1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
|
//======================================================================
//
// modexpa7_n_coeff.v
// -----------------------------------------------------------------------------
// Montgomery modulus-dependent coefficient calculation block.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2017, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module modexpa7_n_coeff #
(
//
// This sets the address widths of memory buffers. Internal data
// width is 32 bits, so for e.g. 2048-bit operands buffers must store
// 2048 / 32 = 64 words, and these need 6-bit address bus, because
// 2 ** 6 = 64.
//
parameter OPERAND_ADDR_WIDTH = 6
)
(
input clk, // clock
input rst_n, // active-low reset
input ena, // enable input
output rdy, // ready output
output [OPERAND_ADDR_WIDTH-1:0] n_bram_addr, // modulus memory address
output [OPERAND_ADDR_WIDTH-1:0] n_coeff_bram_addr, // modulus coefficient memory address
input [ 32-1:0] n_bram_out, // modulus memory output
output [ 32-1:0] n_coeff_bram_in, // modulus coefficient memory input
output n_coeff_bram_wr, // modulus coefficient memory write enable
input [OPERAND_ADDR_WIDTH-1:0] n_num_words // number of words in modulus
);
//
// Settings
//
`include "cryptech_primitive_switch.vh"
//
// FSM Declaration
//
localparam [ 7: 0] FSM_STATE_IDLE = 8'h00;
localparam [ 7: 0] FSM_STATE_INIT_1 = 8'hA1;
localparam [ 7: 0] FSM_STATE_INIT_2 = 8'hA2;
localparam [ 7: 0] FSM_STATE_INIT_3 = 8'hA3;
localparam [ 7: 0] FSM_STATE_INIT_4 = 8'hA4;
localparam [ 7: 0] FSM_STATE_INIT_5 = 8'hA5;
localparam [ 7: 0] FSM_STATE_CALC_1 = 8'hB1;
localparam [ 7: 0] FSM_STATE_CALC_2 = 8'hB2;
localparam [ 7: 0] FSM_STATE_CALC_3 = 8'hB3;
localparam [ 7: 0] FSM_STATE_CALC_4 = 8'hB4;
localparam [ 7: 0] FSM_STATE_CALC_5 = 8'hB5;
localparam [ 7: 0] FSM_STATE_SAVE_1 = 8'hC1;
localparam [ 7: 0] FSM_STATE_SAVE_2 = 8'hC2;
localparam [ 7: 0] FSM_STATE_SAVE_3 = 8'hC3;
localparam [ 7: 0] FSM_STATE_SAVE_4 = 8'hC4;
localparam [ 7: 0] FSM_STATE_SAVE_5 = 8'hC5;
localparam [ 7: 0] FSM_STATE_STOP = 8'hFF;
//
// FSM State / Next State
//
reg [ 7: 0] fsm_state = FSM_STATE_IDLE;
reg [ 7: 0] fsm_next_state;
//
// Enable Delay and Trigger
//
reg ena_dly = 1'b0;
/* delay enable by one clock cycle */
always @(posedge clk) ena_dly <= ena;
/* trigger new operation when enable goes high */
wire ena_trig = ena && !ena_dly;
//
// Ready Flag Logic
//
reg rdy_reg = 1'b1;
assign rdy = rdy_reg;
always @(posedge clk or negedge rst_n)
/* reset flag */
if (rst_n == 1'b0) rdy_reg <= 1'b1;
else begin
/* clear flag when operation is started */
if (fsm_state == FSM_STATE_IDLE) rdy_reg <= ~ena_trig;
/* set flag after operation is finished */
if (fsm_state == FSM_STATE_STOP) rdy_reg <= 1'b1;
end
//
// Parameters Latch
//
reg [OPERAND_ADDR_WIDTH-1:0] n_num_words_latch;
/* save number of words in modulus when new operation starts*/
always @(posedge clk)
//
if (fsm_next_state == FSM_STATE_INIT_1)
n_num_words_latch <= n_num_words;
//
// Cycle Counters
//
/*
* Maybe we can cheat and skip calculation of entire T every time.
