aboutsummaryrefslogtreecommitdiff
path: root/rtl/modexpng_mmm_dout_addr.v
blob: 3749d824db01bd527e02c52bff41fe4002e58c3f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
module modexpng_mmm_dout_addr
(
    clk, rst_n,
    //index_last,
    fsm_state,
    load_xy_addr,
    load_addr_zero,
    load_nn_coeff_addr_done,
    /*
    
    col_index_zero, col_index_next,*/
    x_dout_addr, y_dout_addr,
    x_dout_ena,  y_dout_ena,
    x_dout_bank, y_dout_bank

);


    //
    // Includes
    //
    `include "modexpng_parameters.vh"
    `include "modexpng_parameters_x8.vh"
    `include "modexpng_mmm_fsm.vh"


    //
    // Parameters
    //
    parameter INDEX_WIDTH = 6;
    
    
    //
    // Ports
    //
    input                        clk;
    input                        rst_n;
    //input  [    INDEX_WIDTH-1:0] index_last;
    input  [FSM_STATE_WIDTH-1:0] fsm_state;
    input  [INDEX_WIDTH:0] load_xy_addr;       // address
    input                  load_addr_zero;
    input                  load_nn_coeff_addr_done;
    //input  [    INDEX_WIDTH-4:0] col_index_zero;
    //input  [    INDEX_WIDTH-4:0] col_index_next;
    output [INDEX_WIDTH-4:0] x_dout_addr;
    output [INDEX_WIDTH-4:0] y_dout_addr;
    
    output [NUM_MULTS-1:0] x_dout_ena;
    output [NUM_MULTS-1:0] y_dout_ena;
    
    output [3-1:0] x_dout_bank;
    output [3-1:0] y_dout_bank;
    
 
    //
    // Registers
    //
    reg [INDEX_WIDTH-4:0] x_dout_addr_reg; //clog2
    reg [INDEX_WIDTH-4:0] y_dout_addr_reg; //clog2
    
    reg [NUM_MULTS-1:0] x_dout_ena_reg = {NUM_MULTS{1'b0}};
    reg [NUM_MULTS-1:0] y_dout_ena_reg = {NUM_MULTS{1'b0}};

    reg [NUM_MULTS-1:0] x_dout_ena_int;
    reg [NUM_MULTS-1:0] y_dout_ena_int;
    
    reg [3-1:0] x_dout_bank_reg;
    reg [3-1:0] y_dout_bank_reg;

    
    //
    // Mapping
    //
    assign x_dout_addr = x_dout_addr_reg;
    assign y_dout_addr = y_dout_addr_reg;
    
    assign x_dout_ena  = x_dout_ena_reg;
    assign y_dout_ena  = y_dout_ena_reg;
    
    assign x_dout_bank = x_dout_bank_reg;
    assign y_dout_bank = y_dout_bank_reg;

    
    always @(posedge clk)
        //
        case (fsm_state)
            //
            FSM_STATE_LOAD_T1T2_3: begin
                x_dout_addr_reg <= load_xy_addr[INDEX_WIDTH-1:3];
                y_dout_addr_reg <= load_xy_addr[INDEX_WIDTH-1:3];
            end
            //
            FSM_STATE_LOAD_NN_COEFF_3: begin
                x_dout_addr_reg <= !load_nn_coeff_addr_done ? load_xy_addr[INDEX_WIDTH-1:3] : BANK_XY_AUX_ADDR_N_COEFF[INDEX_WIDTH-4:0];
                y_dout_addr_reg <= !load_nn_coeff_addr_done ? load_xy_addr[INDEX_WIDTH-1:3] : BANK_XY_AUX_ADDR_N_COEFF[INDEX_WIDTH-4:0];
            end
            //
            default: begin
                x_dout_addr_reg <= {INDEX_WIDTH-3{1'bX}};
                y_dout_addr_reg <= {INDEX_WIDTH-3{1'bX}};
            end
            //
        endcase

    wire [NUM_MULTS-1:0] load_xy_ena_init = {{NUM_MULTS-1{1'b0}}, 1'b1};        
    
    always @(posedge clk)
        //
        case (fsm_state)
            //
            FSM_STATE_LOAD_T1T2_2: begin
                x_dout_ena_int <= load_addr_zero ? load_xy_ena_init : {x_dout_ena_int[NUM_MULTS-2:0], x_dout_ena_int[NUM_MULTS-1]};
                y_dout_ena_int <= load_addr_zero ? load_xy_ena_init : {y_dout_ena_int[NUM_MULTS-2:0], y_dout_ena_int[NUM_MULTS-1]};
            end
            //
            FSM_STATE_LOAD_NN_COEFF_2: begin
                x_dout_ena_int <= load_addr_zero ? load_xy_ena_init : {x_dout_ena_int[NUM_MULTS-2:0], x_dout_ena_int[NUM_MULTS-1] & ~load_nn_coeff_addr_done};
                y_dout_ena_int <= load_addr_zero ? load_xy_ena_init : {y_dout_ena_int[NUM_MULTS-2:0], y_dout_ena_int[NUM_MULTS-1]};
            end
            //
        endcase


    always @(posedge clk or negedge rst_n)
        //
        if (!rst_n) begin
            x_dout_ena_reg <= {NUM_MULTS{1'b0}};
            y_dout_ena_reg <= {NUM_MULTS{1'b0}};        
        end else case (fsm_state)
            //
            FSM_STATE_LOAD_T1T2_3,
            FSM_STATE_LOAD_NN_COEFF_3: begin
                x_dout_ena_reg <= x_dout_ena_int;
                y_dout_ena_reg <= y_dout_ena_int;
            end
            //
            default: begin
                x_dout_ena_reg <= {NUM_MULTS{1'b0}};
                y_dout_ena_reg <= {NUM_MULTS{1'b0}};
            end
            //
        endcase

        
    always @(posedge clk)
        //
        case (fsm_state)
            //
            FSM_STATE_LOAD_T1T2_3: begin
                x_dout_bank_reg <= BANK_X_T1;
                y_dout_bank_reg <= BANK_Y_T2;
            end
            //
            FSM_STATE_LOAD_NN_COEFF_3: begin
                x_dout_bank_reg <= !load_nn_coeff_addr_done ? BANK_X_N       : BANK_XY_AUX;
                y_dout_bank_reg <= !load_nn_coeff_addr_done ? BANK_Y_N_COEFF : BANK_XY_AUX;
            end
            //
            default: begin
                x_dout_bank_reg <= BANK_XY_ANY;
                y_dout_bank_reg <= BANK_XY_ANY;
            end
            //
        endcase

        
endmodule