//------------------------------------------------------------------------------
//
// modular_adder.v
// -----------------------------------------------------------------------------
// Modular adder.
//
// Authors: Pavel Shatov
//
// Copyright (c) 2016, 2018 NORDUnet A/S
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
//------------------------------------------------------------------------------
module modular_adder
(
clk, rst_n,
ena, rdy,
ab_addr, n_addr, s_addr, s_wren,
a_din, b_din, n_din, s_dout
);
//
// Settings
//
`include "cryptech_primitive_switch.vh"
//
// Parameters
//
parameter OPERAND_NUM_WORDS = 8;
parameter WORD_COUNTER_WIDTH = 3;
//
// Handy Numbers
//
localparam [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_ZERO = 0;
localparam [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_LAST = OPERAND_NUM_WORDS - 1;
//
// Handy Functions
//
function [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_NEXT_OR_ZERO;
input [WORD_COUNTER_WIDTH-1:0] WORD_INDEX_CURRENT;
begin
WORD_INDEX_NEXT_OR_ZERO = (WORD_INDEX_CURRENT < WORD_INDEX_LAST) ?
WORD_INDEX_CURRENT + 1'b1 : WORD_INDEX_ZERO;
end
endfunction
//
// Ports
//
input clk; // system clock
input rst_n; // active-low async reset
input ena; // enable input
output rdy; // ready output
output [WORD_COUNTER_WIDTH-1:0] ab_addr; // index of current A and B words
output [WORD_COUNTER_WIDTH-1:0] n_addr; // index of current N word
output [WORD_COUNTER_WIDTH-1:0] s_addr; // index of current S word
output s_wren; // store current S word now
input [ 32-1:0] a_din; // A
input [ 32-1:0] b_din; // B
input [ 32-1:0] n_din; // N
output [ 32-1:0] s_dout; // S = (A + B) mod N
//
// Word Indices
//
reg [WORD_COUNTER_WIDTH-1:0] index_ab;
reg [WORD_COUNTER_WIDTH-1:0] index_n;
reg [WORD_COUNTER_WIDTH-1:0] index_s;
// map registers to output ports
assign ab_addr = index_ab;
assign n_addr = index_n;
assign s_addr = index_s;
//
// Adder
//
wire [31:0] add32_s;
wire add32_c_in;
wire add32_c_out;
`CRYPTECH_PRIMITIVE_ADD32 add32
(
.clk (clk),
.a (a_din),
.b (b_din),
.s (add32_s),
.c_in (add32_c_in),
.c_out (add32_c_out)
);
//
// Subtractor
//
wire [31:0] sub32_d;
wire sub32_b_in;
wire sub32_b_out;
`CRYPTECH_PRIMITIVE_SUB32 sub
(
.clk (clk),
.a (add32_s),
.b (n_din),
.d (sub32_d),
.b_in (sub32_b_in),
.b_out (sub32_b_out)
);
//
// FSM
//
localparam FSM_SHREG_WIDTH = 2 * OPERAND_NUM_WORDS + 5;
reg [FSM_SHREG_WIDTH-1:0] fsm_shreg;
assign rdy = fsm_shreg[0];
wire [OPERAND_NUM_WORDS-1:0] fsm_shreg_inc_index_ab = fsm_shreg[FSM_SHREG_WIDTH - (0 * OPERAND_NUM_WORDS + 1) : FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 0)];
wire [OPERAND_NUM_WORDS-1:0] fsm_shreg_inc_index_n = fsm_shreg[FSM_SHREG_WIDTH - (0 * OPERAND_NUM_WORDS + 2) : FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 1)];
wire [OPERAND_NUM_WORDS-1:0] fsm_shreg_store_sum_ab = fsm_shreg[FSM_SHREG_WIDTH - (0 * OPERAND_NUM_WORDS + 3) : FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 2)];
wire [OPERAND_NUM_WORDS-1:0] fsm_shreg_store_sum_ab_n = fsm_shreg[FSM_SHREG_WIDTH - (0 * OPERAND_NUM_WORDS + 4) : FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 3)];
