diff options
Diffstat (limited to 'fpga_modular.cpp')
-rw-r--r-- | fpga_modular.cpp | 831 |
1 files changed, 831 insertions, 0 deletions
diff --git a/fpga_modular.cpp b/fpga_modular.cpp new file mode 100644 index 0000000..af485a0 --- /dev/null +++ b/fpga_modular.cpp @@ -0,0 +1,831 @@ +//------------------------------------------------------------------------------
+//
+// fpga_modular.cpp
+// ---------------------------
+// Modular arithmetic routines
+//
+// Authors: Pavel Shatov
+//
+// Copyright (c) 2015-2016, NORDUnet A/S
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// - Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// - Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// - Neither the name of the NORDUnet nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+//------------------------------------------------------------------------------
+
+
+//------------------------------------------------------------------------------
+// Headers
+//------------------------------------------------------------------------------
+#include <stdint.h>
+#include "ecdsa_model.h"
+#include "fpga_lowlevel.h"
+#include "fpga_modular.h"
+
+
+//------------------------------------------------------------------------------
+// Globals
+//------------------------------------------------------------------------------
+FPGA_BUFFER ecdsa_q;
+FPGA_BUFFER ecdsa_zero;
+FPGA_BUFFER ecdsa_one;
+FPGA_BUFFER ecdsa_delta;
+
+
+//------------------------------------------------------------------------------
+void fpga_modular_init()
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+
+ FPGA_BUFFER tmp_q = ECDSA_Q;
+ FPGA_BUFFER tmp_zero = ECDSA_ZERO;
+ FPGA_BUFFER tmp_one = ECDSA_ONE;
+ FPGA_BUFFER tmp_delta = ECDSA_DELTA;
+
+ /* fill buffers for large multi-word integers */
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ { ecdsa_q.words[w] = tmp_q.words[OPERAND_NUM_WORDS - (w+1)];
+ ecdsa_zero.words[w] = tmp_zero.words[OPERAND_NUM_WORDS - (w+1)];
+ ecdsa_one.words[w] = tmp_one.words[OPERAND_NUM_WORDS - (w+1)];
+ ecdsa_delta.words[w] = tmp_delta.words[OPERAND_NUM_WORDS - (w+1)];
+ }
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Modular addition.
+//
+// This routine implements algorithm 3. from "Ultra High Performance ECC over
+// NIST Primes on Commercial FPGAs".
+//
+// s = (a + b) mod q
+//
+// The naive approach is like the following:
+//
+// 1. s = a + b
+// 2. if (s >= q) s -= q
+//
+// The speed-up trick is to simultaneously calculate (a + b) and (a + b - q)
+// and then select the right variant.
+//
+//------------------------------------------------------------------------------
+void fpga_modular_add(FPGA_BUFFER *a, FPGA_BUFFER *b, FPGA_BUFFER *s)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ FPGA_BUFFER ab, ab_n; // intermediate buffers
+ bool c_in, c_out; // carries
+ bool b_in, b_out; // borrows
+
+ c_in = false; // first word has no carry
+ b_in = false; // first word has no borrow
+
+ // run parallel addition and subtraction
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ {
+ fpga_lowlevel_add32(a->words[w], b->words[w], c_in, &ab.words[w], &c_out);
+ fpga_lowlevel_sub32(ab.words[w], ecdsa_q.words[w], b_in, &ab_n.words[w], &b_out);
+
+ c_in = c_out; // propagate carry
+ b_in = b_out; // propagate borrow
+ }
+
+ // now select the right buffer
+
+ /*
+ * We select the right variant based on borrow and carry flags after
+ * addition and subtraction of the very last pair of words. Note, that
+ * we only need to select the first variant (a + b) when (a + b) < q.
+ * This way if we get negative number after subtraction, we discard it
+ * and use the output of the adder instead. The subtractor output is
+ * negative when borrow flag is set *and* carry flag is not set. When
+ * both borrow and carry are set, the number is non-negative, because
+ * borrow and carry cancel each other out.
+ */
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ s->words[w] = (b_out && !c_out) ? ab.words[w] : ab_n.words[w];
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Modular subtraction.
+//
+// This routine implements algorithm 3. from "Ultra High Performance ECC over
+// NIST Primes on Commercial FPGAs".
+//
+// d = (a - b) mod q
+//
+// The naive approach is like the following:
+//
+// 1. d = a - b
+// 2. if (a < b) d += q
+//
+// The speed-up trick is to simultaneously calculate (a - b) and (a - b + q)
+// and then select the right variant.
