word is too large!")

        self.words = words

    def _init_from_number(self, number, length):

        num_hexchars_per_word = _WORD_WIDTH // 4
        num_hexchars_total = length // num_hexchars_per_word

        value_hex = format(number, 'x')

        # value must not be larger than specified, but it can be smaller, so
        # we may need to prepend it with zeroes
        if len(value_hex) > num_hexchars_total:
            raise Exception("Number is too large!")
        else:
            while len(value_hex) < num_hexchars_total:
                value_hex = "0" + value_hex

        # create empty list
        self.words = list()

        # fill in words
        while len(value_hex) > 0:
            value_hex_part = value_hex[-num_hexchars_per_word:]
            value_hex = value_hex[:-num_hexchars_per_word]
            self.words.append(int(value_hex_part, 16))

    def number(self):
        ret = 0
        shift = 0
        for word in self.words:
            ret += word << shift
            shift += _WORD_WIDTH
        return ret


#
# Test Vector
#
class ModExpNG_TestVector():

    def __init__(self):

        # format target filename
        filename = "vector_" + str(KEY_LENGTH) + "_randomized"

        # add ./vector to import search path
        sys.path.insert(1, sys.path[0] + _VECTOR_PATH)

        # import from filename
        vector_module = importlib.import_module(filename)

        # get vector class
        vector_class = getattr(vector_module, _VECTOR_CLASS)

        # instantiate vector class
        vector_inst = vector_class()

        # obtain parts of vector
        self.m        = ModExpNG_Operand(vector_inst.m,         KEY_LENGTH)
        self.n        = ModExpNG_Operand(vector_inst.n,         KEY_LENGTH)
        self.d        = ModExpNG_Operand(vector_inst.d,         KEY_LENGTH)
        self.p        = ModExpNG_Operand(vector_inst.p,        _KEY_LENGTH_HALF)
        self.q        = ModExpNG_Operand(vector_inst.q,        _KEY_LENGTH_HALF)
        self.dp       = ModExpNG_Operand(vector_inst.dp,       _KEY_LENGTH_HALF)
        self.dq       = ModExpNG_Operand(vector_inst.dq,       _KEY_LENGTH_HALF)
        self.qinv     = ModExpNG_Operand(vector_inst.qinv,     _KEY_LENGTH_HALF)
        self.n_factor = ModExpNG_Operand(vector_inst.n_factor,  KEY_LENGTH)
        self.p_factor = ModExpNG_Operand(vector_inst.p_factor, _KEY_LENGTH_HALF)
        self.q_factor = ModExpNG_Operand(vector_inst.q_factor, _KEY_LENGTH_HALF)
        self.n_coeff  = ModExpNG_Operand(vector_inst.n_coeff,   KEY_LENGTH      + _WORD_WIDTH)
        self.p_coeff  = ModExpNG_Operand(vector_inst.p_coeff,  _KEY_LENGTH_HALF + _WORD_WIDTH)
        self.q_coeff  = ModExpNG_Operand(vector_inst.q_coeff,  _KEY_LENGTH_HALF + _WORD_WIDTH)
        self.x        = ModExpNG_Operand(vector_inst.x,         KEY_LENGTH)
        self.y        = ModExpNG_Operand(vector_inst.y,         KEY_LENGTH)


class ModExpNG_PartRecombinator():

    def _bit_select(self, x, msb, lsb):
        y = 0
        for pos in range(lsb, msb+1):
            y |= (x & (1 << pos)) >> lsb
        return y

    def _flush_pipeline(self, dump):
        self.z0, self.y0, self.x0 = 0, 0, 0
        if dump and DUMP_RCMB:
            print("RCMB -> flush()")

    def _push_pipeline(self, part, dump):

        # split next part into 16-bit words
        z = self._bit_select(part, 46, 32)
        y = self._bit_select(part, 31, 16)
        x = self._bit_select(part, 15,  0)

        # shift to the right
        z1 = z
        y1 = y + self.z0
        x1 = x + self.y0 + (self.x0 >> 16) # IMPORTANT: This carry can be up to two bits wide!!

