aboutsummaryrefslogtreecommitdiff
path: root/modexpng_fpga_model.py
blob: cc3e868ad1989ae9dfcf6a5afbae3eceed36e966 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
#!/usr/bin/python3
#
#
# ModExpNG core math model.
#
#
# Copyright (c) 2019, NORDUnet A/S
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# - Redistributions of source code must retain the above copyright notice,
#   this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#
# - Neither the name of the NORDUnet nor the names of its contributors may
#   be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#


# -------
# Imports
#--------

import sys
import importlib


# --------------
# Model Settings
# --------------

# length of public key
KEY_LENGTH = 1024

# how many parallel multipliers to use
NUM_MULTS  = 8


# ---------------
# Internal Values
# ---------------

# half of key length
_KEY_LENGTH_HALF = KEY_LENGTH // 2

# width of internal math pipeline
_WORD_WIDTH = 16

# folder with test vector scripts
_VECTOR_PATH = "/vector"

# name of test vector class
_VECTOR_CLASS = "Vector"


# ------------------
# Debugging Settings
# ------------------
FORCE_OVERFLOW = False
DUMP_VECTORS = False
DUMP_INDICES = False
DUMP_MACS_INPUTS = False
DUMP_MACS_CLEARING = False
DUMP_MACS_ACCUMULATION = False
DUMP_MULT_PARTS = False
DUMP_RCMB = False
DUMP_REDUCTION = False


#
# Multi-Precision Integer
#
class ModExpNG_Operand():

    def __init__(self, number, length, words = None):

        if words is None:

            # length must be divisible by word width
            if (length % _WORD_WIDTH) > 0:
                raise Exception("Bad number length!")

            self._init_from_number(number, length)

        else:

            # length must match words count
            if len(words) != length:
                raise Exception("Bad words count!")

            self._init_from_words(words, length)

    def format_verilog_concat(self, name):

        for i in range(len(self.words)):
            if i > 0:
                if (i % 4) == 0: print("")
                else:            print(" ", end='')
            print("%s[%2d] = 18'h%05x;" % (name, i, self.words[i]), end='')
        print("")

    def _init_from_words(self, words, count):

        for i in range(count):

            # word must not exceed 18 bits
            if words[i] >= (2 ** (_WORD_WIDTH + 2)):
                raise Exception("Word is too large!")

        self.words = words

    def _init_from_number(self, number, length):

        num_hexchars_per_word = _WORD_WIDTH // 4
        num_hexchars_total = length // num_hexchars_per_word

        value_hex = format(number, 'x')

        # value must not be larger than specified, but it can be smaller, so
        # we may need to prepend it with zeroes
        if len(value_hex) > num_hexchars_total:
            raise Exception("Number is too large!")
        else:
            while len(value_hex) < num_hexchars_total:
                value_hex = "0" + value_hex

        # create empty list
        self.words = list()

        # fill in words
        while len(value_hex) > 0:
            value_hex_part = value_hex[-num_hexchars_per_word:]
            value_hex = value_hex[:-num_hexchars_per_word]
            self.words.append(int(value_hex_part, 16))

    def number(self):
        ret = 0
        shift = 0
        for word in self.words:
            ret += word << shift
            shift += _WORD_WIDTH
        return ret


#
# Test Vector
#
class ModExpNG_TestVector():

    def __init__(self):