+//
+//------------------------------------------------------------------------------
+void fpga_modular_sub(FPGA_BUFFER *a, FPGA_BUFFER *b, FPGA_BUFFER *d)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ FPGA_BUFFER ab, ab_n; // intermediate buffers
+ bool c_in, c_out; // carries
+ bool b_in, b_out; // borrows
+
+ c_in = false; // first word has no carry
+ b_in = false; // first word has no borrow
+
+ // run parallel subtraction and addition
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ {
+ fpga_lowlevel_sub32(a->words[w], b->words[w], b_in, &ab.words[w], &b_out);
+ fpga_lowlevel_add32(ab.words[w], ecdsa_q.words[w], c_in, &ab_n.words[w], &c_out);
+
+ b_in = b_out; // propagate borrow
+ c_in = c_out; // propagate carry
+ }
+
+ // now select the right buffer
+
+ /*
+ * We select the right variant based on borrow flag after subtraction
+ * and addition of the very last pair of words. Note, that we only
+ * need to select the second variant (a - b + q) when a < b. This way
+ * if we get negative number after subtraction, we discard it
+ * and use the output of the adder instead. The Subtractor output is
+ * negative when borrow flag is set.
+ */
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ d->words[w] = b_out ? ab_n.words[w] : ab.words[w];
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Modular multiplication.
+//
+// This routine implements modular multiplication algorithm from "Ultra High
+// Performance ECC over NIST Primes on Commercial FPGAs".
+//
+// p = (a * b) mod q
+//
+// The complex algorithm is split into three parts:
+//
+// 1. Calculation of partial words
+// 2. Acccumulation of partial words into full-size product
+// 3. Modular reduction of the full-size product
+//
+// See comments for corresponding helper routines for more information.
+//
+//------------------------------------------------------------------------------
+void fpga_modular_mul(FPGA_BUFFER *a, FPGA_BUFFER *b, FPGA_BUFFER *p)
+//------------------------------------------------------------------------------
+{
+ FPGA_WORD_EXTENDED si[4*OPERAND_NUM_WORDS-1]; // parts of intermediate product
+ FPGA_WORD c[2*OPERAND_NUM_WORDS]; // full-size intermediate product
+
+ /* multiply to get partial words */
+ fpga_modular_mul_helper_multiply(a, b, si);
+
+ /* accumulate partial words into full-size product */
+ fpga_modular_mul_helper_accumulate(si, c);
+
+ /* reduce full-size product using special routine */
+ fpga_modular_mul_helper_reduce(c, p);
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Modular multiplicative inversion procedure.
+//
+// a1 = a^-1 (mod n)
+//
+// This routine implements the algorithm from "Constant Time Modular
+// Inversion" by Joppe W. Bos (http://www.joppebos.com/files/CTInversion.pdf)
+//
+// The algorithm has two phases: 1) calculation of "almost" modular inverse,
+// which is a^-1*2^k and 2) removal of redundant factor 2^k.
+//
+// The first stage has four temporary variables: r, s, u, v; they are updated
+// at every iteration. Depending on flags there can be four branches, FPGA
+// will pre-calculate all possible values in parallel and then use a multiplexor
+// to select the next value. This implementation also calculates all possible
+// outcomes. This is done for debugging purposes, *NOT* for constant run-time!
+//
+// The second part only works with s and k.
+//
+// Note, that k is a simple counter, and it can't exceed 2*OPERAND_WIDTH.
+//
+// The complex inversion algorithm uses helper routines. Note, that width of the
+// intermediate results can temporarily exceed OPERAND_WIDTH, so all the helper
+// routines process OPERAND_NUM_WORDS+1 words.
