diff options
author | Pavel V. Shatov (Meister) <meisterpaul1@yandex.ru> | 2019-03-23 10:58:09 +0300 |
---|---|---|
committer | Pavel V. Shatov (Meister) <meisterpaul1@yandex.ru> | 2019-03-23 10:58:09 +0300 |
commit | ecbc1b71ae0553e322e8c24492d78098f1947f4f (patch) | |
tree | 070c909e51a686864d3058a1ea10b0aa69552ed6 | |
parent | 3ef1813079662305cf62ac68dc6a7729d3961d84 (diff) |
Added blinding into math model.
-rw-r--r-- | modexpng_fpga_model.py | 92 |
1 files changed, 55 insertions, 37 deletions
diff --git a/modexpng_fpga_model.py b/modexpng_fpga_model.py index 1152bdf..b1628e3 100644 --- a/modexpng_fpga_model.py +++ b/modexpng_fpga_model.py @@ -175,6 +175,8 @@ class ModExpNG_TestVector(): self.n_coeff = ModExpNG_Operand(vector_inst.n_coeff, KEY_LENGTH + _WORD_WIDTH) self.p_coeff = ModExpNG_Operand(vector_inst.p_coeff, _KEY_LENGTH_HALF + _WORD_WIDTH) self.q_coeff = ModExpNG_Operand(vector_inst.q_coeff, _KEY_LENGTH_HALF + _WORD_WIDTH) + self.x = ModExpNG_Operand(vector_inst.x, KEY_LENGTH) + self.y = ModExpNG_Operand(vector_inst.y, KEY_LENGTH) class ModExpNG_PartRecombinator(): @@ -615,6 +617,13 @@ class ModExpNG_Worker(): return ModExpNG_Operand(None, ab_num_words, R) + def reduce(self, a): + carry = 0 + for x in range(len(a.words)): + a.words[x] += carry + carry = (a.words[x] >> _WORD_WIDTH) & 1 + a.words[x] &= self.lowlevel._word_mask + if __name__ == "__main__": @@ -624,67 +633,76 @@ if __name__ == "__main__": # create worker worker = ModExpNG_Worker() - # number of words - pq_num_words = _KEY_LENGTH_HALF // _WORD_WIDTH - - # obtain known good reference values with built-in math - s_known = pow(vector.m.number(), vector.d.number(), vector.n.number()) - sp_known = pow(vector.m.number(), vector.dp.number(), vector.p.number()) - sq_known = pow(vector.m.number(), vector.dq.number(), vector.q.number()) + # numbers of words + n_num_words = KEY_LENGTH // _WORD_WIDTH + pq_num_words = n_num_words // 2 - # first reduce message, this glues 2**-r to the message as a side effect - mpa = worker.multiply(vector.m, None, vector.p, vector.p_coeff, pq_num_words, reduce_only=True) - mqa = worker.multiply(vector.m, None, vector.q, vector.q_coeff, pq_num_words, reduce_only=True) - - # unglue 2**-r from message by gluing 2**r to it to compensate - mp = worker.multiply(mpa, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) - mq = worker.multiply(mqa, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) + # obtain known good reference value with built-in math + s_known = pow(vector.m.number(), vector.d.number(), vector.n.number()) # one i = ModExpNG_Operand(1, _KEY_LENGTH_HALF) # bring one into Montgomery domain (glue 2**r to one) - ipz = worker.multiply(i, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) - iqz = worker.multiply(i, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) + ip_factor = worker.multiply(i, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) + iq_factor = worker.multiply(i, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) - # bring message into Montgomery domain (glue 2**r to message) - mpz = worker.multiply(mp, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) - mqz = worker.multiply(mq, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) + # bring blinding coefficients into Montgomery domain (glue 2**(2*r) to x and y) + x_factor = worker.multiply(vector.x, vector.n_factor, vector.n, vector.n_coeff, n_num_words) + y_factor = worker.multiply(vector.y, vector.n_factor, vector.n, vector.n_coeff, n_num_words) - # do "easier" exponentiations - spz = worker.exponentiate(ipz, mpz, vector.dp, vector.p, vector.p_factor, vector.p_coeff, pq_num_words) - sqz = worker.exponentiate(iqz, mqz, vector.dq, vector.q, vector.q_factor, vector.q_coeff, pq_num_words) + # blind message + m_blind = worker.multiply(vector.m, y_factor, vector.n, vector.n_coeff, n_num_words) - # return "easier" parts from Montgomery domain (unglue 2**r from result) - sp = worker.multiply(i, spz, vector.p, vector.p_coeff, pq_num_words) - sq = worker.multiply(i, sqz, vector.q, vector.q_coeff, pq_num_words) + # have to convert to non-redundant representation here + worker.reduce(m_blind) + + # first reduce message, this glues 2**-r to the message as a side effect + mp_blind_inverse_factor = worker.multiply(m_blind, None, vector.p, vector.p_coeff, pq_num_words, reduce_only=True) + mq_blind_inverse_factor = worker.multiply(m_blind, None, vector.q, vector.q_coeff, pq_num_words, reduce_only=True) - # check "easier" results - if sp.number() == sp_known: print("sp is OK") - else: print("sp is WRONG!") + # unglue 2**-r from message by gluing 2**r to it to compensate + mp_blind = worker.multiply(mp_blind_inverse_factor, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) + mq_blind = worker.multiply(mq_blind_inverse_factor, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) - if sq.number() == sq_known: print("sq is OK") - else: print("sq is WRONG!") + # bring message into Montgomery domain (glue 2**r to message) + mp_blind_factor = worker.multiply(mp_blind, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) + mq_blind_factor = worker.multiply(mq_blind, vector.q_factor, vector.q, vector.q_coeff, pq_num_words) + # do "easier" exponentiations + sp_blind_factor = worker.exponentiate(ip_factor, mp_blind_factor, vector.dp, vector.p, vector.p_factor, vector.p_coeff, pq_num_words) + sq_blind_factor = worker.exponentiate(iq_factor, mq_blind_factor, vector.dq, vector.q, vector.q_factor, vector.q_coeff, pq_num_words) + # return "easier" parts from Montgomery domain (unglue 2**r from result) + sp_blind = worker.multiply(i, sp_blind_factor, vector.p, vector.p_coeff, pq_num_words) + sq_blind = worker.multiply(i, sq_blind_factor, vector.q, vector.q_coeff, pq_num_words) + + # # do the "Garner's formula" part + # # 1. r = sp - sq mod p - sr = worker.subtract(sp, sq, vector.p, pq_num_words) + sr_blind = worker.subtract(sp_blind, sq_blind, vector.p, pq_num_words) # 2. sr_qinv = sr * qinv mod p - sr_qinv_a = worker.multiply(sr, vector.qinv, vector.p, vector.p_coeff, pq_num_words) - sr_qinv = worker.multiply(sr_qinv_a, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) + sr_qinv_blind_inverse_factor = worker.multiply(sr_blind, vector.qinv, vector.p, vector.p_coeff, pq_num_words) + sr_qinv_blind = worker.multiply(sr_qinv_blind_inverse_factor, vector.p_factor, vector.p, vector.p_coeff, pq_num_words) # 3. q_sr_qinv = q * sr_qinv - q_sr_qinv = worker.multiply(vector.q, sr_qinv, None, None, pq_num_words, multiply_only=True) + q_sr_qinv_blind = worker.multiply(vector.q, sr_qinv_blind, None, None, pq_num_words, multiply_only=True) # 4. s_crt = sq + q_sr_qinv - s_crt = worker.add(sq, q_sr_qinv, pq_num_words) + s_crt_blinded = worker.add(sq_blind, q_sr_qinv_blind, pq_num_words) + + # unblind s + s_crt_unblinded = worker.multiply(s_crt_blinded, x_factor, vector.n, vector.n_coeff, n_num_words) # check - if s_crt.number() != s_known: - print("ERROR: s_crt != s_known!") + if s_crt_unblinded.number() != s_known: + print("ERROR: s_crt_unblinded != s_known!") else: print("s is OK") +# +# End-of-File +# |