        # format target filename
        filename = "vector_" + str(KEY_LENGTH) + "_randomized"

        # add ./vector to import search path
        sys.path.insert(1, sys.path[0] + _VECTOR_PATH)

        # import from filename
        vector_module = importlib.import_module(filename)

        # get vector class
        vector_class = getattr(vector_module, _VECTOR_CLASS)

        # instantiate vector class
        vector_inst = vector_class()

        # obtain parts of vector
        self.m        = ModExpNG_Operand(vector_inst.m,         KEY_LENGTH)
        self.n        = ModExpNG_Operand(vector_inst.n,         KEY_LENGTH)
        self.d        = ModExpNG_Operand(vector_inst.d,         KEY_LENGTH)
        self.p        = ModExpNG_Operand(vector_inst.p,        _KEY_LENGTH_HALF)
        self.q        = ModExpNG_Operand(vector_inst.q,        _KEY_LENGTH_HALF)
        self.dp       = ModExpNG_Operand(vector_inst.dp,       _KEY_LENGTH_HALF)
        self.dq       = ModExpNG_Operand(vector_inst.dq,       _KEY_LENGTH_HALF)
        self.qinv     = ModExpNG_Operand(vector_inst.qinv,     _KEY_LENGTH_HALF)
        self.n_factor = ModExpNG_Operand(vector_inst.n_factor,  KEY_LENGTH)
        self.p_factor = ModExpNG_Operand(vector_inst.p_factor, _KEY_LENGTH_HALF)
        self.q_factor = ModExpNG_Operand(vector_inst.q_factor, _KEY_LENGTH_HALF)
        self.n_coeff  = ModExpNG_Operand(vector_inst.n_coeff,   KEY_LENGTH      + _WORD_WIDTH)
        self.p_coeff  = ModExpNG_Operand(vector_inst.p_coeff,  _KEY_LENGTH_HALF + _WORD_WIDTH)
        self.q_coeff  = ModExpNG_Operand(vector_inst.q_coeff,  _KEY_LENGTH_HALF + _WORD_WIDTH)
        self.x        = ModExpNG_Operand(vector_inst.x,         KEY_LENGTH)
        self.y        = ModExpNG_Operand(vector_inst.y,         KEY_LENGTH)


class ModExpNG_PartRecombinator():

    def _bit_select(self, x, msb, lsb):
        y = 0
        for pos in range(lsb, msb+1):
            y |= (x & (1 << pos)) >> lsb
        return y

    def _flush_pipeline(self, dump):
        self.z0, self.y0, self.x0 = 0, 0, 0
        if dump and DUMP_RCMB:
            print("RCMB -> flush()")

    def _push_pipeline(self, part, dump):

        # split next part into 16-bit words
        z = self._bit_select(part, 46, 32)
        y = self._bit_select(part, 31, 16)
        x = self._bit_select(part, 15,  0)

        # shift to the right
        z1 = z
        y1 = y + self.z0
        x1 = x + self.y0 + (self.x0 >> _WORD_WIDTH) # IMPORTANT: This carry can be up to two bits wide!!

        # save lower 16 bits of the rightmost cell
        t = self.x0 & 0xffff

        # update internal latches
        self.z0, self.y0, self.x0 = z1, y1, x1

        # dump
        if dump and DUMP_RCMB:
            print("RCMB -> push(): part = 0x%012x, word = 0x%04x" % (part, t))

        # done
        return t

    def recombine_square(self, parts, ab_num_words, dump):

        # empty results so far
        words_lsb = list()  # n words
        words_msb = list()  # n words

        # recombine the lower half (n parts)
        # the first tick produces null result, the last part
        # produces three words and needs two extra ticks
        self._flush_pipeline(dump)
        for i in range(ab_num_words + 1 + 2):
            next_part = parts[i] if i < ab_num_words else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words_lsb.append(next_word)

        # recombine the upper half (n-1 parts)
        # the first tick produces null result
        self._flush_pipeline(dump)
        for i in range(ab_num_words + 1):
            next_part = parts[i + ab_num_words] if i < (ab_num_words - 1) else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words_msb.append(next_word)

        # merge words
        words = list()

        # merge lower half
        for x in range(ab_num_words):
            next_word = words_lsb[x]
            words.append(next_word)

        # merge upper half adding the two overlapping words
        for x in range(ab_num_words):
            next_word = words_msb[x]
            if x < 2:                
                next_word += words_lsb[x + ab_num_words]
            words.append(next_word)

        return words

    def recombine_triangle(self, parts, ab_num_words, dump):

        # empty result so far
        words_lsb = list()

        # recombine the lower half (n+1 parts)
        # the first tick produces null result, so we need n + 1 + 1 = n + 2
        # ticks total and should only save the result word during the last
        # n + 1 ticks
        self._flush_pipeline(dump)
        for i in range(ab_num_words + 2):

            next_part = parts[i] if i < (ab_num_words + 1) else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words_lsb.append(next_word)

        return words_lsb

    def recombine_rectangle(self, parts, ab_num_words, dump):