* During the first 32 cycles we only need the first word of T,
* during the following 64 cycles the secord word, etc. Needs
* further investigation...
*
*/
reg [OPERAND_ADDR_WIDTH+4:0] cyc_cnt;
wire [OPERAND_ADDR_WIDTH+4:0] cyc_cnt_zero = {{OPERAND_ADDR_WIDTH{1'b0}}, {5{1'b0}}};
wire [OPERAND_ADDR_WIDTH+4:0] cyc_cnt_last = {n_num_words, 5'b11110};
wire [OPERAND_ADDR_WIDTH+4:0] cyc_cnt_next = cyc_cnt + 1'b1;
/* handy flag */
wire cyc_cnt_done = (cyc_cnt == cyc_cnt_last) ? 1'b1 : 1'b0;
always @(posedge clk)
//
if (fsm_next_state == FSM_STATE_CALC_1)
//
case (fsm_state)
FSM_STATE_INIT_5: cyc_cnt <= cyc_cnt_zero;
FSM_STATE_SAVE_5: cyc_cnt <= !cyc_cnt_done ? cyc_cnt_next : cyc_cnt;
endcase
//
// Handy Address Values
//
/* the very first address */
wire [OPERAND_ADDR_WIDTH-1:0] bram_addr_zero = {OPERAND_ADDR_WIDTH{1'b0}};
/* the very last address */
wire [OPERAND_ADDR_WIDTH-1:0] bram_addr_last = n_num_words_latch;
//
// Block Memories
//
/*
* This module uses 8 block memories:
*
* N - external input, stores modulus
* R - internal, stores intermediate result
* B - internal, stores current bit mask (see high-level algorithm)
* T - internal, stores the product R * NN (see high-level algorithm)
* NN - internal, stores the quantity ~N + 1 (see high-level algorithm)
* RR - internal, stores a copy of R (see high-level algorithm)
* RB - internal, stores the sum R + B (see high-level algorithm)
* N_COEFF - external output, stores the calculated modulus-depentent coefficient
*
*/
reg [OPERAND_ADDR_WIDTH-1:0] n_addr;
reg [OPERAND_ADDR_WIDTH-1:0] r_addr;
reg [OPERAND_ADDR_WIDTH-1:0] b_addr;
reg [OPERAND_ADDR_WIDTH-1:0] t_addr;
reg [OPERAND_ADDR_WIDTH-1:0] nn_addr;
reg [OPERAND_ADDR_WIDTH-1:0] rr_addr;
reg [OPERAND_ADDR_WIDTH-1:0] rb_addr;
reg [OPERAND_ADDR_WIDTH-1:0] n_coeff_addr;
reg [31: 0] r_data_in;
reg [31: 0] b_data_in;
reg [31: 0] t_data_in;
reg [31: 0] nn_data_in;
reg [31: 0] rr_data_in;
reg [31: 0] rb_data_in;
reg [31: 0] n_coeff_data_in;
wire [31: 0] r_data_out;
wire [31: 0] b_data_out;
wire [31: 0] t_data_out;
wire [31: 0] nn_data_out;
wire [31: 0] rr_data_out;
wire [31: 0] rb_data_out;
reg r_wren;
reg b_wren;
reg t_wren;
reg nn_wren;
reg rr_wren;
reg rb_wren;
reg n_coeff_wren;
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_r (.clk(clk), .a_addr(r_addr), .a_wr(r_wren), .a_in(r_data_in), .a_out(r_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_b (.clk(clk), .a_addr(b_addr), .a_wr(b_wren), .a_in(b_data_in), .a_out(b_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_nn (.clk(clk), .a_addr(nn_addr), .a_wr(nn_wren), .a_in(nn_data_in), .a_out(nn_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_t (.clk(clk), .a_addr(t_addr), .a_wr(t_wren), .a_in(t_data_in), .a_out(t_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_rb (.clk(clk), .a_addr(rb_addr), .a_wr(rb_wren), .a_in(rb_data_in), .a_out(rb_data_out));
bram_1rw_readfirst #(.MEM_WIDTH(32), .MEM_ADDR_BITS(OPERAND_ADDR_WIDTH))