wire [OPERAND_NUM_WORDS-1:0] fsm_shreg_store_data_s = fsm_shreg[FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 4) : FSM_SHREG_WIDTH - (2 * OPERAND_NUM_WORDS + 3)];
wire [OPERAND_NUM_WORDS-1:0] fsm_shreg_inc_index_s = fsm_shreg[FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 5) : FSM_SHREG_WIDTH - (2 * OPERAND_NUM_WORDS + 4)];
wire fsm_latch_msb_carry = fsm_shreg[FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 2)];
wire fsm_latch_msb_borrow = fsm_shreg[FSM_SHREG_WIDTH - (1 * OPERAND_NUM_WORDS + 3)];
wire inc_index_ab = |fsm_shreg_inc_index_ab;
wire inc_index_n = |fsm_shreg_inc_index_n;
wire store_sum_ab = |fsm_shreg_store_sum_ab;
wire store_sum_ab_n = |fsm_shreg_store_sum_ab_n;
wire store_data_s = |fsm_shreg_store_data_s;
wire inc_index_s = |fsm_shreg_inc_index_s;
always @(posedge clk or negedge rst_n)
//
if (rst_n == 1'b0)
//
fsm_shreg <= {{FSM_SHREG_WIDTH-1{1'b0}}, 1'b1};
//
else begin
//
if (rdy) fsm_shreg <= {ena, {FSM_SHREG_WIDTH-2{1'b0}}, ~ena};
//
else fsm_shreg <= {1'b0, fsm_shreg[FSM_SHREG_WIDTH-1:1]};
//
end
//
// Carry & Borrow Masking Logic
//
reg add32_c_mask;
reg sub32_b_mask;
always @(posedge clk) begin
//
add32_c_mask <= (index_ab == WORD_INDEX_ZERO) ? 1'b1 : 1'b0;
sub32_b_mask <= (index_n == WORD_INDEX_ZERO) ? 1'b1 : 1'b0;
//
end
assign add32_c_in = add32_c_out & ~add32_c_mask;
assign sub32_b_in = sub32_b_out & ~sub32_b_mask;
//
// Carry & Borrow Latch Logic
//
reg add32_carry_latch;
reg sub32_borrow_latch;
always @(posedge clk) begin
//
if (fsm_latch_msb_carry) add32_carry_latch <= add32_c_out;
if (fsm_latch_msb_borrow) sub32_borrow_latch <= sub32_b_out;
//
end
//
// Intermediate Results
//
reg [32*OPERAND_NUM_WORDS-1:0] s_ab;
reg [32*OPERAND_NUM_WORDS-1:0] s_ab_n;
always @(posedge clk)
//
if (store_data_s) begin
//
s_ab <= {{32{1'bX}}, s_ab[32*OPERAND_NUM_WORDS-1:32]};
s_ab_n <= {{32{1'bX}}, s_ab_n[32*OPERAND_NUM_WORDS-1:32]};
//
end else begin
//
if (store_sum_ab) s_ab <= {add32_s, s_ab[32*OPERAND_NUM_WORDS-1:32]};
if (store_sum_ab_n) s_ab_n <= {sub32_d, s_ab_n[32*OPERAND_NUM_WORDS-1:32]};
//
end
//
// Word Index Increment Logic
//
always @(posedge clk)
//
if (rdy) begin
//
index_ab <= WORD_INDEX_ZERO;
index_n <= WORD_INDEX_ZERO;
index_s <= WORD_INDEX_ZERO;
//
end else begin
//
if (inc_index_ab) index_ab <= WORD_INDEX_NEXT_OR_ZERO(index_ab);
if (inc_index_n) index_n <= WORD_INDEX_NEXT_OR_ZERO(index_n);
if (inc_index_s) index_s <= WORD_INDEX_NEXT_OR_ZERO(index_s);
//
end
//
// Output Sum Selector
//
wire mux_select_ab = sub32_borrow_latch && !add32_carry_latch;
//
// Output Data and Write Enable Logic
//
reg s_wren_reg;
reg [31:0] s_dout_reg;
wire [31:0] s_dout_mux = mux_select_ab ? s_ab[31:0] : s_ab_n[31:0];
assign s_wren = s_wren_reg;
assign s_dout = s_dout_reg;
always @(posedge clk)
//
if (rdy) begin
//
s_wren_reg <= 1'b0;
s_dout_reg <= {32{1'bX}};
//
end else begin
//
s_wren_reg <= store_data_s;
s_dout_reg <= store_data_s ? s_dout_mux : {32{1'bX}};
//
end
endmodule
//------------------------------------------------------------------------------
// End-of-File
//------------------------------------------------------------------------------