        # empty result so far
        words_lsb = list()  # n words
        words_msb = list()  # n+1 words

        # recombine the lower half (n parts)
        # the first tick produces null result, the last part
        # produces three words and needs two extra ticks
        self._flush_pipeline(dump)
        for i in range(ab_num_words + 1 + 2):
            next_part = parts[i] if i < ab_num_words else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words_lsb.append(next_word)

        # recombine the upper half (n parts)
        # the first tick produces null result, the last part
        # produces two words and needs an extra tick
        self._flush_pipeline(dump)
        for i in range(ab_num_words + 2):
            next_part = parts[i + ab_num_words] if i < ab_num_words else 0
            next_word = self._push_pipeline(next_part, dump)

            if i > 0:
                words_msb.append(next_word)
                
        # merge words
        words = list()

        # merge lower half
        for x in range(ab_num_words):
            next_word = words_lsb[x]
            words.append(next_word)

        # merge upper half adding the two overlapping words
        for x in range(ab_num_words + 1):
            next_word = words_msb[x]
            if x < 2:
                next_word += words_lsb[x + ab_num_words]
            words.append(next_word)

        return words


class ModExpNG_WordMultiplier():

    def __init__(self):

        self._macs = list()
        self._indices = list()

        self._mac_aux = list()
        self._index_aux = list()

        for x in range(NUM_MULTS):
            self._macs.append(0)
            self._indices.append(0)

        self._mac_aux.append(0)
        self._index_aux.append(0)

    def _clear_all_macs(self, t, col, dump):
        for x in range(NUM_MULTS):
            self._macs[x] = 0
        if dump and DUMP_MACS_CLEARING:
            print("t=%2d, col=%2d > clear > all" % (t, col))

    def _clear_one_mac(self, x, t, col, dump):
        self._macs[x] = 0
        if dump and DUMP_MACS_CLEARING:
            print("t=%2d, col=%2d > clear > x=%d" % (t, col, x))

    def _clear_mac_aux(self, t, col, dump):
        self._mac_aux[0] = 0
        if dump and DUMP_MACS_CLEARING:
            print("t= 0, col=%2d > clear > aux" % (col))

    def _update_one_mac(self, x, t, col, a, b, dump, need_aux=False):

        if a > 0x3FFFF:
            raise Exception("a > 0x3FFFF!")

        if b > 0xFFFF:
            raise Exception("b > 0xFFFF!")

        p = a * b
        if dump and DUMP_MACS_INPUTS:
            if x == 0: print("t=%2d, col=%2d > b=%05x > " % (t, col, b), end='')
            if x > 0: print("; ", end='')
            print("MAC[%d]: a=%05x" % (x, a), end='')
            if x == (NUM_MULTS-1) and not need_aux: print("")
            
        self._macs[x] += p

    def _update_mac_aux(self, y, col, a, b, dump):
        
        if a > 0x3FFFF:
            raise Exception("a > 0x3FFFF!")

        if b > 0xFFFF:
            raise Exception("b > 0xFFFF!")

        p = a * b
        if dump and DUMP_MACS_INPUTS:
            print("; AUX: a=%05x" % a)
        self._mac_aux[0] += p

    def _preset_indices(self, col):
        for x in range(len(self._indices)):
            self._indices[x] = col * len(self._indices) + x

    def _preset_index_aux(self, num_cols):
        self._index_aux[0] = num_cols * len(self._indices)

    def _dump_macs_helper(self, t, col, aux=False):
        print("t=%2d, col=%2d > "% (t, col), end='')
        for i in range(NUM_MULTS):
            if i > 0: print(" | ", end='')
            print("mac[%d]: 0x%012x" % (i, self._macs[i]), end='')
        if aux:
            print(" | mac_aux[ 0]: 0x%012x" % (self._mac_aux[0]), end='')
        print("")

    def _dump_macs(self, t, col):
        self._dump_macs_helper(t, col)

    def _dump_macs_with_aux(self, t, col):
        self._dump_macs_helper(t, col, True)

    def _dump_indices_helper(self, t, col, aux=False):
        print("t=%2d, col=%2d > indices:" % (t, col), end='')
        for i in range(NUM_MULTS):
            print(" %2d" % self._indices[i], end='')
        if aux:
            print(" %2d" % self._index_aux[0], end='')
        print("")

