1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
//======================================================================
// sha3
// ----
// keccak, SHA-3 winner
// derived from "readable keccak"
// 19-Nov-11 Markku-Juhani O. Saarinen <mjos@iki.fi>
// A baseline Keccak (3rd round) implementation.
// Verilog implementation (c) 2015 by Bernd Paysan
// Ported to Cryptech Alpha platform by Pavel Shatov
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
`define rotl64(x, r) ((({x, x}<<r)>>64)& 64'hffffffffffffffff)
`define rotci(i) ((rotc>>((23-i)*6)) & 6'h3f)
`define pilni(i) ((piln>>((23-i)*5)) & 5'h1f)
`define rndci(i) ((rndc>>((23-i)*64)) & 64'hffffffffffffffff)
`define SHA3_NUM_ROUNDS 5'd24
module sha3( input wire clk,
input wire nreset,
input wire w,
input wire [ 8:2] addr,
input wire [32-1:0] din,
output wire [32-1:0] dout,
input wire init,
input wire next,
output wire ready);
/*
* The SHA-3 algorithm really wants everything to be little-endian,
* which is at odds with everything else in our system (including the
* register interface to sha3_wrapper). Rather than trying to rewrite
* Bernd's beautiful code, I'll isolate it in its own little-endian
* universe by byte-swapping all reads and writes.
*/
reg [31:0] dout_swap;
assign dout = {dout_swap[7:0], dout_swap[15:8], dout_swap[23:16], dout_swap[31:24]};
wire [31:0] din_swap;
assign din_swap = {din[7:0], din[15:8], din[23:16], din[31:24]};
integer i, j;
reg [64-1:0] blk[0:24], // input block
st [0:24], // current state
stn[0:24], // new state
bc [0: 4], // intermediate values
t; // temporary variable
reg [ 4:0] round; // counter value
localparam [ 4: 0] roundlimit = `SHA3_NUM_ROUNDS - 'b1;
localparam [24*6-1:0] rotc =
{ 6'h01, 6'h03, 6'h06, 6'h0A, 6'h0F, 6'h15,
6'h1C, 6'h24, 6'h2D, 6'h37, 6'h02, 6'h0E,
6'h1B, 6'h29, 6'h38, 6'h08, 6'h19, 6'h2B,
6'h3E, 6'h12, 6'h27, 6'h3D, 6'h14, 6'h2C};
localparam [24*5-1:0] piln =
{ 5'h0A, 5'h07, 5'h0B, 5'h11, 5'h12, 5'h03,
5'h05, 5'h10, 5'h08, 5'h15, 5'h18, 5'h04,
5'h0F, 5'h17, 5'h13, 5'h0D, 5'h0C, 5'h02,
5'h14, 5'h0E, 5'h16, 5'h09, 5'h06, 5'h01};
localparam [24*64-1:0] rndc =
{ 64'h0000000000000001, 64'h0000000000008082,
64'h800000000000808a, 64'h8000000080008000,
64'h000000000000808b, 64'h0000000080000001,
64'h8000000080008081, 64'h8000000000008009,
64'h000000000000008a, 64'h0000000000000088,
64'h0000000080008009, 64'h000000008000000a,
64'h000000008000808b, 64'h800000000000008b,
64'h8000000000008089, 64'h8000000000008003,
64'h8000000000008002, 64'h8000000000000080,
64'h000000000000800a, 64'h800000008000000a,
64'h8000000080008081, 64'h8000000000008080,
64'h0000000080000001, 64'h8000000080008008};
/* input block buffer is mapped to the lower half of the
address space, sponge state is mapped to the upper one */
/* the lowest address bit determines what part of 64-bit word to return */
always @*
//
dout_swap = addr[8] ?
(~addr[2] ? st [addr[7:3]][31:0] : st [addr[7:3]][63:32]) :
(~addr[2] ? blk[addr[7:3]][31:0] : blk[addr[7:3]][63:32]) ;
always @* begin
// theta1
for (i=0; i<25; i=i+1)
stn[i] = st[i];
for (i=0; i<5; i=i+1)
bc[i] = stn[i] ^ stn[i+5] ^ stn[i+10] ^ stn[i+15] ^ stn[i+20];
// theta2
for (i=0; i<5; i=i+1) begin
t = bc[(i+4)%5] ^ `rotl64(bc[(i+1)%5], 1);
for(j=i; j<25; j=j+5)
stn[j] = t ^ stn[j];
end
// rophi
t = stn[1];
for(i=0; i<24; i=i+1) begin
j = `pilni(i);
{ stn[j], t } = { `rotl64(t, `rotci(i)), stn[j] };
end
// chi
for (j=0; j<25; j=j+5) begin
for (i=0; i<5; i=i+1)
bc[i] = stn[j + i];
for (i=0; i<5; i=i+1)
stn[j+i] = stn[j+i] ^ (~bc[(i+1)%5] & bc[(i+2)%5]);
end
// iota
stn[0] = stn[0] ^ `rndci(round);
end
/* ready flag logic */
reg ready_reg = 'b1;
assign ready = ready_reg;
always @(posedge clk or negedge nreset)
//
if (!nreset) ready_reg <= 'b1;
else begin
if (ready) ready_reg <= !(init || next);
else ready_reg <= !(round < roundlimit);
end
/* state update logic */
always @(posedge clk or negedge nreset)
//
if (!nreset) begin
for (i=0; i<25; i=i+1) begin
st[i] <= 64'hX; // wipe state
blk[i] <= 64'h0; // wipe block
end
round <= `SHA3_NUM_ROUNDS;
end else begin
if (!ready) begin
for (i=0; i<25; i=i+1)
st[i] <= stn[i];
round <= round + 'd1;
end else if (init || next) begin
for (i=0; i<25; i=i+1)
st[i] <= init ? blk[i] : st[i] ^ blk[i]; // init has priority over next
round <= 'd0;
end
if (w)
//
case (addr[2])
1: blk[addr[7:3]][63:32] <= din_swap;
0: blk[addr[7:3]][31: 0] <= din_swap;
endcase
end
endmodule // sha3
//======================================================================
|