+//
+//------------------------------------------------------------------------------
+void fpga_modular_inv(FPGA_BUFFER *a, FPGA_BUFFER *a1)
+{
+ int i; // round counter
+ int w; // word counter
+ int k; // redundant power of 2
+
+ /* q, 1 */
+ FPGA_WORD buf_q[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_1[OPERAND_NUM_WORDS+1];
+
+ /* r, s */
+ FPGA_WORD buf_r[OPERAND_NUM_WORDS+1], buf_s[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_r_double[OPERAND_NUM_WORDS+1], buf_s_double[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_r_new[OPERAND_NUM_WORDS+1], buf_s_new[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_r_plus_s[OPERAND_NUM_WORDS+1], buf_s_plus_r[OPERAND_NUM_WORDS+1];
+
+ /* u, v */
+ FPGA_WORD buf_u[OPERAND_NUM_WORDS+1], buf_v[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_u_half[OPERAND_NUM_WORDS+1], buf_v_half[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_u_minus_v[OPERAND_NUM_WORDS+1], buf_v_minus_u[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_u_minus_v_half[OPERAND_NUM_WORDS+1], buf_v_minus_u_half[OPERAND_NUM_WORDS+1];
+ FPGA_WORD buf_u_new[OPERAND_NUM_WORDS+1], buf_v_new[OPERAND_NUM_WORDS+1];
+
+ /* comparison */
+ int cmp_v_1, cmp_u_v;
+
+ /* clear buffers */
+ for (w=0; w<=OPERAND_NUM_WORDS; w++)
+ buf_r[w] = 0, buf_s[w] = 0,
+ buf_u[w] = 0, buf_v[w] = 0,
+ buf_q[w] = 0, buf_1[w] = 0;
+
+ /* initialize q, 1 */
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ buf_q[w] = ecdsa_q.words[w], buf_1[w] = ecdsa_one.words[w];
+
+ /* initialize r, s */
+ buf_r[0] = 0, buf_s[0] = 1;
+
+ /* initialize u, v */
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ buf_u[w] = ecdsa_q.words[w], buf_v[w] = a->words[w];
+
+ /* initialize k */
+ k = 0;
+
+ /* flags for the first stage */
+ bool v_is_1, u_is_greater_than_v, u_is_even, v_is_even;
+
+ /* first stage */
+ for (i=0; i<(2*OPERAND_WIDTH); i++)
+ {
+ /* pre-calculate all possible values for r and s */
+ fpga_modular_inv_helper_shl(buf_r, buf_r_double); // r_double = 2 * r
+ fpga_modular_inv_helper_shl(buf_s, buf_s_double); // s_double = 2 * s
+ fpga_modular_inv_helper_add(buf_r, buf_s, buf_r_plus_s); // r_plus_s = r + s
+ fpga_modular_inv_helper_add(buf_s, buf_r, buf_s_plus_r); // s_plus_r = s + r
+
+ /* pre-calculate all possible values for u and v */
+ fpga_modular_inv_helper_shr(buf_u, buf_u_half); // u_half = u / 2
+ fpga_modular_inv_helper_shr(buf_v, buf_v_half); // v_half = v / 2
+ fpga_modular_inv_helper_sub(buf_u, buf_v, buf_u_minus_v); // u_minus_v = u - v
+ fpga_modular_inv_helper_sub(buf_v, buf_u, buf_v_minus_u); // v_minus_u = v - u
+ fpga_modular_inv_helper_shr(buf_u_minus_v, buf_u_minus_v_half); // u_minus_v_half = u_minus_v / 2
+ fpga_modular_inv_helper_shr(buf_v_minus_u, buf_v_minus_u_half); // v_minus_u_half = v_minus_u / 2
+
+ /* compare */
+ fpga_modular_inv_helper_cmp(buf_v, buf_1, &cmp_v_1);
+ fpga_modular_inv_helper_cmp(buf_u, buf_v, &cmp_u_v);
+
+ /* assign flags */
+ v_is_1 = (cmp_v_1 == 0);
+ u_is_greater_than_v = (cmp_u_v > 0);
+ u_is_even = !(buf_u[0] & 1);
+ v_is_even = !(buf_v[0] & 1);
+
+ /* select u */
+ if ( u_is_even) fpga_modular_inv_helper_cpy(buf_u_new, buf_u_half);
+ if (!u_is_even && v_is_even) fpga_modular_inv_helper_cpy(buf_u_new, buf_u);
+ if (!u_is_even && !v_is_even) fpga_modular_inv_helper_cpy(buf_u_new, u_is_greater_than_v ? buf_u_minus_v_half : buf_u);
+
+ /* select v */
+ if ( u_is_even) fpga_modular_inv_helper_cpy(buf_v_new, buf_v);
+ if (!u_is_even && v_is_even) fpga_modular_inv_helper_cpy(buf_v_new, buf_v_half);
+ if (!u_is_even && !v_is_even) fpga_modular_inv_helper_cpy(buf_v_new, u_is_greater_than_v ? buf_v : buf_v_minus_u_half);
+
+ /* select r */
+ if ( u_is_even) fpga_modular_inv_helper_cpy(buf_r_new, buf_r);
+ if (!u_is_even && v_is_even) fpga_modular_inv_helper_cpy(buf_r_new, buf_r_double);
+ if (!u_is_even && !v_is_even) fpga_modular_inv_helper_cpy(buf_r_new, u_is_greater_than_v ? buf_r_plus_s : buf_r_double);
+
+ /* select s */
+ if ( u_is_even) fpga_modular_inv_helper_cpy(buf_s_new, buf_s_double);
+ if (!u_is_even && v_is_even) fpga_modular_inv_helper_cpy(buf_s_new, buf_s);
+ if (!u_is_even && !v_is_even) fpga_modular_inv_helper_cpy(buf_s_new, u_is_greater_than_v ? buf_s_double : buf_s_plus_r);
+
+ /* update values */
+ if (!v_is_1)
+ { fpga_modular_inv_helper_cpy(buf_u, buf_u_new);
+ fpga_modular_inv_helper_cpy(buf_v, buf_v_new);
+ fpga_modular_inv_helper_cpy(buf_r, buf_r_new);
+ fpga_modular_inv_helper_cpy(buf_s, buf_s_new);
+ }
+
+ /* update k */
+ if (!v_is_1) k++;
+ }
+
+ //
+ // Note, that to save FPGA resources, the second stage re-uses buffers
+ // used in the first stage.