    def _dump_indices(self, t, col):
        self._dump_indices_helper(t, col)

    def _dump_indices_with_aux(self, t, col):
        self._dump_indices_helper(t, col, True)

    def _rotate_indices(self, num_words):
        for x in range(len(self._indices)):
            if self._indices[x] > 0:
                self._indices[x] -= 1
            else:
                self._indices[x] = num_words - 1

    def _rotate_index_aux(self):
        self._index_aux[0] -= 1

    def _mult_store_part(self, parts, time, column, part_index, mac_index, dump):
        parts[part_index] = self._macs[mac_index]
        if dump and DUMP_MULT_PARTS:
            print("t=%2d, col=%2d > parts[%2d]: mac[%d] = 0x%012x" %
                (time, column, part_index, mac_index, parts[part_index]))

    def _mult_store_part_aux(self, parts, time, column, part_index, dump):
        parts[part_index] = self._mac_aux[0]
        if dump and DUMP_MULT_PARTS:
            print("t=%2d, col=%2d > parts[%2d]: mac_aux[%d] = 0x%012x" %
                (time, column, part_index, 0, parts[part_index]))

    def multiply_square(self, a_wide, b_narrow, ab_num_words, dump=False):

        num_cols = ab_num_words // NUM_MULTS

        parts = list()
        for i in range(2 * ab_num_words - 1):
            parts.append(0)

        for col in range(num_cols):
        
            b_carry = 0
        
            for t in range(ab_num_words):

                # take care of indices
                if t == 0: self._preset_indices(col)
                else:      self._rotate_indices(ab_num_words)

                # take care of macs
                if t == 0:
                    self._clear_all_macs(t, col, dump)
                else:
                    t1 = t - 1
                    if (t1 // 8) == col:
                        self._clear_one_mac(t1 % NUM_MULTS, t, col, dump)

                # debug output
                if dump and DUMP_INDICES: self._dump_indices(t, col)

                # current b-word
                # TODO: Explain how the 18th bit carry works!!
                bt = b_narrow.words[t] + b_carry
                b_carry = (bt & 0x30000) >> 16
                bt &= 0xFFFF

                # multiply by a-words
                for x in range(NUM_MULTS):
                    ax = a_wide.words[self._indices[x]]
                    self._update_one_mac(x, t, col, ax, bt, dump)

                    if t == (col * NUM_MULTS + x):
                        part_index = t
                        self._mult_store_part(parts, t, col, part_index, x, dump)

                # debug output
                if dump and DUMP_MACS_ACCUMULATION: self._dump_macs(t, col)

                # save the uppers part of product at end of column,
                # for the last column don't save the very last part
                if t == (ab_num_words - 1):
                    for x in range(NUM_MULTS):
                        if not (col == (num_cols - 1) and x == (NUM_MULTS - 1)):
                            part_index = ab_num_words + col * NUM_MULTS + x
                            self._mult_store_part(parts, t, col, part_index, x, dump)

        return parts

    def multiply_triangle(self, a_wide, b_narrow, ab_num_words, dump=False):

        num_cols = ab_num_words // NUM_MULTS

        parts = list()
        for i in range(ab_num_words + 1):
            parts.append(0)

        for col in range(num_cols):

            last_col = col == (num_cols - 1)

            for t in range(ab_num_words + 1):

                # take care of indices
                if t == 0: self._preset_indices(col)
                else:      self._rotate_indices(ab_num_words)

                # take care of auxilary index
                if last_col:
                    if t == 0: self._preset_index_aux(num_cols)
                    else:      self._rotate_index_aux()

                # take care of macs
                if t == 0: self._clear_all_macs(t, col, dump)

                # take care of auxilary mac
                if last_col:
                    if t == 0: self._clear_mac_aux(t, col, dump)

                # debug output
                if dump and DUMP_INDICES: self._dump_indices_with_aux(t, col)

                # current b-word
                bt = b_narrow.words[t]

                # multiply by a-words
                for x in range(NUM_MULTS):
                    ax = a_wide.words[self._indices[x]]
                    self._update_one_mac(x, t, col, ax, bt, dump, last_col)

                    if t == (col * NUM_MULTS + x):
                        part_index = t
                        self._mult_store_part(parts, t, col, part_index, x, dump)