        # save lower 16 bits of the rightmost cell
        t = self.x0 & 0xffff

        # update internal latches
        self.z0, self.y0, self.x0 = z1, y1, x1

        # dump
        if dump and DUMP_RCMB:
            print("RCMB -> push(): part = 0x%012x, word = 0x%04x" % (part, t))
        
        # done
        return t

    def recombine_square(self, parts, ab_num_words, dump):

        # empty result so far
        words = list()

        # flush recombinator pipeline
        self._flush_pipeline(dump)

        # the first tick produces null result, the last part produces
        # two words, so we need (2*n - 1) + 2 = 2*n + 1 ticks total
        # and should only save the result word during the last 2 * n ticks
        for i in range(2 * ab_num_words + 1):

            next_part = parts[i] if i < (2 * ab_num_words - 1) else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words.append(next_word)

        return words

    def recombine_triangle(self, parts, ab_num_words, dump):

        # empty result so far
        words = list()

        # flush recombinator pipeline
        self._flush_pipeline(dump)

        # the first tick produces null result, so we need n + 1 + 1 = n + 2
        # ticks total and should only save the result word during the last n ticks
        for i in range(ab_num_words + 2):

            next_part = parts[i] if i < (ab_num_words + 1) else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words.append(next_word)

        return words

    def recombine_rectangle(self, parts, ab_num_words, dump):

        # empty result so far
        words = list()

        # flush recombinator pipeline
        self._flush_pipeline(dump)

        # the first tick produces null result, the last part produces
        # two words, so we need 2 * n + 2 ticks total and should only save
        # the result word during the last 2 * n + 1 ticks
        for i in range(2 * ab_num_words + 2):

            next_part = parts[i] if i < (2 * ab_num_words) else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words.append(next_word)

        return words


class ModExpNG_WordMultiplier():

    def __init__(self):

        self._macs = list()
        self._indices = list()

        self._mac_aux = list()
        self._index_aux = list()

        for x in range(NUM_MULTS):
            self._macs.append(0)
            self._indices.append(0)

        self._mac_aux.append(0)
        self._index_aux.append(0)

    def _clear_all_macs(self):
        for x in range(NUM_MULTS):
            self._macs[x] = 0

    def _clear_one_mac(self, x):
        self._macs[x] = 0

    def _clear_mac_aux(self):
        self._mac_aux[0] = 0

    def _update_one_mac(self, x, value):
        self._macs[x] += value

    def _update_mac_aux(self, value):
        self._mac_aux[0] += value

    def _preset_indices(self, col):
        for x in range(len(self._indices)):
            self._indices[x] = col * len(self._indices) + x

    def _preset_index_aux(self, num_cols):
        self._index_aux[0] = num_cols * len(self._indices)

    def _rotate_indices(self, num_words):
        for x in range(len(self._indices)):
            if self._indices[x] > 0:
                self._indices[x] -= 1
            else:
                self._indices[x] = num_words - 1

    def _rotate_index_aux(self):
        self._index_aux[0] -= 1

    def _mult_store_part(self, parts, time, column, part_index, mac_index, dump):
        parts[part_index] = self._macs[mac_index]
        if dump and DUMP_MULT_PARTS:
            print("t=%2d, col=%2d > parts[%2d]: mac[%d] = 0x%012x" %
                (time, column, part_index, mac_index, parts[part_index]))
                
    def multiply_square(self, a_wide, b_narrow, ab_num_words, dump=False):

        if dump: print("multiply_square()")

        num_cols = ab_num_words // NUM_MULTS

        parts = list()
        for i in range(2 * ab_num_words - 1):
            parts.append(0)

        for col in range(num_cols):

            for t in range(ab_num_words):