+ //
+
+ /* flags for the second stage */
+ bool k_is_0, s_is_odd;
+
+ /* second stage */
+ for (i=0; i<(2*OPERAND_WIDTH); i++)
+ {
+ /* pre-calculate all possible values */
+ fpga_modular_inv_helper_shr(buf_s, buf_u);
+ fpga_modular_inv_helper_add(buf_s, buf_q, buf_r);
+ fpga_modular_inv_helper_shr(buf_r, buf_v);
+
+ //
+ // assign flags
+ //
+ s_is_odd = buf_s[0] & 1;
+ k_is_0 = (k == 0);
+
+ //
+ // select new values based on flags
+ //
+ fpga_modular_inv_helper_cpy(buf_s_new, s_is_odd ? buf_v : buf_u);
+
+ /* update s */
+ if (! k_is_0)
+ fpga_modular_inv_helper_cpy(buf_s, buf_s_new);
+
+ /* update k */
+ if (! k_is_0) k--;
+ }
+
+ /* done, copy s into output buffer */
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ a1->words[w] = buf_s[w];
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Parallelized multiplication.
+//
+// This routine implements the algorithm in Fig. 3. from "Ultra High
+// Performance ECC over NIST Primes on Commercial FPGAs".
+//
+// Inputs a and b are split into 2*OPERAND_NUM_WORDS words of FPGA_WORD_WIDTH/2
+// bits each, because FPGA multipliers can't handle full FPGA_WORD_WIDTH-wide
+// inputs. These smaller words are multiplied by an array of 2*OPERAND_NUM_WORDS
+// multiplers and accumulated into an array of 4*OPERAND_NUM_WORDS-1 partial
+// output words si[].
+//
+// The order of loading a and b into the multipliers is a bit complicated,
+// during the first 2*OPERAND_NUM_WORDS-1 cycles one si word per cycle is
+// obtained, during the very last 2*OPERAND_NUM_WORDS'th cycle all the
+// remaining 2*OPERAND_NUM_WORDS partial words are obtained simultaneously.
+//
+//------------------------------------------------------------------------------
+void fpga_modular_mul_helper_multiply(FPGA_BUFFER *a, FPGA_BUFFER *b, FPGA_WORD_EXTENDED *si)
+//------------------------------------------------------------------------------
+{
+ int w; // counter
+ int t, x; // more counters
+ int j, i; // word indices
+ FPGA_WORD p; // product
+
+ // buffers for smaller words that multipliers can handle
+ FPGA_WORD_REDUCED ai[2*OPERAND_NUM_WORDS];
+ FPGA_WORD_REDUCED bj[2*OPERAND_NUM_WORDS];
+
+ // split a and b into smaller words
+ for (w=0; w<OPERAND_NUM_WORDS; w++)
+ ai[2*w] = (FPGA_WORD_REDUCED)a->words[w], ai[2*w + 1] = (FPGA_WORD_REDUCED)(a->words[w] >> (FPGA_WORD_WIDTH / 2)),
+ bj[2*w] = (FPGA_WORD_REDUCED)b->words[w], bj[2*w + 1] = (FPGA_WORD_REDUCED)(b->words[w] >> (FPGA_WORD_WIDTH / 2));
+
+ // accumulators
+ FPGA_WORD_EXTENDED mac[2*OPERAND_NUM_WORDS];
+
+ // clear accumulators
+ for (w=0; w<(2*OPERAND_NUM_WORDS); w++) mac[w] = 0;
+
+ // run the crazy algorithm :)
+ for (t=0; t<(2*OPERAND_NUM_WORDS); t++)
+ {
+ // save upper half of si[] (one word per cycle)
+ if (t > 0)
+ { si[4*OPERAND_NUM_WORDS - (t+1)] = mac[t];
+ mac[t] = 0;
+ }
+
+ // update index
+ j = 2*OPERAND_NUM_WORDS - (t+1);
+
+ // parallel multiplication
+ for (x=0; x<(2*OPERAND_NUM_WORDS); x++)
+ {
+ // update index
+ i = t - x;
+ if (i < 0) i += 2*OPERAND_NUM_WORDS;
+
+ // multiply...