                # aux multiplier
                if last_col:
                    ax = a_wide.words[self._index_aux[0]]
                    self._update_mac_aux(t, col, ax, bt, dump)

                    if t == ab_num_words:
                        part_index = t
                        self._mult_store_part_aux(parts, t, col, part_index, dump)

                # debug output
                if dump and DUMP_MACS_ACCUMULATION: self._dump_macs_with_aux(t, col)

                # shortcut
                if not last_col:
                    if t == (NUM_MULTS * (col + 1) - 1): break

        return parts

    def multiply_rectangle(self, a_wide, b_narrow, ab_num_words, dump=False):

        num_cols = ab_num_words // NUM_MULTS

        parts = list()
        for i in range(2 * ab_num_words):
            parts.append(0)

        for col in range(num_cols):

            for t in range(ab_num_words + 1):

                # take care of indices
                if t == 0: self._preset_indices(col)
                else:      self._rotate_indices(ab_num_words)

                # take care of macs
                if t == 0:
                    self._clear_all_macs(t, col, dump)
                else:
                    t1 = t - 1
                    if (t1 // 8) == col:
                        self._clear_one_mac(t1 % NUM_MULTS, t, col, dump)

                # debug output
                if dump and DUMP_INDICES: self._dump_indices(t, col)

                # current b-word
                bt = b_narrow.words[t]

                # multiply by a-words
                for x in range(NUM_MULTS):
                    ax = a_wide.words[self._indices[x]]
                    self._update_one_mac(x, t, col, ax, bt, dump)

                    # don't save one value for the very last time instant per column
                    if t < ab_num_words and t == (col * NUM_MULTS + x):
                        part_index = t
                        self._mult_store_part(parts, t, col, part_index, x, dump)

                # debug output
                if dump and DUMP_MACS_ACCUMULATION: self._dump_macs(t, col)

                # save the upper parts of product at end of column
                if t == ab_num_words:
                    for x in range(NUM_MULTS):
                        part_index = ab_num_words + col * NUM_MULTS + x
                        self._mult_store_part(parts, t, col, part_index, x, dump)

        return parts


class ModExpNG_LowlevelOperator():

    def __init__(self):
        self._word_mask = 0
        for x in range(_WORD_WIDTH):
            self._word_mask |= (1 << x)

    def _check_word(self, a):
        if a < 0 or a >= (2 ** _WORD_WIDTH):
            raise Exception("Word out of range!")

    def _check_carry_borrow(self, cb):
        if cb < 0 or cb > 1:
            raise Exception("Carry or borrow out of range!")

    def add_words(self, a, b, c_in):

        self._check_word(a)
        self._check_word(b)
        self._check_carry_borrow(c_in)

        sum = a + b + c_in

        sum_s = sum & self._word_mask
        sum_c = (sum >> _WORD_WIDTH) & 1

        return (sum_c, sum_s)

    def sub_words(self, a, b, b_in):
    
        self._check_word(a)
        self._check_word(b)
        self._check_carry_borrow(b_in)

        dif = a - b - b_in

        if dif < 0:
            dif_b = 1
            dif_d = dif + 2 ** _WORD_WIDTH
        else:
            dif_b = 0
            dif_d = dif

        return (dif_b, dif_d)


class ModExpNG_Worker():

    def __init__(self):
        self.recombinator = ModExpNG_PartRecombinator()
        self.multiplier   = ModExpNG_WordMultiplier()
        self.lowlevel     = ModExpNG_LowlevelOperator()

    def exponentiate(self, iz, bz, e, n, n_factor, n_coeff, num_words, dump_index=-1, dump_mode=""):