bram_rr (.clk(clk), .a_addr(rr_addr), .a_wr(rr_wren), .a_in(rr_data_in), .a_out(rr_data_out));
/* handy values */
wire [OPERAND_ADDR_WIDTH-1:0] n_addr_next = n_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] r_addr_next = r_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] b_addr_next = b_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] t_addr_next = t_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] nn_addr_next = nn_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] rr_addr_next = rr_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] rb_addr_next = rb_addr + 1'b1;
wire [OPERAND_ADDR_WIDTH-1:0] n_coeff_addr_next = n_coeff_addr + 1'b1;
/* handy flags */
wire n_addr_done = (n_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire r_addr_done = (r_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire b_addr_done = (b_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire t_addr_done = (t_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire nn_addr_done = (nn_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire rr_addr_done = (rr_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire rb_addr_done = (rb_addr == bram_addr_last) ? 1'b1 : 1'b0;
wire n_coeff_addr_done = (n_coeff_addr == bram_addr_last) ? 1'b1 : 1'b0;
/* map top-level ports to internal registers */
assign n_bram_addr = n_addr;
assign n_coeff_bram_addr = n_coeff_addr;
assign n_coeff_bram_in = n_coeff_data_in;
assign n_coeff_bram_wr = n_coeff_wren;
//
// Delayed Flags
//
reg rb_addr_done_dly;
/* delay rb_addr_done flag by one clock cycle (used later) */
always @(posedge clk) rb_addr_done_dly <= rb_addr_done;
//
// Adder1
//
/*
* This adder is used to calculate NN = ~N + 1.
*
*/
wire [31: 0] add1_s; // sum output
wire add1_c_in; // carry input
reg add1_b_lsb; // B-input
reg add1_c_in_mask; // flag to not carry anything into the very first word
reg add1_c_in_mask_dly; // delayed carry masking flag
wire add1_c_out; // carry output
/* add masking into carry feedback chain */
assign add1_c_in = add1_c_out & ~add1_c_in_mask;
/* feed 1 into port B of adder */
always @(posedge clk) add1_b_lsb <= (fsm_next_state == FSM_STATE_INIT_2) ? 1'b1 : 1'b0;
/* mask carry for the very first word of N */
always @(posedge clk) add1_c_in_mask <= (fsm_next_state == FSM_STATE_INIT_2) ? 1'b1 : 1'b0;
/* delay carry masking flag by one clock cycle (used later) */
always @(posedge clk) add1_c_in_mask_dly <= add1_c_in_mask;
`CRYPTECH_PRIMITIVE_ADD32 add1_inst
(
.clk (clk), //
.a (~n_bram_out), // ~N
.b ({{31{1'b0}}, add1_b_lsb}), // 1
.c_in (add1_c_in), //
.s (add1_s), //
.c_out (add1_c_out) //
);
//
// Adder2
//
/*
* This adder is used to calculate RB = R + B.
*
*/
wire [31: 0] add2_s; // sum output
reg add2_c_in; // carry input
wire add2_c_out; // carry output
`CRYPTECH_PRIMITIVE_ADD32 add2_inst
(
.clk (clk),
.a (r_data_out),
.b (b_data_in),
.c_in (add2_c_in),
.s (add2_s),
.c_out (add2_c_out)
);
//
// Multiplier
//
/*
* This multiplier is used to calculate T = R * NN.