+ fpga_lowlevel_mul16(ai[i], bj[j], &p);
+
+ // ...accumulate
+ mac[x] += p;
+ }
+
+ }
+
+ // now finally save lower half of si[] (2*OPERAND_NUM_WORDS words at once)
+ for (w=0; w<(2*OPERAND_NUM_WORDS); w++)
+ si[w] = mac[2*OPERAND_NUM_WORDS - (w+1)];
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Accumulation of partial words into full-size product.
+//
+// This routine implements the Algorithm 4. from "Ultra High Performance ECC
+// over NIST Primes on Commercial FPGAs".
+//
+// Input words si[] are accumulated into full-size product c[].
+//
+// The algorithm is a bit tricky, there are 4*OPERAND_NUM_WORDS-1 words in
+// si[]. Complete operation takes 2*OPERAND_NUM_WORDS cycles, even words are
+// summed in full, odd words are split into two parts. During every cycle the
+// upper part of the previous word and the lower part of the following word are
+// summed too.
+//
+//------------------------------------------------------------------------------
+void fpga_modular_mul_helper_accumulate(FPGA_WORD_EXTENDED *si, FPGA_WORD *c)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ FPGA_WORD_EXTENDED cw0, cw1; // intermediate sums
+ FPGA_WORD_REDUCED cw_carry; // wide carry
+
+ // clear carry
+ cw_carry = 0;
+
+ // execute the algorithm
+ for (w=0; w<(2*OPERAND_NUM_WORDS); w++)
+ {
+ // handy flags
+ bool w_is_first = (w == 0);
+ bool w_is_last = (w == (2*OPERAND_NUM_WORDS-1));
+
+ // accumulate full current even word...
+ // ...and also the upper part of the previous odd word (if not the first word)
+ fpga_lowlevel_add48(si[2*w], w_is_first ? 0 : si[2*w-1] >> (FPGA_WORD_WIDTH / 2), &cw0);
+
+ // generate another word from "carry" part of the previous even word...
+ // ...and also the lower part of the following odd word (if not the last word)
+ cw1 = w_is_last ? 0 : (FPGA_WORD)(si[2*w+1] << (FPGA_WORD_WIDTH / 2));
+ cw1 |= (FPGA_WORD_EXTENDED)cw_carry;
+
+ // accumulate once again
+ fpga_lowlevel_add48(cw0, cw1, &cw1);
+
+ // store current word...
+ c[w] = (FPGA_WORD)cw1;
+
+ // ...and carry
+ cw_carry = (FPGA_WORD_REDUCED) (cw1 >> FPGA_WORD_WIDTH);
+ }
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Fast modular reduction for NIST prime P-256.
+//
+// p = c mod p256
+//
+// This routine implements the algorithm 2.29 from "Guide to Elliptic Curve
+// Cryptography".
+//
+// Output p is OPERAND_WIDTH wide (contains OPERAND_NUM_WORDS words), input c
+// on the other hand is the output of the parallelized Comba multiplier, so it
+// is 2*OPERAND_WIDTH wide and has twice as many words (2*OPERAND_NUM_WORDS).
+//
+// To save FPGA resources, the calculation is done using only two adders and
+// one subtractor. The algorithm is split into five steps.
+//
+//------------------------------------------------------------------------------
+#if USE_CURVE == 1
+void fpga_modular_mul_helper_reduce_p256(FPGA_WORD *c, FPGA_BUFFER *p)
+{
+ // "funny" words
+ FPGA_BUFFER s1, s2, s3, s4, s5, s6, s7, s8, s9;
+
+ // compose "funny" words out of input words
+ s1.words[7] = c[ 7], s1.words[6] = c[ 6], s1.words[5] = c[ 5], s1.words[4] = c[ 4], s1.words[3] = c[ 3], s1.words[2] = c[ 2], s1.words[1] = c[ 1], s1.words[0] = c[ 0];