        # working variables
        t1, t2 = iz, bz

        # length-1, length-2, length-3, ..., 1, 0 (left-to-right)
        for bit in range(_WORD_WIDTH * num_words - 1, -1, -1):

            debug_dump = bit == dump_index

            bit_value = (e.number() & (1 << bit)) >> bit
            
            if debug_dump:
                print("\rladder_mode = %d" % bit_value)
                
                if FORCE_OVERFLOW:
                    T1X = list(t1.words)
                    for i in range(num_words):
                        if i > 0:
                            bits = T1X[i-1] & (3 << 16)
                            if bits == 0:
                                bits = T1X[i] & 3
                                T1X[i] = T1X[i] ^ bits
                                T1X[i-1] |= (bits << 16)
                                    
                    for i in range(num_words):
                        t1.words[i] = T1X[i]
                
                if DUMP_VECTORS:
                    print("num_words = %d" % num_words)
                    t1.format_verilog_concat("%s_T1" % dump_mode)
                    t2.format_verilog_concat("%s_T2" % dump_mode)
                    n.format_verilog_concat("%s_N" % dump_mode)
                    n_coeff.format_verilog_concat("%s_N_COEFF"  % dump_mode)
                            # force the rarely seen overflow

            if bit_value:
                p1 = self.multiply(t1, t2, n, n_coeff, num_words, dump=debug_dump, dump_mode=dump_mode, dump_phase="X")
                p2 = self.multiply(t2, t2, n, n_coeff, num_words, dump=debug_dump, dump_mode=dump_mode, dump_phase="Y")
            else:
                p1 = self.multiply(t1, t1, n, n_coeff, num_words, dump=debug_dump, dump_mode=dump_mode, dump_phase="X")
                p2 = self.multiply(t2, t1, n, n_coeff, num_words, dump=debug_dump, dump_mode=dump_mode, dump_phase="Y")

            t1, t2 = p1, p2

            if debug_dump and DUMP_VECTORS:
                t1.format_verilog_concat("%s_X" % dump_mode)
                t2.format_verilog_concat("%s_Y" % dump_mode)

            if (bit % 8) == 0:
                pct = float((_WORD_WIDTH * num_words - bit) / (_WORD_WIDTH * num_words)) * 100.0
                print("\rpct: %5.1f%%" % pct, end='')
        
        print("")

        return t1

    def subtract(self, a, b, n, ab_num_words):

        c_in = 0
        b_in = 0

        ab = list()
        ab_n = list()

        for x in range(ab_num_words):

            a_word = a.words[x]
            b_word = b.words[x]

            (b_out, d_out) = self.lowlevel.sub_words(a_word, b_word, b_in)
            (c_out, s_out) = self.lowlevel.add_words(d_out, n.words[x], c_in)

            ab.append(d_out)
            ab_n.append(s_out)

            (c_in, b_in) = (c_out, b_out)

        d = ab if not b_out else ab_n

        return ModExpNG_Operand(None, ab_num_words, d)

    def add(self, a, b, ab_num_words):

        c_in = 0

        ab = list()

        for x in range(2 * ab_num_words):

            a_word = a.words[x] if x < ab_num_words else 0
            b_word = b.words[x]

            (c_out, s_out) = self.lowlevel.add_words(a_word, b_word, c_in)

            ab.append(s_out)

            c_in = c_out

        return ModExpNG_Operand(None, 2*ab_num_words, ab)

    def multiply(self, a, b, n, n_coeff, ab_num_words, reduce_only=False, multiply_only=False, dump=False, dump_mode="", dump_phase=""):

        # 1. AB = A * B
        if dump: print("multiply_square(%s_%s)" % (dump_mode, dump_phase))
        
        if reduce_only:
            ab = a
        else:
            ab_parts = self.multiplier.multiply_square(a, b, ab_num_words, dump)
            ab_words = self.recombinator.recombine_square(ab_parts, ab_num_words, dump)
            ab = ModExpNG_Operand(None, 2 * ab_num_words, ab_words)

        if dump and DUMP_VECTORS:
            ab.format_verilog_concat("%s_%s_AB" % (dump_mode, dump_phase))

        if multiply_only:
            return ModExpNG_Operand(None, 2*ab_num_words, ab_words)

            
        # 2. Q = LSB(AB) * N_COEFF
        if dump: print("multiply_triangle(%s_%s)" % (dump_mode, dump_phase))
        
        q_parts = self.multiplier.multiply_triangle(ab, n_coeff, ab_num_words, dump)
        q_words = self.recombinator.recombine_triangle(q_parts, ab_num_words, dump)
        q = ModExpNG_Operand(None, ab_num_words + 1, q_words)

        if dump and DUMP_VECTORS:
            q.format_verilog_concat("%s_%s_Q" % (dump_mode, dump_phase))