*
*/
reg [31: 0] pe_a;
reg [31: 0] pe_b;
reg [31: 0] pe_t;
reg [31: 0] pe_c_in;
wire [31: 0] pe_p;
wire [31: 0] pe_c_out;
`CRYPTECH_PRIMITIVE_MODEXP_SYSTOLIC_PE pe_mul_inst
(
.clk (clk),
.a (pe_a),
.b (pe_b),
.t (pe_t),
.c_in (pe_c_in),
.p (pe_p),
.c_out (pe_c_out)
);
//
// Multiplier Latency Compensation Logic
//
localparam SYSTOLIC_PE_LATENCY = 4;
/* shift register to match data propagation delay */
reg [SYSTOLIC_PE_LATENCY:0] pe_latency;
wire pe_latency_done = pe_latency[SYSTOLIC_PE_LATENCY];
/* gradually fill the shift register with ones */
always @(posedge clk)
//
if (fsm_state == FSM_STATE_CALC_1)
pe_latency <= {1'b0, {SYSTOLIC_PE_LATENCY{1'b0}}};
else pe_latency <= {pe_latency[SYSTOLIC_PE_LATENCY-1:0], 1'b1};
//
// Adder2 Output Delay
//
reg [31: 0] add2_s_dly[1:SYSTOLIC_PE_LATENCY-1];
reg add2_c_out_dly[1:SYSTOLIC_PE_LATENCY+2];
/* delay sum */
integer i;
always @(posedge clk)
//
for (i=1; i<SYSTOLIC_PE_LATENCY; i=i+1)
add2_s_dly[i] <= (i == 1) ? add2_s : add2_s_dly[i-1];
/* delay adder carry */
always @(posedge clk)
//
for (i=1; i<=(SYSTOLIC_PE_LATENCY+2); i=i+1)
add2_c_out_dly[i] <= (i == 1) ? add2_c_out : add2_c_out_dly[i-1];
/* adder carry feedback */
always @(posedge clk)
//
if ((fsm_next_state == FSM_STATE_CALC_3) && (nn_addr == bram_addr_zero))
add2_c_in <= (r_addr == bram_addr_zero) ? 1'b0 : add2_c_out_dly[SYSTOLIC_PE_LATENCY+2];
//
// Multiplier Output Delay
//
reg [31: 0] pe_c_out_dly[1:3];
always @(posedge clk)
//
for (i=1; i<=3; i=i+1)
pe_c_out_dly[i] <= (i == 1) ? pe_c_out : pe_c_out_dly[i-1];
//
// Multiplier Operand Loader
//
always @(posedge clk)
//
if (fsm_next_state == FSM_STATE_CALC_3) begin
pe_a <= r_data_out;
pe_b <= nn_data_out;
pe_t <= (nn_addr == bram_addr_zero) ? {32{1'b0}} : t_data_out;
pe_c_in <= (r_addr == bram_addr_zero) ? {32{1'b0}} : pe_c_out_dly[3];
end else begin
pe_a <= {32{1'bX}};
pe_b <= {32{1'bX}};
pe_t <= {32{1'bX}};
pe_c_in <= {32{1'bX}};
end
//
// B Shift Carry Logic
//
/*
* B value is repeatedly shifted to the left, so we need carry logic
* to save the MSB of the current output word and feed into the LSB
* of the next input word.