                if t == 0: self._preset_indices(col)    
                else:      self._rotate_indices(ab_num_words)

                if t == 0:
                    self._clear_all_macs()
                    if dump and DUMP_MACS_CLEARING:
                        print("t= 0, col=%2d > clear > all" % (col))
                else:
                    t1 = t - 1
                    if (t1 // 8) == col:
                        self._clear_one_mac(t1 % NUM_MULTS)
                        if dump and DUMP_MACS_CLEARING:
                            print("t=%2d, col=%2d > clear > x=%d:" % (t, col, t1 % NUM_MULTS))


                if dump and DUMP_INDICES:
                    print("t=%2d, col=%2d > indices:" % (t, col), end='')
                    for i in range(NUM_MULTS):
                        print(" %2d" % self._indices[i], end='')
                    print("")

                # current b-word
                bt = b_narrow.words[t]

                # multiply by a-words
                for x in range(NUM_MULTS):
                    ax = a_wide.words[self._indices[x]]
                    self._update_one_mac(x, ax * bt)

                    if t == (col * NUM_MULTS + x):
                        part_index = t
                        #self._mult_store_part(parts, t, col, part_index, self._macs[x], dump)
                        self._mult_store_part(parts, t, col, part_index, x, dump)

                            

                if dump and DUMP_MACS_ACCUMULATION:
                    print("t=%2d, col=%2d > "% (t, col), end='')
                    for i in range(NUM_MULTS):
                        if i > 0: print(" | ", end='')
                        print("mac[%d]: 0x%012x" % (i, self._macs[i]), end='')
                    print("")

                # save the uppers part of product at end of column,
                # for the last column don't save the very last part
                if t == (ab_num_words - 1):
                    for x in range(NUM_MULTS):
                        if not (col == (num_cols - 1) and x == (NUM_MULTS - 1)):
                            part_index = ab_num_words + col * NUM_MULTS + x
                            #self._mult_store_part(parts, t, col, part_index, self._macs[x], dump)
                            self._mult_store_part(parts, t, col, part_index, x, dump)

        return parts

    def multiply_triangle(self, a_wide, b_narrow, ab_num_words):

        num_cols = ab_num_words // NUM_MULTS

        parts = list()
        for i in range(ab_num_words + 1):
            parts.append(0)

        for col in range(num_cols):

            last_col = col == (num_cols - 1)

            self._clear_all_macs()
            self._preset_indices(col)

            if last_col:
                self._clear_mac_aux()
                self._preset_index_aux(num_cols)

            for t in range(ab_num_words + 1):

                # current b-word
                bt = b_narrow.words[t]

                # multiply by a-words
                for x in range(NUM_MULTS):
                    ax = a_wide.words[self._indices[x]]
                    self._update_one_mac(x, ax * bt)

                    if t == (col * NUM_MULTS + x):
                        parts[t] = self._macs[x]

                # aux multiplier
                if last_col:
                    ax = a_wide.words[self._index_aux[0]]
                    self._update_mac_aux(ax * bt)

                    if t == ab_num_words:
                        parts[t] = self._mac_aux[0]

                # shortcut
                if not last_col:
                    if t == (NUM_MULTS * (col + 1) - 1): break

                # advance indices
                self._rotate_indices(ab_num_words)
                if last_col:
                    self._rotate_index_aux()

        return parts

    def multiply_rectangle(self, a_wide, b_narrow, ab_num_words):

        num_cols = ab_num_words // NUM_MULTS

        parts = list()
        for i in range(2 * ab_num_words):
            parts.append(0)

        for col in range(num_cols):

            self._clear_all_macs()
            self._preset_indices(col)

            for t in range(ab_num_words+1):

                # current b-word
                bt = b_narrow.words[t]

                # multiply by a-words
                for x in range(NUM_MULTS):
                    ax = a_wide.words[self._indices[x]]
                    self._update_one_mac(x, ax * bt)

