//======================================================================
//
// Copyright (c) 2019, NORDUnet A/S All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of the NORDUnet nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module modexpng_reductor
(
clk, rst_n,
ena, rdy,
word_index_last,
sel_wide_out, sel_narrow_out,
rd_wide_x_din_aux, rd_wide_y_din_aux,
rcmb_final_xy_bank, rcmb_final_xy_addr, rcmb_final_x_din, rcmb_final_y_din, rcmb_final_xy_valid,
rdct_wide_xy_bank, rdct_wide_xy_addr, rdct_wide_x_dout, rdct_wide_y_dout, rdct_wide_xy_valid,
rdct_narrow_xy_bank, rdct_narrow_xy_addr, rdct_narrow_x_dout, rdct_narrow_y_dout, rdct_narrow_xy_valid
);
//
// Headers
//
`include "modexpng_parameters.vh"
//
// Ports
//
input clk;
input rst_n;
input ena;
output rdy;
input [ OP_ADDR_W -1:0] word_index_last;
input [BANK_ADDR_W -1:0] sel_wide_out;
input [BANK_ADDR_W -1:0] sel_narrow_out;
input [ WORD_EXT_W -1:0] rd_wide_x_din_aux;
input [ WORD_EXT_W -1:0] rd_wide_y_din_aux;
//
input [BANK_ADDR_W -1:0] rcmb_final_xy_bank;
input [ OP_ADDR_W -1:0] rcmb_final_xy_addr;
input [ WORD_EXT_W -1:0] rcmb_final_x_din;
input [ WORD_EXT_W -1:0] rcmb_final_y_din;
input rcmb_final_xy_valid;
output [BANK_ADDR_W -1:0] rdct_wide_xy_bank;
output [ OP_ADDR_W -1:0] rdct_wide_xy_addr;
output [ WORD_EXT_W -1:0] rdct_wide_x_dout;
output [ WORD_EXT_W -1:0] rdct_wide_y_dout;
output rdct_wide_xy_valid;
output [BANK_ADDR_W -1:0] rdct_narrow_xy_bank;
output [ OP_ADDR_W -1:0] rdct_narrow_xy_addr;
output [ WORD_EXT_W -1:0] rdct_narrow_x_dout;
output [ WORD_EXT_W -1:0] rdct_narrow_y_dout;
output rdct_narrow_xy_valid;
//
// Output Registers
//
reg [BANK_ADDR_W -1:0] wide_xy_bank;
reg [ OP_ADDR_W -1:0] wide_xy_addr;
reg [ WORD_EXT_W -1:0] wide_x_dout;
reg [ WORD_EXT_W -1:0] wide_y_dout;
reg wide_xy_valid = 1'b0;
reg [BANK_ADDR_W -1:0] narrow_xy_bank;
reg [ OP_ADDR_W -1:0] narrow_xy_addr;
reg [ WORD_EXT_W -1:0] narrow_x_dout;
reg [ WORD_EXT_W -1:0] narrow_y_dout;
reg narrow_xy_valid = 1'b0;
//
// Mapping
//
assign rdct_wide_xy_bank = wide_xy_bank;
assign rdct_wide_xy_addr = wide_xy_addr;
assign rdct_wide_x_dout = wide_x_dout;
assign rdct_wide_y_dout = wide_y_dout;
assign rdct_wide_xy_valid = wide_xy_valid;
assign rdct_narrow_xy_bank = narrow_xy_bank;
assign rdct_narrow_xy_addr = narrow_xy_addr;
assign rdct_narrow_x_dout = narrow_x_dout;
assign rdct_narrow_y_dout = narrow_y_dout;
assign rdct_narrow_xy_valid = narrow_xy_valid;
//
// Helper Tasks
//
task _update_rdct_wide;
input [BANK_ADDR_W -1:0] bank;
input [ OP_ADDR_W -1:0] addr;
input [ WORD_EXT_W -1:0] dout_x;
input [ WORD_EXT_W -1:0] dout_y;
input valid;
begin
wide_xy_bank <= bank;
wide_xy_addr <= addr;
wide_x_dout <= dout_x;
wide_y_dout <= dout_y;
wide_xy_valid <= valid;
end
endtask
task _update_rdct_narrow;
input [BANK_ADDR_W -1:0] bank;
input [ OP_ADDR_W -1:0] addr;
input [ WORD_EXT_W -1:0] dout_x;
input [ WORD_EXT_W -1:0] dout_y;
input valid;
begin
narrow_xy_bank <= bank;
narrow_xy_addr <= addr;