*
*/
reg b_data_out_carry;
always @(posedge clk)
//
case (fsm_next_state)
/* mask carry into the very first word */
FSM_STATE_CALC_2:
if ((nn_addr == bram_addr_zero) && (b_addr == bram_addr_zero))
b_data_out_carry <= 1'b0;
/* carry feedback */
FSM_STATE_CALC_3:
if (nn_addr == bram_addr_zero)
b_data_out_carry <= b_data_out[31];
endcase
//
// R Update Flag
//
reg flag_update_r;
/* indices of the target bit of T */
wire [ 4:0] flag_addr_bit = cyc_cnt_next[4:0];
wire [OPERAND_ADDR_WIDTH-1:0] flag_addr_word = cyc_cnt_next[OPERAND_ADDR_WIDTH+4:5];
/* update flag when the target bit of T is available */
always @(posedge clk)
//
if (t_wren && (t_addr == flag_addr_word))
flag_update_r <= t_data_in[flag_addr_bit];
//
// Block Memory Address Logic
//
reg [OPERAND_ADDR_WIDTH-1:0] r_addr_calc1;
reg [OPERAND_ADDR_WIDTH-1:0] b_addr_calc1;
reg [OPERAND_ADDR_WIDTH-1:0] t_addr_calc1;
reg [OPERAND_ADDR_WIDTH-1:0] nn_addr_calc1;
reg [OPERAND_ADDR_WIDTH-1:0] rr_addr_calc1;
reg [OPERAND_ADDR_WIDTH-1:0] rb_addr_calc1;
/* how to update R duing CALC_1 state */
always @*
//
if (fsm_state == FSM_STATE_INIT_5) r_addr_calc1 <= bram_addr_zero;
else begin
if (r_addr < (n_num_words_latch - nn_addr)) r_addr_calc1 <= r_addr_next;
else r_addr_calc1 <= bram_addr_zero;
end
/* how to update B, RR, RB duing CALC_1 state */
always @* begin
//
b_addr_calc1 = b_addr;
rr_addr_calc1 = rr_addr;
rb_addr_calc1 = rb_addr;
//
if ((fsm_state == FSM_STATE_INIT_5) || (fsm_state == FSM_STATE_SAVE_5)) begin
//
b_addr_calc1 = bram_addr_zero;
rr_addr_calc1 = bram_addr_zero;
rb_addr_calc1 = bram_addr_zero;
//
end else if (nn_addr == bram_addr_zero) begin
//
b_addr_calc1 = !b_addr_done ? b_addr_next : b_addr;
rr_addr_calc1 = !rr_addr_done ? rr_addr_next : rr_addr;
rb_addr_calc1 = !rb_addr_done ? rb_addr_next : rb_addr;
//
end
//
end
/* how to update T duing CALC_1 state */
always @*
//
if ((fsm_state == FSM_STATE_INIT_5) || (fsm_state == FSM_STATE_SAVE_5))
t_addr_calc1 = bram_addr_zero;
else begin
if (r_addr == (n_num_words_latch - nn_addr))
t_addr_calc1 = nn_addr_next;
else
t_addr_calc1 = t_addr_next;
end
/* how to update NN duing CALC_1 state */
always @* begin
//
nn_addr_calc1 = nn_addr;
//
if ((fsm_state == FSM_STATE_INIT_5) || (fsm_state == FSM_STATE_SAVE_5))
nn_addr_calc1 = bram_addr_zero;
else if (r_addr == (n_num_words_latch - nn_addr))
nn_addr_calc1 = nn_addr_next;
//
end
//
// Address Update Logic
//
always @(posedge clk) begin
//
// N
//
case (fsm_next_state)
FSM_STATE_INIT_1: n_addr <= bram_addr_zero;
//
FSM_STATE_INIT_2,
FSM_STATE_INIT_3,
FSM_STATE_INIT_4,
FSM_STATE_INIT_5: n_addr <= !n_addr_done ? n_addr_next : n_addr;
endcase
//
// R
//
case (fsm_next_state)
FSM_STATE_INIT_4: r_addr <= bram_addr_zero;
FSM_STATE_INIT_5: r_addr <= r_addr_next;
FSM_STATE_CALC_1: r_addr <= r_addr_calc1;