        # 3. M = Q * N
        if dump: print("multiply_rectangle(%s_%s)" % (dump_mode, dump_phase))
        
        m_parts = self.multiplier.multiply_rectangle(n, q, ab_num_words, dump)
        m_words = self.recombinator.recombine_rectangle(m_parts, ab_num_words, dump)
        m = ModExpNG_Operand(None, 2 * ab_num_words + 1, m_words)
        
        if dump and DUMP_VECTORS:
            m.format_verilog_concat("%s_%s_M" % (dump_mode, dump_phase))

        if (m.number() != (q.number() * n.number())):
            print("MISMATCH")
            sys.exit()

            
        # 4. R = AB + M
        
        # 4a. compute carry (actual sum is all zeroes and need not be stored)
        r_cy = 0 # this can be up to two bits, since we're adding extended words!!
        for i in range(ab_num_words + 1):
            s = ab.words[i] + m.words[i] + r_cy
            r_cy_new = s >> 16
            
            if dump and DUMP_REDUCTION:
                print("[%2d] 0x%05x + 0x%05x + 0x%x => {0x%x, [0x%05x]}" %
                    (i, ab.words[i], m.words[i], r_cy, r_cy_new, s & 0xffff))
                
            r_cy = r_cy_new
        
        
        # 4b. Initialize empty result
        R = list()
        for i in range(ab_num_words):
            R.append(0)

        # 4c. compute the actual upper part of sum (take carry into account)
        for i in range(ab_num_words):
        
            if dump and DUMP_REDUCTION:
                print("[%2d]" % i, end='')
                
            ab_word = ab.words[ab_num_words + i + 1] if i < (ab_num_words - 1) else 0
            if dump and DUMP_REDUCTION:
                print(" 0x%05x" % ab_word, end='')
                
            m_word = m.words[ab_num_words + i + 1]
            if dump and DUMP_REDUCTION:
                print(" + 0x%05x" % m_word, end='')
                
            if i == 0: R[i] = r_cy
            else:      R[i] = 0
            
            if (r_cy > 3): print("\rR_CY = %d!" % r_cy)
            
            if dump and DUMP_REDUCTION:
                print(" + 0x%x" % R[i], end='')
                
            R[i] += ab_word
            R[i] += m_word
            if dump and DUMP_REDUCTION:
                print(" = 0x%05x" % R[i])
                        
        return ModExpNG_Operand(None, ab_num_words, R)

    def reduce(self, a):
        carry = 0
        for x in range(len(a.words)):
            a.words[x] += carry
            carry = (a.words[x] >> _WORD_WIDTH) & 3
            a.words[x] &= self.lowlevel._word_mask


if __name__ == "__main__":

    # load test vector
    # create worker
    # set numbers of words
    # obtain known good reference value with built-in math
    # create helper quantity
    # mutate blinding quantities with built-in math

    vector = ModExpNG_TestVector()
    worker = ModExpNG_Worker()

    n_num_words  = KEY_LENGTH  // _WORD_WIDTH
    pq_num_words = n_num_words // 2

    s_known  = pow(vector.m.number(), vector.d.number(), vector.n.number())

    i = ModExpNG_Operand(1, KEY_LENGTH)

    x_mutated_known = pow(vector.x.number(), 2, vector.n.number())
    y_mutated_known = pow(vector.y.number(), 2, vector.n.number())

    
    # bring one into Montgomery domain (glue 2**r to one)
    # bring blinding coefficients into Montgomery domain (glue 2**(2*r) to x and y)
    # blind message
    # convert message to non-redundant representation
    # first reduce message, this glues 2**-r to the message as a side effect
    # unglue 2**-r from message by gluing 2**r to it to compensate
    # bring message into Montgomery domain (glue 2**r to message)
    # do "easier" exponentiations
    # return "easier" parts from Montgomery domain (unglue 2**r from result)
    # do the "Garner's formula" part
    #  r = sp - sq mod p
    #  sr_qinv = sr * qinv mod p
    #  q_sr_qinv = q * sr_qinv
    #  s_crt = sq + q_sr_qinv
    # unblind s
    # mutate blinding factors
    