narrow_x_dout <= dout_x;
narrow_y_dout <= dout_y;
narrow_xy_valid <= valid;
end
endtask
task set_rdct_wide;
input [BANK_ADDR_W -1:0] bank;
input [ OP_ADDR_W -1:0] addr;
input [ WORD_EXT_W -1:0] dout_x;
input [ WORD_EXT_W -1:0] dout_y;
_update_rdct_wide(bank, addr, dout_x, dout_y, 1'b1);
endtask
task set_rdct_narrow;
input [BANK_ADDR_W -1:0] bank;
input [ OP_ADDR_W -1:0] addr;
input [ WORD_EXT_W -1:0] dout_x;
input [ WORD_EXT_W -1:0] dout_y;
_update_rdct_narrow(bank, addr, dout_x, dout_y, 1'b1);
endtask
task clear_rdct_wide;
_update_rdct_wide(BANK_DNC, OP_ADDR_DNC, WORD_EXT_DNC, WORD_EXT_DNC, 1'b0);
endtask
task clear_rdct_narrow;
_update_rdct_narrow(BANK_DNC, OP_ADDR_DNC, WORD_EXT_DNC, WORD_EXT_DNC, 1'b0);
endtask
//
// Pipeline rd_wide_*
//
reg [WORD_EXT_W -1:0] rd_wide_x_din_aux_pipe;
reg [WORD_EXT_W -1:0] rd_wide_y_din_aux_pipe;
always @(posedge clk)
//
{rd_wide_x_din_aux_pipe, rd_wide_y_din_aux_pipe} <=
{rd_wide_x_din_aux, rd_wide_y_din_aux } ;
//
// Delay rcmb_final_* to match rd_wide_*
//
reg rcmb_xy_valid_dly1_x = 1'b0;
reg rcmb_xy_valid_dly2_x = 1'b0;
reg rcmb_xy_valid_dly3_x = 1'b0;
reg rcmb_xy_valid_dly4_x = 1'b0;
reg [BANK_ADDR_W -1:0] rcmb_xy_bank_dly1_x;
reg [BANK_ADDR_W -1:0] rcmb_xy_bank_dly2_x;
reg [BANK_ADDR_W -1:0] rcmb_xy_bank_dly3_x;
reg [BANK_ADDR_W -1:0] rcmb_xy_bank_dly4_x;
reg [ OP_ADDR_W -1:0] rcmb_xy_addr_dly1_x;
reg [ OP_ADDR_W -1:0] rcmb_xy_addr_dly2_x;
reg [ OP_ADDR_W -1:0] rcmb_xy_addr_dly3_x;
reg [ OP_ADDR_W -1:0] rcmb_xy_addr_dly4_x;
reg [ WORD_EXT_W -1:0] rcmb_x_dout_dly1_x;
reg [ WORD_EXT_W -1:0] rcmb_x_dout_dly2_x;
reg [ WORD_EXT_W -1:0] rcmb_x_dout_dly3_x;
reg [ WORD_EXT_W -1:0] rcmb_x_dout_dly4_x;
reg [ WORD_EXT_W -1:0] rcmb_y_dout_dly1_x;
reg [ WORD_EXT_W -1:0] rcmb_y_dout_dly2_x;
reg [ WORD_EXT_W -1:0] rcmb_y_dout_dly3_x;
reg [ WORD_EXT_W -1:0] rcmb_y_dout_dly4_x;
always @(posedge clk or negedge rst_n)
//
if (!rst_n) {rcmb_xy_valid_dly4_x, rcmb_xy_valid_dly3_x, rcmb_xy_valid_dly2_x, rcmb_xy_valid_dly1_x} <= 4'b0000;
else {rcmb_xy_valid_dly4_x, rcmb_xy_valid_dly3_x, rcmb_xy_valid_dly2_x, rcmb_xy_valid_dly1_x} <=
{rcmb_xy_valid_dly3_x, rcmb_xy_valid_dly2_x, rcmb_xy_valid_dly1_x, rcmb_final_xy_valid } ;
always @(posedge clk) begin
//
if (rcmb_final_xy_valid) {rcmb_xy_bank_dly1_x, rcmb_xy_addr_dly1_x, rcmb_x_dout_dly1_x, rcmb_y_dout_dly1_x} <=
{rcmb_final_xy_bank, rcmb_final_xy_addr, rcmb_final_x_din, rcmb_final_y_din } ;
if (rcmb_xy_valid_dly1_x) {rcmb_xy_bank_dly2_x, rcmb_xy_addr_dly2_x, rcmb_x_dout_dly2_x, rcmb_y_dout_dly2_x} <=
{rcmb_xy_bank_dly1_x, rcmb_xy_addr_dly1_x, rcmb_x_dout_dly1_x, rcmb_y_dout_dly1_x} ;
if (rcmb_xy_valid_dly2_x) {rcmb_xy_bank_dly3_x, rcmb_xy_addr_dly3_x, rcmb_x_dout_dly3_x, rcmb_y_dout_dly3_x} <=
{rcmb_xy_bank_dly2_x, rcmb_xy_addr_dly2_x, rcmb_x_dout_dly2_x, rcmb_y_dout_dly2_x} ;
if (rcmb_xy_valid_dly3_x) {rcmb_xy_bank_dly4_x, rcmb_xy_addr_dly4_x, rcmb_x_dout_dly4_x, rcmb_y_dout_dly4_x} <=
{rcmb_xy_bank_dly3_x, rcmb_xy_addr_dly3_x, rcmb_x_dout_dly3_x, rcmb_y_dout_dly3_x} ;