FSM_STATE_SAVE_3: r_addr <= bram_addr_zero;
//
FSM_STATE_SAVE_4,
FSM_STATE_SAVE_5: r_addr <= r_addr_next;
endcase
//
// B
//
case (fsm_next_state)
FSM_STATE_INIT_4: b_addr <= bram_addr_zero;
FSM_STATE_INIT_5: b_addr <= b_addr_next;
FSM_STATE_CALC_1: b_addr <= b_addr_calc1;
endcase
//
// T
//
case (fsm_next_state)
FSM_STATE_CALC_1: t_addr <= t_addr_calc1;
endcase
//
// NN
//
case (fsm_next_state)
FSM_STATE_INIT_4: nn_addr <= bram_addr_zero;
FSM_STATE_INIT_5: nn_addr <= nn_addr_next;
FSM_STATE_CALC_1: nn_addr <= nn_addr_calc1;
endcase
//
// RR
//
case (fsm_next_state)
FSM_STATE_CALC_1: rr_addr <= rr_addr_calc1;
FSM_STATE_SAVE_1: rr_addr <= bram_addr_zero;
//
FSM_STATE_SAVE_2,
FSM_STATE_SAVE_3,
FSM_STATE_SAVE_4: rr_addr <= !rr_addr_done ? rr_addr_next : rr_addr;
endcase
//
// RB
//
case (fsm_next_state)
FSM_STATE_CALC_1: rb_addr <= rb_addr_calc1;
FSM_STATE_SAVE_1: rb_addr <= bram_addr_zero;
//
FSM_STATE_SAVE_2,
FSM_STATE_SAVE_3,
FSM_STATE_SAVE_4: rb_addr <= !rb_addr_done ? rb_addr_next : rb_addr;
endcase
//
// N_COEFF
//
case (fsm_next_state)
FSM_STATE_SAVE_3: n_coeff_addr <= bram_addr_zero;
//
FSM_STATE_SAVE_4,
FSM_STATE_SAVE_5: n_coeff_addr <= r_addr_next;
endcase
//
end
//
// Block Memory Write Enable Logic
//
always @(posedge clk) begin
//
// R
//
case (fsm_next_state)
FSM_STATE_INIT_4,
FSM_STATE_INIT_5,
FSM_STATE_SAVE_3,
FSM_STATE_SAVE_4,
FSM_STATE_SAVE_5: r_wren <= 1'b1;
default: r_wren <= 1'b0;
endcase
//
// B
//
case (fsm_next_state)
FSM_STATE_INIT_4,
FSM_STATE_INIT_5: b_wren <= 1'b1;
FSM_STATE_CALC_3: b_wren <= (nn_addr == bram_addr_zero) ? 1'b1 : 1'b0;
default: b_wren <= 1'b0;
endcase
//
// T
//
case (fsm_next_state)
FSM_STATE_CALC_5: t_wren <= 1'b1;
default: t_wren <= 1'b0;
endcase
//
// NN
//
case (fsm_next_state)
FSM_STATE_INIT_4,
FSM_STATE_INIT_5: nn_wren <= 1'b1;
default: nn_wren <= 1'b0;
endcase
//
// RR
//
case (fsm_next_state)
FSM_STATE_CALC_5: rr_wren <= (nn_addr == bram_addr_zero) ? 1'b1 : 1'b0;
default: rr_wren <= 1'b0;
endcase
//
// RB
//
case (fsm_next_state)
FSM_STATE_CALC_5: rb_wren <= (nn_addr == bram_addr_zero) ? 1'b1 : 1'b0;
default: rb_wren <= 1'b0;
endcase
//
// N_COEFF
//
case (fsm_next_state)
FSM_STATE_SAVE_3,
FSM_STATE_SAVE_4,
FSM_STATE_SAVE_5: n_coeff_wren <= cyc_cnt_done;
default: n_coeff_wren <= 1'b0;
endcase
//
end
//
// Block Memory Input Logic
//
always @(posedge clk) begin
//
// R
//
case (fsm_next_state)
FSM_STATE_INIT_4,
FSM_STATE_INIT_5: r_data_in <= {{31{1'b0}}, add1_c_in_mask_dly};
//
FSM_STATE_SAVE_3,
FSM_STATE_SAVE_4,
FSM_STATE_SAVE_5: r_data_in <= flag_update_r ? rb_data_out : rr_data_out;
default: r_data_in <= {32{1'bX}};
endcase
//
// B
//
case (fsm_next_state)
FSM_STATE_INIT_4,
FSM_STATE_INIT_5: b_data_in <= {{31{1'b0}}, add1_c_in_mask_dly};
FSM_STATE_CALC_3: b_data_in <= (nn_addr == bram_addr_zero) ?
