//======================================================================
//
// residue.v
// ---------
// Modulus 2**2N residue calculator for montgomery calculations.
//
// m_residue_2_2N_array( N, M, Nr)
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// for (int i = 0; i < 2 * N; i++)
// Nr = Nr shift left 1
// if (Nr less than M) continue;
// Nr = Nr - M
// return Nr
//
//
//
// Author: Peter Magnusson
// Copyright (c) 2015, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module residue #(parameter OPW = 32, parameter ADW = 8)
(
input wire clk,
input wire reset_n,
input wire calculate,
output wire ready,
input wire [14 : 0] nn, //MAX(2*N)=8192*2 (14 bit)
input wire [(ADW - 1) : 0] length,
output wire [(ADW - 1) : 0] opa_rd_addr,
input wire [(OPW - 1) : 0] opa_rd_data,
output wire [(ADW - 1) : 0] opa_wr_addr,
output wire [(OPW - 1) : 0] opa_wr_data,
output wire opa_wr_we,
output wire [(ADW - 1) : 0] opm_addr,
input wire [(OPW - 1) : 0] opm_data
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam CTRL_IDLE = 4'h0;
localparam CTRL_INIT = 4'h1;
localparam CTRL_INIT_STALL = 4'h2;
localparam CTRL_SHL = 4'h3;
localparam CTRL_SHL_STALL = 4'h4;
localparam CTRL_COMPARE = 4'h5;
localparam CTRL_COMPARE_STALL = 4'h6;
localparam CTRL_SUB = 4'h7;
localparam CTRL_SUB_STALL = 4'h8;
localparam CTRL_LOOP = 4'h9;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [(ADW - 1) : 0] opa_rd_addr_reg;
reg [(ADW - 1) : 0] opa_wr_addr_reg;
reg [(OPW - 1) : 0] opa_wr_data_reg;
reg opa_wr_we_reg;
reg [(ADW - 1) : 0] opm_addr_reg;
reg ready_reg;
reg ready_new;
reg ready_we;
reg [03 : 0] residue_ctrl_reg;
reg [03 : 0] residue_ctrl_new;
reg residue_ctrl_we;
reg reset_word_index;
reg reset_n_counter;
reg [14 : 0] loop_counter_1_to_nn_reg; //for i = 1 to nn (2*N)
reg [14 : 0] loop_counter_1_to_nn_new;
reg loop_counter_1_to_nn_we;
reg [14 : 0] nn_reg;
reg nn_we;
reg [(ADW - 1) : 0] length_m1_reg;
reg [(ADW - 1) : 0] length_m1_new;
reg length_m1_we;
reg [(ADW - 1) : 0] word_index_reg;
reg [(ADW - 1) : 0] word_index_new;
reg word_index_we;
reg [(OPW - 1) : 0] one_data;
wire [(OPW - 1) : 0] sub_data;
wire [(OPW - 1) : 0] shl_data;
reg sub_carry_in_new;
reg sub_carry_in_reg;
wire sub_carry_out;
reg shl_carry_in_new;
reg shl_carry_in_reg;
wire shl_carry_out;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign opa_rd_addr = opa_rd_addr_reg;
assign opa_wr_addr = opa_wr_addr_reg;
assign opa_wr_data = opa_wr_data_reg;
assign opa_wr_we = opa_wr_we_reg;
assign opm_addr = opm_addr_reg;
assign ready = ready_reg;
//----------------------------------------------------------------
// Instantions
//----------------------------------------------------------------
adder #(.OPW(OPW)) add_inst(
.a(opa_rd_data),
.b( ~ opm_data),
.carry_in(sub_carry_in_reg),
.sum(sub_data),
.carry_out(sub_carry_out)
);
shl #(.OPW(OPW)) shl_inst(
.a(opa_rd_data),
.carry_in(shl_carry_in_reg),
.amul2(shl_data),
.carry_out(shl_carry_out)
);
//----------------------------------------------------------------
// reg_update
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin
if (!reset_n)
begin
residue_ctrl_reg <= CTRL_IDLE;
word_index_reg <= {ADW{1'b1}};
length_m1_reg <= {ADW{1'b1}};
nn_reg <= 15'h0;
loop_counter_1_to_nn_reg <= 15'h0;
ready_reg <= 1'b1;
sub_carry_in_reg <= 1'b0;
shl_carry_in_reg <= 1'b0;
end
else
begin
if (residue_ctrl_we)
residue_ctrl_reg <= residue_ctrl_new;
if (word_index_we)
word_index_reg <= word_index_new;
if (length_m1_we)
length_m1_reg <= length_m1_new;
if (nn_we)
nn_reg <= nn;
if (loop_counter_1_to_nn_we)
loop_counter_1_to_nn_reg <= loop_counter_1_to_nn_new;
if (ready_we)
ready_reg <= ready_new;
sub_carry_in_reg <= sub_carry_in_new;
shl_carry_in_reg <= shl_carry_in_new;
end
end // reg_update
//----------------------------------------------------------------
// loop counter process. implements for (int i = 0; i < 2 * N; i++)
//
// m_residue_2_2N_array( N, M, Nr)
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// for (int i = 0; i < 2 * N; i++)
// Nr = Nr shift left 1
// if (Nr less than M) continue;
// Nr = Nr - M
// return Nr
//
//----------------------------------------------------------------
always @*
begin : process_1_to_2n
loop_counter_1_to_nn_new = loop_counter_1_to_nn_reg + 15'h1;
loop_counter_1_to_nn_we = 1'b0;
if (reset_n_counter)
begin
loop_counter_1_to_nn_new = 15'h1;
loop_counter_1_to_nn_we = 1'b1;
end
if (residue_ctrl_reg == CTRL_LOOP)
loop_counter_1_to_nn_we = 1'b1;
end
//----------------------------------------------------------------
// implements looping over words in a multiword operation
//----------------------------------------------------------------
always @*
begin : word_index_process
word_index_new = word_index_reg - 1'b1;
word_index_we = 1'b1;
if (reset_word_index)
word_index_new = length_m1_reg;
if (residue_ctrl_reg == CTRL_IDLE)
//reduce a pipeline stage with early read
word_index_new = length_m1_new;
end
//----------------------------------------------------------------
// writer process. implements:
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// Nr = Nr shift left 1
// Nr = Nr - M
//
// m_residue_2_2N_array( N, M, Nr)
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
// for (int i = 0; i < 2 * N; i++)
// Nr = Nr shift left 1
// if (Nr less than M) continue;
// Nr = Nr - M
// return Nr
//----------------------------------------------------------------
always @*
begin : writer_process
opa_wr_addr_reg = word_index_reg;
case (residue_ctrl_reg)
CTRL_INIT:
begin
opa_wr_data_reg = one_data;
opa_wr_we_reg = 1'b1;
end
CTRL_SUB:
begin
opa_wr_data_reg = sub_data;
opa_wr_we_reg = 1'b1;
end
CTRL_SHL:
begin
opa_wr_data_reg = shl_data;
opa_wr_we_reg = 1'b1;
end
default:
begin
opa_wr_data_reg = 32'h0;
opa_wr_we_reg = 1'b0;
end
endcase
end
//----------------------------------------------------------------
// reader process. reads from new value because it occurs one
// cycle earlier than the writer.
