//======================================================================
// sha3
// ----
// keccak, SHA-3 winner
// derived from "readable keccak"
// 19-Nov-11 Markku-Juhani O. Saarinen <mjos@iki.fi>
// A baseline Keccak (3rd round) implementation.
// Verilog implementation (c) 2015 by Bernd Paysan
// Ported to Cryptech Alpha platform by Pavel Shatov
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
`define rotl64(x, r) ((({x, x}<<r)>>64)& 64'hffffffffffffffff)
`define rotci(i) ((rotc>>((23-i)*6)) & 6'h3f)
`define pilni(i) ((piln>>((23-i)*5)) & 5'h1f)
`define rndci(i) ((rndc>>((23-i)*64)) & 64'hffffffffffffffff)
`define SHA3_NUM_ROUNDS 5'd24
module sha3( input wire clk,
input wire nreset,
input wire w,
input wire [ 8:2] addr,
input wire [32-1:0] din,
output wire [32-1:0] dout,
input wire init,
input wire next,
output wire ready);
/*
* The SHA-3 algorithm really wants everything to be little-endian,
* which is at odds with everything else in our system (including the
* register interface to sha3_wrapper). Rather than trying to rewrite
* Bernd's beautiful code, I'll isolate it in its own little-endian
* universe by byte-swapping all reads and writes.
*/
reg [31:0] dout_swap;
assign dout = {dout_swap[7:0], dout_swap[15:8], dout_swap[23:16], dout_swap[31:24]};
wire [31:0] din_swap;
assign din_swap = {din[7:0], din[15:8], din[23:16], din[31:24]};
integer i, j;
reg [64-1:0] blk[0:24], // input block
st [0:24], // current state
stn[0:24], // new state
bc [0: 4], // intermediate values
t; // temporary variable
reg [ 4:0] round; // counter value
localparam [ 4: 0] roundlimit = `SHA3_NUM_ROUNDS - 'b1;
localparam [24*6-1:0] rotc =
{ 6'h01, 6'h03, 6'h06, 6'h0A, 6'h0F, 6'h15,
6'h1C, 6'h24, 6'h2D, 6'h37, 6'h02, 6'h0E,
6'h1B, 6'h29, 6'h38, 6'h08, 6'h19, 6'h2B,
6'h3E, 6'h12, 6'h27, 6'h3D, 6'h14, 6'h2C};
localparam [24*5-1:0] piln =
{ 5'h0A, 5'h07, 5'h0B, 5'h11, 5'h12, 5'h03,
5'h05, 5'h10, 5'h08, 5'h15, 5'h18, 5'h04,
5'h0F, 5'h17, 5'h13, 5'h0D, 5'h0C, 5'h02,
5'h14, 5'h0E, 5'h16, 5'h09, 5'h06, 5'h01};
localparam [24*64-1:0] rndc =
{ 64'h0000000000000001, 64'h0000000000008082,
64'h800000000000808a, 64'h8000000080008000,
64'h000000000000808b, 64'h0000000080000001,
64'h8000000080008081, 64'h8000000000008009,
64'h000000000000008a, 64'h0000000000000088,
64'h0000000080008009, 64'h000000008000000a,
64'h000000008000808b, 64'h800000000000008b,
64'h8000000000008089, 64'h8000000000008003,
64'h8000000000008002, 64'h8000000000000080,
64'h000000000000800a, 64'h800000008000000a,
64'h8000000080008081, 64'h8000000000008080,
64'h0000000080000001, 64'h8000000080008008};
/* input block buffer is mapped to the lower half of the
address space, sponge state is mapped to the upper one */
/* the lowest address bit determines what part of 64-bit word to return */
always @*
//
dout_swap = addr[8] ?
(~addr[2] ? st [addr[7:3]][31:0] : st [addr[7:3]][63:32]) :
(~addr[2] ? blk[addr[7:3]][31:0] : blk[addr[7:3]][63:32]) ;
always @* begin
// theta1
for (i=0; i<25; i=i+1)
stn[i] = st[i];
for (i=0; i<5; i=i+1)
bc[i] = stn[i] ^ stn[i+5] ^ stn[i+10] ^ stn[i+15] ^ stn[i+20];
// theta2
for (i=0; i<5; i=i+1) begin
t = bc[(i+4)%5] ^ `rotl64(bc[(i+1)%5], 1);
for(j=i; j<25; j=j+5)
stn[j] = t ^ stn[j];
end
// rophi
t = stn[1];
for(i=0; i<24; i=i+1) begin
j = `pilni(i);
{ stn[j], t } = { `rotl64(t, `rotci(i)), stn[j] };
end
// chi
for (j=0; j<25; j=j+5) begin
for (i=0; i<5; i=i+1)
bc[i] = stn[j + i];
for (i=0; i<5; i=i+1)
stn[j+i] = stn[j+i] ^ (~bc[(i+1)%5] & bc[(i+2)%5]);
end
// iota
stn[0] = stn[0] ^ `rndci(round);
end
/* ready flag logic */
reg ready_reg = 'b1;
assign ready = ready_reg;
always @(posedge clk or negedge nreset)
//
if (!nreset) ready_reg <= 'b1;
else begin
if (ready) ready_reg <= !(init || next);
else ready_reg <= !(round < roundlimit);
end
/* state update logic */
always @(posedge clk or negedge nreset)
//
if (!nreset) begin
for (i=0; i<25; i=i+1) begin
st[i] <= 64'hX; // wipe state
blk[i] <= 64'h0; // wipe block
end
round <= `SHA3_NUM_ROUNDS;
end else begin
if (!ready) begin
for (i=0; i<25; i=i+1)
st[i] <= stn[i];
round <= round + 'd1;
end else if (init || next) begin
for (i=0; i<25; i=i+1)
st[i] <= init ? blk[i] : st[i] ^ blk[i]; // init has priority over next
round <= 'd0;
end
if (w)
//
case (addr[2])
1: blk[addr[7:3]][63:32] <= din_swap;
0: blk[addr[7:3]][31: 0] <= din_swap;
endcase
end
endmodule // sha3
//======================================================================