+ s2.words[7] = c[15], s2.words[6] = c[14], s2.words[5] = c[13], s2.words[4] = c[12], s2.words[3] = c[11], s2.words[2] = 0, s2.words[1] = 0, s2.words[0] = 0;
+ s3.words[7] = 0, s3.words[6] = c[15], s3.words[5] = c[14], s3.words[4] = c[13], s3.words[3] = c[12], s3.words[2] = 0, s3.words[1] = 0, s3.words[0] = 0;
+ s4.words[7] = c[15], s4.words[6] = c[14], s4.words[5] = 0, s4.words[4] = 0, s4.words[3] = 0, s4.words[2] = c[10], s4.words[1] = c[ 9], s4.words[0] = c[ 8];
+ s5.words[7] = c[ 8], s5.words[6] = c[13], s5.words[5] = c[15], s5.words[4] = c[14], s5.words[3] = c[13], s5.words[2] = c[11], s5.words[1] = c[10], s5.words[0] = c[ 9];
+ s6.words[7] = c[10], s6.words[6] = c[ 8], s6.words[5] = 0, s6.words[4] = 0, s6.words[3] = 0, s6.words[2] = c[13], s6.words[1] = c[12], s6.words[0] = c[11];
+ s7.words[7] = c[11], s7.words[6] = c[ 9], s7.words[5] = 0, s7.words[4] = 0, s7.words[3] = c[15], s7.words[2] = c[14], s7.words[1] = c[13], s7.words[0] = c[12];
+ s8.words[7] = c[12], s8.words[6] = 0, s8.words[5] = c[10], s8.words[4] = c[ 9], s8.words[3] = c[ 8], s8.words[2] = c[15], s8.words[1] = c[14], s8.words[0] = c[13];
+ s9.words[7] = c[13], s9.words[6] = 0, s9.words[5] = c[11], s9.words[4] = c[10], s9.words[3] = c[ 9], s9.words[2] = 0, s9.words[1] = c[15], s9.words[0] = c[14];
+
+ // intermediate results
+ FPGA_BUFFER sum0, sum1, difference;
+
+ /* Step 1. */
+ fpga_modular_add(&s2, &s2, &sum0); // sum0 = 2*s2
+ fpga_modular_add(&s3, &s3, &sum1); // sum1 = 2*s3
+ fpga_modular_sub(&ecdsa_zero, &s6, &difference); // difference = -s6
+
+ /* Step 2. */
+ fpga_modular_add(&sum0, &s1, &sum0); // sum0 = s1 + 2*s2
+ fpga_modular_add(&sum1, &s4, &sum1); // sum1 = s4 + 2*s3
+ fpga_modular_sub(&difference, &s7, &difference); // difference = -(s6 + s7)
+
+ /* Step 3. */
+ fpga_modular_add(&sum0, &s5, &sum0); // sum0 = s1 + 2*s2 + s5
+ fpga_modular_add(&sum1, &ecdsa_zero, &sum1); // compulsory cycle to keep sum1 constant for next stage
+ fpga_modular_sub(&difference, &s8, &difference); // difference = -(s6 + s7 + s8)
+
+ /* Step 4. */
+ fpga_modular_add(&sum0, &sum1, &sum0); // sum0 = s1 + 2*s2 + 2*s3 + s4 + s5
+// fpga_modular_add(<dummy>, <dummy>, &sum1); // dummy cycle, result ignored
+ fpga_modular_sub(&difference, &s9, &difference); // difference = -(s6 + s7 + s8 + s9)
+
+ /* Step 5. */
+ fpga_modular_add(&sum0, &difference, p); // p = s1 + 2*s2 + 2*s3 + s4 + s5 - s6 - s7 - s8 - s9
+// fpga_modular_add(<dummy>, <dummy>, &sum1); // dummy cycle, result ignored
+// fpga_modular_add(<dummy>, <dummy>, &difference); // dummy cycle, result ignored
+}
+#endif
+
+
+//------------------------------------------------------------------------------
+//
+// Fast modular reduction for NIST prime P-384.
+//
+// p = c mod p384
+//
+// This routine implements the algorithm 2.30 from "Guide to Elliptic Curve
+// Cryptography".
+//
+// Output p is OPERAND_WIDTH wide (contains OPERAND_NUM_WORDS words), input c
+// on the other hand is the output of the parallelized Comba multiplier, so it
+// is 2*OPERAND_WIDTH wide and has twice as many words (2*OPERAND_NUM_WORDS).
+//
+// ...