{b_data_out[30:0], b_data_out_carry} : {32{1'bX}};
default: b_data_in <= {32{1'bX}};
endcase
//
// T
//
case (fsm_next_state)
FSM_STATE_CALC_5: t_data_in <= pe_p;
default: t_data_in <= {32{1'bX}};
endcase
//
// NN
//
case (fsm_next_state)
FSM_STATE_INIT_4,
FSM_STATE_INIT_5: nn_data_in <= add1_s;
default: nn_data_in <= {32{1'bX}};
endcase
//
// RR
//
case (fsm_next_state)
FSM_STATE_CALC_5: rr_data_in <= r_data_out;
default: rr_data_in <= {32{1'bX}};
endcase
//
// RB
//
case (fsm_next_state)
FSM_STATE_CALC_5: rb_data_in <= add2_s_dly[SYSTOLIC_PE_LATENCY-1];
default: rb_data_in <= {32{1'bX}};
endcase
//
// N_COEFF
//
case (fsm_next_state)
FSM_STATE_SAVE_3,
FSM_STATE_SAVE_4,
FSM_STATE_SAVE_5: n_coeff_data_in <= flag_update_r ? rb_data_out : rr_data_out;
default: n_coeff_data_in <= {32{1'bX}};
endcase
//
end
//
// FSM Process
//
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0) fsm_state <= FSM_STATE_IDLE;
else fsm_state <= fsm_next_state;
//
// FSM Transition Logic
//
always @* begin
//
fsm_next_state = FSM_STATE_STOP;
//
case (fsm_state)
FSM_STATE_IDLE: if (ena_trig) fsm_next_state = FSM_STATE_INIT_1;
else fsm_next_state = FSM_STATE_IDLE;
FSM_STATE_INIT_1: fsm_next_state = FSM_STATE_INIT_2;
FSM_STATE_INIT_2: fsm_next_state = FSM_STATE_INIT_3;
FSM_STATE_INIT_3: fsm_next_state = FSM_STATE_INIT_4;
FSM_STATE_INIT_4: fsm_next_state = FSM_STATE_INIT_5;
FSM_STATE_INIT_5: if (nn_addr_done) fsm_next_state = FSM_STATE_CALC_1;
else fsm_next_state = FSM_STATE_INIT_5;
FSM_STATE_CALC_1: fsm_next_state = FSM_STATE_CALC_2;
FSM_STATE_CALC_2: fsm_next_state = FSM_STATE_CALC_3;
FSM_STATE_CALC_3: fsm_next_state = FSM_STATE_CALC_4;
FSM_STATE_CALC_4: if (pe_latency_done) fsm_next_state = FSM_STATE_CALC_5;
else fsm_next_state = FSM_STATE_CALC_4;
FSM_STATE_CALC_5: if (nn_addr_done) fsm_next_state = FSM_STATE_SAVE_1;
else fsm_next_state = FSM_STATE_CALC_1;
FSM_STATE_SAVE_1: fsm_next_state = FSM_STATE_SAVE_2;
FSM_STATE_SAVE_2: fsm_next_state = FSM_STATE_SAVE_3;
FSM_STATE_SAVE_3: fsm_next_state = FSM_STATE_SAVE_4;
FSM_STATE_SAVE_4: if (rb_addr_done_dly) fsm_next_state = FSM_STATE_SAVE_5;
else fsm_next_state = FSM_STATE_SAVE_4;
FSM_STATE_SAVE_5: if (cyc_cnt_done) fsm_next_state = FSM_STATE_STOP;
else fsm_next_state = FSM_STATE_CALC_1;
FSM_STATE_STOP: fsm_next_state = FSM_STATE_IDLE;
endcase
end
endmodule
//======================================================================
// End of file
//======================================================================
|