                    # don't save one value for the very last time instant per column
                    if t < ab_num_words and t == (col * NUM_MULTS + x):
                        parts[t] = self._macs[x]
                        self._clear_one_mac(x)

                # save the uppers part of product at end of column
                if t == ab_num_words:
                    for x in range(NUM_MULTS):
                        parts[ab_num_words + col * NUM_MULTS + x] = self._macs[x]

                self._rotate_indices(ab_num_words)

        return parts


class ModExpNG_LowlevelOperator():

    def __init__(self):
        self._word_mask = 0
        for x in range(_WORD_WIDTH):
            self._word_mask |= (1 << x)

    def _check_word(self, a):
        if a < 0 or a >= (2 ** _WORD_WIDTH):
            raise Exception("Word out of range!")

    def _check_carry_borrow(self, cb):
        if cb < 0 or cb > 1:
            raise Exception("Carry or borrow out of range!")

    def add_words(self, a, b, c_in):

        self._check_word(a)
        self._check_word(b)
        self._check_carry_borrow(c_in)

        sum = a + b + c_in

        sum_s = sum & self._word_mask
        sum_c = (sum >> _WORD_WIDTH) & 1

        return (sum_c, sum_s)

    def sub_words(self, a, b, b_in):
        self._check_word(a)
        self._check_word(b)
        self._check_carry_borrow(b_in)

        dif = a - b - b_in

        if dif < 0:
            dif_b = 1
            dif_d = dif + 2 ** _WORD_WIDTH
        else:
            dif_b = 0
            dif_d = dif

        return (dif_b, dif_d)


class ModExpNG_Worker():

    def __init__(self):
        self.recombinator = ModExpNG_PartRecombinator()
        self.multiplier   = ModExpNG_WordMultiplier()
        self.lowlevel     = ModExpNG_LowlevelOperator()

    def exponentiate(self, iz, bz, e, n, n_factor, n_coeff, num_words):

        # working variables
        t1, t2 = iz, bz

        # length-1, length-2, length-3, ..., 1, 0 (left-to-right)
        for bit in range(_WORD_WIDTH * num_words - 1, -1, -1):

            if e.number() & (1 << bit):
                p1 = self.multiply(t1, t2, n, n_coeff, num_words)
                p2 = self.multiply(t2, t2, n, n_coeff, num_words)
            else:
                p1 = self.multiply(t1, t1, n, n_coeff, num_words)
                p2 = self.multiply(t2, t1, n, n_coeff, num_words)

            t1, t2 = p1, p2

            if (bit % 8) == 0:
                pct = float((_WORD_WIDTH * num_words - bit) / (_WORD_WIDTH * num_words)) * 100.0
                print("\rpct: %5.1f%%" % pct, end='')

        print("")

        return t1

    def subtract(self, a, b, n, ab_num_words):

        c_in = 0
        b_in = 0

        ab = list()
        ab_n = list()

        for x in range(ab_num_words):

            a_word = a.words[x]
            b_word = b.words[x]

            (b_out, d_out) = self.lowlevel.sub_words(a_word, b_word, b_in)
            (c_out, s_out) = self.lowlevel.add_words(d_out, n.words[x], c_in)

            ab.append(d_out)
            ab_n.append(s_out)

            (c_in, b_in) = (c_out, b_out)

        d = ab if not b_out else ab_n

        return ModExpNG_Operand(None, ab_num_words, d)

    def add(self, a, b, ab_num_words):

        c_in = 0

        ab = list()

        for x in range(2 * ab_num_words):

            a_word = a.words[x] if x < ab_num_words else 0
            b_word = b.words[x]