    XF  = worker.multiply(vector.x, vector.n_factor, vector.n, vector.n_coeff, n_num_words) # mod_multiply (mod n)
    YF  = worker.multiply(vector.y, vector.n_factor, vector.n, vector.n_coeff, n_num_words) # mod_multiply (mod n)

    XMF = worker.multiply(XF,       XF,              vector.n, vector.n_coeff, n_num_words) # mod_multiply (mod n)
    YMF = worker.multiply(YF,       YF,              vector.n, vector.n_coeff, n_num_words) # mod_multiply (mod n)
    
    XM  = worker.multiply(i,        XMF,             vector.n, vector.n_coeff, n_num_words) # mod_multiply (mod n)
    YM  = worker.multiply(i,        YMF,             vector.n, vector.n_coeff, n_num_words) # mod_multiply (mod n)

    MB  = worker.multiply(vector.m, YF,              vector.n, vector.n_coeff, n_num_words) # mod_multiply (mod n)

    worker.reduce(MB) # just_reduce

    mp_blind_inverse_factor = worker.multiply(MB, None, vector.p, vector.p_coeff, pq_num_words, reduce_only=True) # mod_reduce (mod p)
    mq_blind_inverse_factor = worker.multiply(MB, None, vector.q, vector.q_coeff, pq_num_words, reduce_only=True) # mod_reduce (mod q)

    mp_blind = worker.multiply(mp_blind_inverse_factor, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) # mod_multiply
    mq_blind = worker.multiply(mq_blind_inverse_factor, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) # mod_multiply

    mp_blind_factor = worker.multiply(mp_blind, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) # mod_multiply
    mq_blind_factor = worker.multiply(mq_blind, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) # mod_multiply

    ip_factor = worker.multiply(i, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) # mod_multiply
    iq_factor = worker.multiply(i, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) # mod_multiply

    sp_blind_factor = worker.exponentiate(ip_factor, mp_blind_factor, vector.dp, vector.p, vector.p_factor, vector.p_coeff, pq_num_words, dump_index=99, dump_mode="P") # mod_multiply
    sq_blind_factor = worker.exponentiate(iq_factor, mq_blind_factor, vector.dq, vector.q, vector.q_factor, vector.q_coeff, pq_num_words, dump_index=99, dump_mode="Q") # mod_multiply

    SPB = worker.multiply(i, sp_blind_factor, vector.p, vector.p_coeff, pq_num_words) # mod_multiply
    SQB = worker.multiply(i, sq_blind_factor, vector.q, vector.q_coeff, pq_num_words) # mod_multiply

    worker.reduce(SPB) # just_reduce
    worker.reduce(SQB) # just_reduce

    sr_blind = worker.subtract(SPB, SQB, vector.p, pq_num_words) # mod_subtract

    sr_qinv_blind_inverse_factor = worker.multiply(sr_blind, vector.qinv, vector.p, vector.p_coeff, pq_num_words) # mod_multiply
    sr_qinv_blind = worker.multiply(sr_qinv_blind_inverse_factor, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) # mod_multiply
    
    q_sr_qinv_blind = worker.multiply(vector.q, sr_qinv_blind, None, None, pq_num_words, multiply_only=True) # just_multiply

    worker.reduce(q_sr_qinv_blind) # just_reduce
    
    SB = worker.add(SQB, q_sr_qinv_blind, pq_num_words) # just_add

    S = worker.multiply(SB, XF, vector.n, vector.n_coeff, n_num_words) # mod_multiply

    worker.reduce(S) # just_reduce
    worker.reduce(XM) # just_reduce
    worker.reduce(YM) # just_reduce

    # check
    if S.number() != s_known:   print("ERROR: s_crt_unblinded != s_known!")
    else:                                     print("s is OK")

    if XM.number() != x_mutated_known: print("ERROR: x_mutated != x_mutated_known!")
    else:                                     print("x_mutated is OK")

    if YM.number() != y_mutated_known: print("ERROR: y_mutated != y_mutated_known!")
    else:                                     print("y_mutated is OK")


#
# End-of-File
#