//----------------------------------------------------------------
always @*
begin : reader_process
opa_rd_addr_reg = word_index_new;
opm_addr_reg = word_index_new;
end
//----------------------------------------------------------------
// carry process. "Ripple carry awesomeness!"
//----------------------------------------------------------------
always @*
begin : carry_process
case (residue_ctrl_reg)
CTRL_COMPARE:
sub_carry_in_new = sub_carry_out;
CTRL_SUB:
sub_carry_in_new = sub_carry_out;
default:
sub_carry_in_new = 1'b1;
endcase
case (residue_ctrl_reg)
CTRL_SHL:
shl_carry_in_new = shl_carry_out;
default:
shl_carry_in_new = 1'b0;
endcase
end
//----------------------------------------------------------------
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
//----------------------------------------------------------------
always @*
begin : one_process
one_data = 32'h0;
if (residue_ctrl_reg == CTRL_INIT)
if (word_index_reg == length_m1_reg)
one_data = {{(OPW - 1){1'b0}}, 1'b1};
end
//----------------------------------------------------------------
// residue_ctrl
//
// Control FSM for residue
//----------------------------------------------------------------
always @*
begin : residue_ctrl
ready_new = 1'b0;
ready_we = 1'b0;
reset_word_index = 1'b0;
reset_n_counter = 1'b0;
length_m1_new = length - 1'b1;
length_m1_we = 1'b0;
nn_we = 1'b0;
residue_ctrl_new = CTRL_IDLE;
residue_ctrl_we = 1'b0;
case (residue_ctrl_reg)
CTRL_IDLE:
if (calculate)
begin
ready_new = 1'b0;
ready_we = 1'b1;
reset_word_index = 1'b1;
length_m1_we = 1'b1;
nn_we = 1'b1;
residue_ctrl_new = CTRL_INIT;
residue_ctrl_we = 1'b1;
end
// Nr = 00...01 ; Nr = 1 == 2**(2N-2N)
CTRL_INIT:
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_INIT_STALL;
residue_ctrl_we = 1'b1;
end
CTRL_INIT_STALL:
begin
reset_word_index = 1'b1;
reset_n_counter = 1'b1;
residue_ctrl_new = CTRL_SHL;
residue_ctrl_we = 1'b1;
end
// Nr = Nr shift left 1
CTRL_SHL:
begin
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_SHL_STALL;
residue_ctrl_we = 1'b1;
end
end
CTRL_SHL_STALL:
begin
reset_word_index = 1'b1;
residue_ctrl_new = CTRL_COMPARE;
residue_ctrl_we = 1'b1;
end
//if (Nr less than M) continue
CTRL_COMPARE:
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_COMPARE_STALL;
residue_ctrl_we = 1'b1;
end
CTRL_COMPARE_STALL:
begin
reset_word_index = 1'b1;
residue_ctrl_we = 1'b1;
if (sub_carry_in_reg == 1'b1)
//TODO: Bug! detect CF to detect less than, but no detect ZF to detect equal to.
residue_ctrl_new = CTRL_SUB;
else
residue_ctrl_new = CTRL_LOOP;
end
//Nr = Nr - M
CTRL_SUB:
if (word_index_reg == 0)
begin
residue_ctrl_new = CTRL_SUB_STALL;
residue_ctrl_we = 1'b1;
end
CTRL_SUB_STALL:
begin
residue_ctrl_new = CTRL_LOOP;
residue_ctrl_we = 1'b1;
end
//for (int i = 0; i < 2 * N; i++)
CTRL_LOOP:
begin
if (loop_counter_1_to_nn_reg == nn_reg)
begin
ready_new = 1'b1;
ready_we = 1'b1;
residue_ctrl_new = CTRL_IDLE;
residue_ctrl_we = 1'b1;
end
else
begin
reset_word_index = 1'b1;
residue_ctrl_new = CTRL_SHL;
residue_ctrl_we = 1'b1;
end
end
default:
begin
end
endcase
end
endmodule // residue
//======================================================================
// EOF residue.v
//======================================================================