//
end
//
// LSB Carry Logic
//
reg [ CARRY_W -1:0] rcmb_x_lsb_carry;
reg [ CARRY_W -1:0] rcmb_y_lsb_carry;
reg [ WORD_W -1:0] rcmb_x_lsb_dummy;
reg [ WORD_W -1:0] rcmb_y_lsb_dummy;
wire [WORD_EXT_W -1:0] rcmb_x_lsb_carry_ext = {WORD_ZERO, rcmb_x_lsb_carry};
wire [WORD_EXT_W -1:0] rcmb_y_lsb_carry_ext = {WORD_ZERO, rcmb_y_lsb_carry};
task calc_rcmb_xy_lsb_carry;
begin
{rcmb_x_lsb_carry, rcmb_x_lsb_dummy} <= rcmb_x_dout_dly4_x + rd_wide_x_din_aux_pipe + rcmb_x_lsb_carry_ext;
{rcmb_y_lsb_carry, rcmb_y_lsb_dummy} <= rcmb_y_dout_dly4_x + rd_wide_y_din_aux_pipe + rcmb_y_lsb_carry_ext;
end
endtask
//
// LSB Carry Computation
//
always @(posedge clk)
//
if (ena) begin
//
rcmb_x_lsb_carry <= CARRY_ZERO;
rcmb_y_lsb_carry <= CARRY_ZERO;
//
end else if (rcmb_xy_valid_dly4_x)
//
case (rcmb_xy_bank_dly4_x)
BANK_RCMB_ML: calc_rcmb_xy_lsb_carry;
BANK_RCMB_MH: if (rcmb_xy_addr_dly4_x == OP_ADDR_ZERO) calc_rcmb_xy_lsb_carry;
endcase
//
// MSB Sum Logic
//
wire [WORD_EXT_W -1:0] sum_rdct_x = rcmb_x_dout_dly4_x + rd_wide_x_din_aux_pipe;
wire [WORD_EXT_W -1:0] sum_rdct_y = rcmb_y_dout_dly4_x + rd_wide_y_din_aux_pipe;
wire [WORD_EXT_W -1:0] sum_rdct_x_carry = sum_rdct_x + rcmb_x_lsb_carry_ext;
wire [WORD_EXT_W -1:0] sum_rdct_y_carry = sum_rdct_y + rcmb_y_lsb_carry_ext;
//
// MSB Sum Computation
//
always @(posedge clk or negedge rst_n)
//
if (!rst_n) begin
clear_rdct_wide;
clear_rdct_narrow;
end else begin
//
clear_rdct_wide;
clear_rdct_narrow;
//
if (rcmb_xy_valid_dly4_x)
//
case (rcmb_xy_bank_dly4_x)
BANK_RCMB_MH:
if (rcmb_xy_addr_dly4_x == OP_ADDR_ONE) begin
set_rdct_wide (sel_wide_out, OP_ADDR_ZERO, sum_rdct_x_carry, sum_rdct_y_carry);
set_rdct_narrow(sel_narrow_out, OP_ADDR_ZERO, sum_rdct_x_carry, sum_rdct_y_carry);
end else if (rcmb_xy_addr_dly4_x > OP_ADDR_ONE) begin
set_rdct_wide (sel_wide_out, rcmb_xy_addr_dly4_x - 1'b1, sum_rdct_x, sum_rdct_y);
set_rdct_narrow(sel_narrow_out, rcmb_xy_addr_dly4_x - 1'b1, sum_rdct_x, sum_rdct_y);
end
BANK_RCMB_EXT: begin
set_rdct_wide (sel_wide_out, word_index_last, rcmb_x_dout_dly4_x, rcmb_y_dout_dly4_x);
set_rdct_narrow(sel_narrow_out, word_index_last, rcmb_x_dout_dly4_x, rcmb_y_dout_dly4_x);
end
endcase
//
end
//
// Internal Busy Flag Logic
//
reg busy_next = 1'b0;
reg [2:0] busy_now_shreg = 3'b000;
wire busy_now = busy_now_shreg[2];
always @(posedge clk or negedge rst_n)
//
if (!rst_n) busy_now_shreg <= 3'b000;
else begin
if (rdy && ena) busy_now_shreg <= 3'b111;
else busy_now_shreg <= {busy_now_shreg[1:0], busy_next};
end
always @(posedge clk or negedge rst_n)
//
if (!rst_n) busy_next <= 1'b0;
else begin
if (rdy && ena) busy_next <= 1'b1;
if (!rdy && rcmb_xy_valid_dly4_x && (rcmb_xy_bank_dly4_x == BANK_RCMB_EXT)) busy_next <= 1'b0;
end
//
// Ready Flag Logic
//
reg rdy_reg = 1'b1;
assign rdy = rdy_reg;
always @(posedge clk or negedge rst_n)
//
if (!rst_n) rdy_reg <= 1'b1;
else begin
if (rdy && ena) rdy_reg <= 1'b0;
if (!rdy && !busy_now) rdy_reg <= 1'b1;
end
endmodule