+//
+//------------------------------------------------------------------------------
+#if USE_CURVE == 2
+void fpga_modular_mul_helper_reduce_p384(FPGA_WORD *c, FPGA_BUFFER *p)
+{
+ // "funny" words
+ FPGA_BUFFER s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
+
+ // compose "funny" words
+ s1.words[11] = c[11], s1.words[10] = c[10], s1.words[ 9] = c[ 9], s1.words[ 8] = c[ 8], s1.words[ 7] = c[ 7], s1.words[ 6] = c[ 6], s1.words[ 5] = c[ 5], s1.words[ 4] = c[ 4], s1.words[ 3] = c[ 3], s1.words[ 2] = c[ 2], s1.words[ 1] = c[ 1], s1.words[ 0] = c[ 0];
+ s2.words[11] = 0, s2.words[10] = 0, s2.words[ 9] = 0, s2.words[ 8] = 0, s2.words[ 7] = 0, s2.words[ 6] = c[23], s2.words[ 5] = c[22], s2.words[ 4] = c[21], s2.words[ 3] = 0, s2.words[ 2] = 0, s2.words[ 1] = 0, s2.words[ 0] = 0;
+ s3.words[11] = c[23], s3.words[10] = c[22], s3.words[ 9] = c[21], s3.words[ 8] = c[20], s3.words[ 7] = c[19], s3.words[ 6] = c[18], s3.words[ 5] = c[17], s3.words[ 4] = c[16], s3.words[ 3] = c[15], s3.words[ 2] = c[14], s3.words[ 1] = c[13], s3.words[ 0] = c[12];
+ s4.words[11] = c[20], s4.words[10] = c[19], s4.words[ 9] = c[18], s4.words[ 8] = c[17], s4.words[ 7] = c[16], s4.words[ 6] = c[15], s4.words[ 5] = c[14], s4.words[ 4] = c[13], s4.words[ 3] = c[12], s4.words[ 2] = c[23], s4.words[ 1] = c[22], s4.words[ 0] = c[21];
+ s5.words[11] = c[19], s5.words[10] = c[18], s5.words[ 9] = c[17], s5.words[ 8] = c[16], s5.words[ 7] = c[15], s5.words[ 6] = c[14], s5.words[ 5] = c[13], s5.words[ 4] = c[12], s5.words[ 3] = c[20], s5.words[ 2] = 0, s5.words[ 1] = c[23], s5.words[ 0] = 0;
+ s6.words[11] = 0, s6.words[10] = 0, s6.words[ 9] = 0, s6.words[ 8] = 0, s6.words[ 7] = c[23], s6.words[ 6] = c[22], s6.words[ 5] = c[21], s6.words[ 4] = c[20], s6.words[ 3] = 0, s6.words[ 2] = 0, s6.words[ 1] = 0, s6.words[ 0] = 0;
+ s7.words[11] = 0, s7.words[10] = 0, s7.words[ 9] = 0, s7.words[ 8] = 0, s7.words[ 7] = 0, s7.words[ 6] = 0, s7.words[ 5] = c[23], s7.words[ 4] = c[22], s7.words[ 3] = c[21], s7.words[ 2] = 0, s7.words[ 1] = 0, s7.words[ 0] = c[20];
+ s8.words[11] = c[22], s8.words[10] = c[21], s8.words[ 9] = c[20], s8.words[ 8] = c[19], s8.words[ 7] = c[18], s8.words[ 6] = c[17], s8.words[ 5] = c[16], s8.words[ 4] = c[15], s8.words[ 3] = c[14], s8.words[ 2] = c[13], s8.words[ 1] = c[12], s8.words[ 0] = c[23];
+ s9.words[11] = 0, s9.words[10] = 0, s9.words[ 9] = 0, s9.words[ 8] = 0, s9.words[ 7] = 0, s9.words[ 6] = 0, s9.words[ 5] = 0, s9.words[ 4] = c[23], s9.words[ 3] = c[22], s9.words[ 2] = c[21], s9.words[ 1] = c[20], s9.words[ 0] = 0;
+ s10.words[11] = 0, s10.words[10] = 0, s10.words[ 9] = 0, s10.words[ 8] = 0, s10.words[ 7] = 0, s10.words[ 6] = 0, s10.words[ 5] = 0, s10.words[ 4] = c[23], s10.words[ 3] = c[23], s10.words[ 2] = 0, s10.words[ 1] = 0, s10.words[ 0] = 0;
+
+
+ // intermediate results
+ FPGA_BUFFER t1, t2, t3, t4;
+
+ /* Step 1. */
+ fpga_modular_add(&s1, &s3, &t1); // t1 = s1 + s3
+ fpga_modular_add(&s2, &s2, &t2); // t2 = 2*s2
+ fpga_modular_add(&s4, &s5, &t3); // t3 = s4 + s5
+ fpga_modular_add(&s6, &s7, &t4); // t4 = s6 + s7
+
+ /* Step 2. */
+ fpga_modular_add(&t1, &t2, &t1); // t1 = t1 + t2 = s1 + 2*s2 + 2*s3
+ fpga_modular_add(&t3, &t4, &t2); // t2 = t3 + t4 = s4 + s5 + s6 + s7
+ fpga_modular_add(&s8, &s9, &t3); // t3 = s8 + s9
+
+ /* Step 3. */
+ fpga_modular_add(&t1, &t2, &t1); // t1 = t1 + t2 = s1 + 2*s2 + 2*s3 + s4 + s5 + s6 + s7
+ fpga_modular_add(&s10, &t3, &t2); // t2 = s10 + t3 = s8 + s9 + s10
+
+ /* Step 4. */
+ fpga_modular_sub(&t1, &t2, p); // p = t1 - t2 = s1 + 2*s2 + 2*s3 + s4 + s5 + s6 + s7 - s8 - s9 - s10
+}
+#endif
+
+
+//------------------------------------------------------------------------------
+//
+// Multi-word shift to the left by 1 bit.