            (c_out, s_out) = self.lowlevel.add_words(a_word, b_word, c_in)

            ab.append(s_out)

            c_in = c_out

        return ModExpNG_Operand(None, 2*ab_num_words, ab)

    def multiply(self, a, b, n, n_coeff, ab_num_words, reduce_only=False, multiply_only=False, dump=False):

        if dump and DUMP_VECTORS:
            print("num_words = %d" % ab_num_words)
            a.format_verilog_concat("A")
            b.format_verilog_concat("B")
            n.format_verilog_concat("N")
            n_coeff.format_verilog_concat("N_COEFF")

        # 1.
        if reduce_only:
            ab = a
        else:
            ab_parts = self.multiplier.multiply_square(a, b, ab_num_words, dump)
            ab_words = self.recombinator.recombine_square(ab_parts, ab_num_words, dump)
            ab = ModExpNG_Operand(None, 2 * ab_num_words, ab_words)

        if multiply_only:
            return ModExpNG_Operand(None, 2*ab_num_words, ab_words)

        # 2.
        q_parts = self.multiplier.multiply_triangle(ab, n_coeff, ab_num_words)
        q_words = self.recombinator.recombine_triangle(q_parts, ab_num_words, dump)
        q = ModExpNG_Operand(None, ab_num_words + 1, q_words)

        # 3.
        m_parts = self.multiplier.multiply_rectangle(n, q, ab_num_words)
        m_words = self.recombinator.recombine_rectangle(m_parts, ab_num_words, dump)
        m = ModExpNG_Operand(None, 2 * ab_num_words + 1, m_words)

        # 4.
        r_xwords = list()
        for i in range(2*ab_num_words):
            r_xwords.append(ab.words[i] + m.words[i])

        r_xwords.append(m.words[2 * ab_num_words])

        cy = 0
        for i in range(ab_num_words+1):
            s = r_xwords[i] + cy
            cy = s >> 16

        R = list()
        for i in range(ab_num_words):
            R.append(0)

        R[0] += cy # !!!

        for i in range(ab_num_words):
            R[i] += r_xwords[ab_num_words + i + 1]

        return ModExpNG_Operand(None, ab_num_words, R)

    def reduce(self, a):
        carry = 0
        for x in range(len(a.words)):
            a.words[x] += carry
            carry = (a.words[x] >> _WORD_WIDTH) & 1
            a.words[x] &= self.lowlevel._word_mask


if __name__ == "__main__":

    # load test vector
    # create worker
    # set numbers of words
    # obtain known good reference value with built-in math
    # create helper quantity
    # mutate blinding quantities with built-in math

    vector = ModExpNG_TestVector()
    worker = ModExpNG_Worker()

    n_num_words  = KEY_LENGTH  // _WORD_WIDTH
    pq_num_words = n_num_words // 2

    s_known  = pow(vector.m.number(), vector.d.number(), vector.n.number())

    i = ModExpNG_Operand(1, KEY_LENGTH)

    x_mutated_known = pow(vector.x.number(), 2, vector.n.number())
    y_mutated_known = pow(vector.y.number(), 2, vector.n.number())

    # bring one into Montgomery domain (glue 2**r to one)
    # bring blinding coefficients into Montgomery domain (glue 2**(2*r) to x and y)
    # blind message
    # convert message to non-redundant representation
    # first reduce message, this glues 2**-r to the message as a side effect
    # unglue 2**-r from message by gluing 2**r to it to compensate
    # bring message into Montgomery domain (glue 2**r to message)
    # do "easier" exponentiations
    # return "easier" parts from Montgomery domain (unglue 2**r from result)
    # do the "Garner's formula" part
    #  r = sp - sq mod p
    #  sr_qinv = sr * qinv mod p
    #  q_sr_qinv = q * sr_qinv
    #  s_crt = sq + q_sr_qinv
    # unblind s
    # mutate blinding factors
    ip_factor                    = worker.multiply(i,                            vector.p_factor,  vector.p, vector.p_coeff, pq_num_words)
    iq_factor                    = worker.multiply(i,                            vector.q_factor,  vector.q, vector.q_coeff, pq_num_words)