+//
+// y = x << 1
+//
+//------------------------------------------------------------------------------
+void fpga_modular_inv_helper_shl(FPGA_WORD *x, FPGA_WORD *y)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ FPGA_WORD carry_in, carry_out; // carries
+
+ carry_in = 0; // first word has no carry
+
+ // shift word-by-word
+ for (w=0; w<=OPERAND_NUM_WORDS; w++)
+ carry_out = x[w] >> (FPGA_WORD_WIDTH - 1), // store next carry
+ y[w] = x[w] << 1, // shift
+ y[w] |= carry_in, // process carry
+ carry_in = carry_out; // propagate carry
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Multi-word shift to the right by 1 bit.
+//
+// y = x >> 1
+//
+//------------------------------------------------------------------------------
+void fpga_modular_inv_helper_shr(FPGA_WORD *x, FPGA_WORD *y)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ FPGA_WORD carry_in, carry_out; // carries
+
+ carry_in = 0; // first word has no carry
+
+ // shift word-by-word
+ for (w=OPERAND_NUM_WORDS; w>=0; w--)
+ carry_out = x[w], // store next carry
+ y[w] = x[w] >> 1, // shift
+ y[w] |= carry_in << (FPGA_WORD_WIDTH - 1), // process carry
+ carry_in = carry_out; // propagate carry
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Multi-word addition.
+//
+// s = x + y
+//
+//------------------------------------------------------------------------------
+void fpga_modular_inv_helper_add(FPGA_WORD *x, FPGA_WORD *y, FPGA_WORD *s)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ bool carry_in, carry_out; // carries
+
+ // lowest word has no carry
+ carry_in = false;
+
+ // sum a and b word-by-word
+ for (w=0; w<=OPERAND_NUM_WORDS; w++)
+ {
+ // low-level addition
+ fpga_lowlevel_add32(x[w], y[w], carry_in, &s[w], &carry_out);
+
+ // propagate carry bit
+ carry_in = carry_out;
+ }
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Multi-word subtraction .
+//
+// d = x - y
+//
+//------------------------------------------------------------------------------
+void fpga_modular_inv_helper_sub(FPGA_WORD *x, FPGA_WORD *y, FPGA_WORD *d)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ bool borrow_in, borrow_out; // borrows
+
+ // lowest word has no borrow
+ borrow_in = false;
+
+ // subtract b from a word-by-word
+ for (w=0; w<=OPERAND_NUM_WORDS; w++)
+ {
+ // low-level subtraction
+ fpga_lowlevel_sub32(x[w], y[w], borrow_in, &d[w], &borrow_out);
+
+ // propagate borrow bit
+ borrow_in = borrow_out;
+ }
+
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Multi-word copy.
+//
+// dst = src
+//
+//------------------------------------------------------------------------------
+void fpga_modular_inv_helper_cpy(FPGA_WORD *dst, FPGA_WORD *src)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+
+ // copy all the words from src into dst
+ for (w=0; w<=OPERAND_NUM_WORDS; w++)
+ dst[w] = src[w];
+}
+
+
+//------------------------------------------------------------------------------
+//
+// Multi-word comparison.
+//
+// The return value is -1 when a<b, 0 when a=b and 1 when a>b.
+//
+//------------------------------------------------------------------------------
+void fpga_modular_inv_helper_cmp(FPGA_WORD *a, FPGA_WORD *b, int *c)
+//------------------------------------------------------------------------------
+{
+ int w; // word counter
+ int r, r0, ra, rb; // result
+ bool borrow; // borrow
+ FPGA_WORD d; // partial difference
+
+ // result is unknown so far
+ r = 0;
+
+ // clear borrow for the very first word
+ borrow = false;
+
+ // compare a and b word-by-word
+ for (w=OPERAND_NUM_WORDS; w>=0; w--)
+ {
+ // save result
+ r0 = r;
+
+ // subtract current words
+ fpga_lowlevel_sub32(a[w], b[w], false, &d, &borrow);
+
+ // analyze flags
+ rb = borrow ? -1 : 0; // a[w] < b[w]
+ ra = (!borrow && (d != 0)) ? 1 : 0; // a[w] > b[w]
+
+ //
+ // Note, that ra is either 0 or 1, rb is either 0 or -1 and they
+ // can never be non-zero at the same time.
+ //
+ // Note, that r can only be updated if comparison result has not
+ // been resolved yet. Even if we already know comparison result,
+ // we continue doing dummy subtractions to keep run-time constant.
+ //
+
+ // update result
+ r = (r == 0) ? ra + rb : r0;
+ }
+
+ // done
+ *c = r;
+}
+
+
+//------------------------------------------------------------------------------
+// End-of-File
+//------------------------------------------------------------------------------
|