    x_factor                     = worker.multiply(vector.x,                     vector.n_factor,  vector.n, vector.n_coeff, n_num_words)
    y_factor                     = worker.multiply(vector.y,                     vector.n_factor,  vector.n, vector.n_coeff, n_num_words)

    m_blind                      = worker.multiply(vector.m,                     y_factor,         vector.n, vector.n_coeff, n_num_words)

    worker.reduce(m_blind)

    mp_blind_inverse_factor      = worker.multiply(m_blind,                      None,             vector.p, vector.p_coeff, pq_num_words, reduce_only=True)
    mq_blind_inverse_factor      = worker.multiply(m_blind,                      None,             vector.q, vector.q_coeff, pq_num_words, reduce_only=True)

    mp_blind                     = worker.multiply(mp_blind_inverse_factor,      vector.p_factor,  vector.p, vector.p_coeff, pq_num_words)
    mq_blind                     = worker.multiply(mq_blind_inverse_factor,      vector.q_factor,  vector.q, vector.q_coeff, pq_num_words)

    mp_blind_factor              = worker.multiply(mp_blind,                     vector.p_factor,  vector.p, vector.p_coeff, pq_num_words, dump=True)
    mq_blind_factor              = worker.multiply(mq_blind,                     vector.q_factor,  vector.q, vector.q_coeff, pq_num_words)

    sp_blind_factor              = worker.exponentiate(ip_factor, mp_blind_factor, vector.dp, vector.p, vector.p_factor, vector.p_coeff, pq_num_words)
    sq_blind_factor              = worker.exponentiate(iq_factor, mq_blind_factor, vector.dq, vector.q, vector.q_factor, vector.q_coeff, pq_num_words)

    sp_blind                     = worker.multiply(i,                            sp_blind_factor,  vector.p, vector.p_coeff, pq_num_words)
    sq_blind                     = worker.multiply(i,                            sq_blind_factor,  vector.q, vector.q_coeff, pq_num_words)

    sr_blind                     = worker.subtract(sp_blind, sq_blind, vector.p, pq_num_words)

    sr_qinv_blind_inverse_factor = worker.multiply(sr_blind,                     vector.qinv,      vector.p, vector.p_coeff, pq_num_words)
    sr_qinv_blind                = worker.multiply(sr_qinv_blind_inverse_factor, vector.p_factor,  vector.p, vector.p_coeff, pq_num_words)
    q_sr_qinv_blind              = worker.multiply(vector.q,                     sr_qinv_blind,    None,     None,           pq_num_words, multiply_only=True)

    s_crt_blinded                = worker.add(sq_blind, q_sr_qinv_blind, pq_num_words)

    s_crt_unblinded              = worker.multiply(s_crt_blinded,                x_factor,         vector.n, vector.n_coeff, n_num_words)

    x_mutated_factor             = worker.multiply(x_factor,                     x_factor,         vector.n, vector.n_coeff, n_num_words)
    y_mutated_factor             = worker.multiply(y_factor,                     y_factor,         vector.n, vector.n_coeff, n_num_words)

    x_mutated                    = worker.multiply(i,                            x_mutated_factor, vector.n, vector.n_coeff, n_num_words)
    y_mutated                    = worker.multiply(i,                            y_mutated_factor, vector.n, vector.n_coeff, n_num_words)

    worker.reduce(s_crt_unblinded)
    worker.reduce(x_mutated)
    worker.reduce(y_mutated)

    # check
    if s_crt_unblinded.number() != s_known:   print("ERROR: s_crt_unblinded != s_known!")
    else:                                     print("s is OK")

    if x_mutated.number() != x_mutated_known: print("ERROR: x_mutated != x_mutated_known!")
    else:                                     print("x_mutated is OK")

    if y_mutated.number() != y_mutated_known: print("ERROR: y_mutated != y_mutated_known!")
    else:                                     print("y_mutated is OK")


#
# End-of-File
#